
Answers 1

Questions and Answers: May 2003

1. Table 1 shows the quick-sort algorithm.

 In parts (a), (b), and (c) of this question, assume that step 1.1 is
implemented by a partitioning algorithm that chooses a[left] as the pivot.
The partitioning algorithm leaves the pivot in a[p]. You may make any
reasonable assumption about the order of the values it leaves in
a[left…p–1] and in a[p+1…right].

 (a) Illustrate the quick-sort algorithm’s behaviour as it sorts the following
array of country-codes alphabetically. Your illustration should show the
contents of the array and the value of p, after step 1.1, after step 1.2, and
after step 1.3.

[Unseen problem]

(3)

 (b) Analyse the quick-sort algorithm’s behaviour in the best case. Let
comps(n) be the number of comparisons performed by the algorithm as it
sorts a (sub)array of length n. Write down and explain equations of the
form:

comps(n) = … if n ≤ 1
comps(n) = … if n > 1

 State (but do not derive) the resulting time complexity. When does the
best case arise?

[Notes]

 comps(n) = 0 if n ≤ 1 (1)
 comps(n) ≅ 2comps(n/2) + n if n > 1 (2)

Eqn (1) says that no comparisons are needed to sort an array of length 1 or
less.
Eqn (2) says that about comps(n/2) comparisons are needed to sort each
subarray, plus about n comparisons for the partitioning step.

Best-case time complexity is O(n log n).

The best case arises when the pivot happens to move to the middle of the
array.

(4)

NL BE LU DE FR IT UK DK IE ES PT GR
0 1 2 3 4 5 6 7 8 9 10 11

IT BE DK LU IE ES GR NL DE UK FR PT
0 1 2 3 4 5 6 7 8 p=9 10 11

After
step 1.3:

After
step 1.2:

After
step 1.1:

FR BE GR DE IE IT LU NL DK UK ES PT
0 1 2 3 4 5 6 7 p=9 10 11

FR BE GR DE IE IT LU NL DK PT ES UK
0 1 2 3 4 5 6 7 8 p=9 10 11

Answers 2

 (c) Similarly analyse the quick-sort algorithm’s behaviour in the worst case.
Write down and explain the corresponding equations. State the resulting
time complexity. When does the worst case arise?

 The quick-sort algorithm’s worst-case behaviour resembles the behaviour
of another well-known sorting algorithm. Which one?

[Notes]

 comps(n) = 0 if n ≤ 1
 comps(n) ≅ comps(n–1) + n if n > 1

Eqn 1 says that no comparisons are needed to sort an array of length 0 or 1.
Eqn 2 says that comps(n–1) comparisons are needed to sort one subarray,
plus about n comparisons for the partitioning step.

Worst-case time complexity is O(n2).

The worst case arises when the pivot happens to move to one end of the
array. This will happen if the array is already sorted, and the pivot is chosen
to be the leftmost value in the array.

The quick-sort algorithm’s worst-case behaviour resembles selection sort.
(5)

 (d) Step 1.1 can be implemented by a partitioning algorithm that avoids this
worst-case behaviour. Outline such an algorithm.

 Hint: Your algorithm should not necessarily choose a[left] as the pivot.
Details of your algorithm are not required, but the idea must be clear.

[Unseen problem]

One idea is to choose three values from the array (say the leftmost, middle,
and rightmost values), and take the median of these values as the pivot.
Thereafter proceed as normal.

(8)

Answers 3

2. Appendix 1 shows a contract for the Queue abstract data type, in the
form of a Java interface.

 (a) Using diagrams, describe an efficient representation of a bounded queue
using an array.

[Notes]

Use a cyclic array:

(6)

 (b) Consider a bounded queue whose capacity is 6. Show the queue
representation:

(i) after adding the objects A, B, C, D, E (in that order);

(ii) after removing the front object;

(iii) after adding the object F;

(iv) after adding the object G.

[Unseen problem]

(4)

0 front rear cap–1

0 front rear cap–1

or:

1 front=0 rear=5 2 3 4

front=1 rear=5

front=1 rear=0

front=1

A B C D E (i)

0 2 3 4
C D E (ii)

5 2 3 4
C D E (iii) F

5
rear=

2 3 4
C D E (iv) F G

0

B

B

B

Answers 4

 (c) Consider vehicles waiting at a traffic-signal on a road with two lanes (see
below). The left lane is reserved for vehicles turning left; the right lane is
reserved for vehicles going ahead or turning right. The traffic-signal
changes through three states: red (all vehicles must wait), then filter (only
left-turning vehicles may proceed), then green (all vehicles may proceed).
The timing is such that, when the traffic-signal changes to the filter state,
at most 10 waiting vehicles in the left lane actually proceed; and when
the traffic-signal changes to the green state, at most 10 waiting vehicles
in each lane actually proceed.

 The following Java class is designed to simulate the traffic movements:

class Approach {

 …

}

 Complete this class. Use the Queue interface, and a suitable class that
implements the Queue interface.

[Unseen problem]

 class Approach {

 private Queue leftLane, rightLane;
 private int signalState;

 public final int // traffic-signal states
 RED = 0, FILTER = 1, GREEN = 2;

 public final int // vehicle directions
 LEFT = 0, AHEAD = 1, RIGHT = 2;

 public Approach () {
 leftLane = new ArrayQueue(20);
 rightLane = new ArrayQueue(20);
 signalState = RED;
 }

 public void arrive (Vehicle veh, int dir) {
 switch (dir) {
 case LEFT:
 leftLane.addLast(veh);
 break;
 case AHEAD:
 case RIGHT:

Answers 5

 rightLane.addLast(veh);
 }
 }

 public void changeSignal () {
 switch (signalState) {
 case RED:
 signalState = FILTER;
 proceed(leftLane, 10);
 break;
 case FILTER:
 signalState = GREEN;
 proceed(leftLane, 10);
 proceed(rightLane, 10);
 break;
 case GREEN:
 signalState = RED;
 }
 }

 private void proceed (Queue lane, int n) {
 while (! lane.isEmpty() && n > 0) {
 lane.removeFirst();
 n--;
 }
 }

 }
(10)

Answers 6

3. A binary relation is a set of ordered pairs (x, y). Neither x nor y is
necessarily unique in a relation. The following is an example of a
relation:

Languages = { (UK, “English”),
 (FR, “French”),
 (DE, “German”),
 (BE, “French”),
 (BE, “Flemish”) }

 (a) Assume the following requirements for a Relation abstract data type:

1) It must be possible to make the relation empty.

2) It must be possible to add a given pair of objects (x, y) to the
relation.

3) It must be possible to remove a given pair (x, y) from the relation.

4) It must be possible to test whether a given pair (x, y) is in the
relation.

5) It must be possible, given x, to test whether there is at least one
pair (x, y) in the relation.

6) It must be possible to iterate over all pairs in the relation.

7) It must be possible, given x, to iterate over all pairs (x, y) in the
relation.

 Design a contract that meets these requirements. Your contract must be in
the form of a suitably commented Java interface.

 Show that the operations in your contract are both sufficient and
necessary to meet the above requirements.

 You may assume the following class declaration:

class Pair {
 public Object x, y;
 …
}

[Unseen problem]

 public interface Relation {

 public void clear ();
 // Make this relation empty.

 public void add (Object x, Object y);
 // Add the pair (x, y) to this relation.

 public boolean remove (Object x, Object y);
 // Remove the pair (x, y) from this relation. Return false if there is
 // no such pair in this relation.

Answers 7

 public boolean contains (Object x, Object y);
 // Return true if the pair (x, y) is in this relation.

 public boolean contains (Object x);
 // Return true if there is a pair (x, y) in this relation.

 public Iterator iterator ();
 // Return an iterator that will visit all pairs in this relation, in no
 // particular order.

 public Iterator selectiveIterator (Object x);
 // Return an iterator that will visit all pairs (x, y) in this relation, in no
 // particular order.

 }

These operations are sufficient: each meets one of the requirements.

These operations are all necessary, except possibly selectiveIterator.
Application code could achieve the same effect by visiting and testing all
pairs, but that would be less efficient.

(10)

 (b) Using your interface, implement the following Java methods:

static Set getxs (Relation rel);
// Return the set of all x such that there is at least one pair (x, y)
// in rel.

static Set getys (Relation rel, Object x);
// Return the set of all y such that (x, y) is in rel.

[Unseen problem]

 static Set getxs (Relation rel) {
 Set xs = new TreeSet();
 Iterator pairs = rel.iterator();
 while (pairs.hasNext()) {
 Pair p = (Pair)pairs.next();
 xs.add(p.x);
 }
 return xs;
 }

 static Set getys (Relation rel, Object x) {
 Set ys = new TreeSet();
 Iterator pairs = rel.selectiveIterator(x);
 while (pairs.hasNext()) {
 Pair p = (Pair)pairs.next();
 ys.add(p.y);
 }
 return ys;
 }

(5)

Answers 8

 (c) Briefly describe an efficient representation for relations. Illustrate your
answer by showing how the above relation Languages would be
represented.

[Unseen problem]

A hash table would be suitable. The hash function could simply use
x.hashcode(); alternatively, the Pair class could be equipped with a hashcode
method that combines x.hashcode() and y.hashcode().

A search tree is another possibility, but only if the Pair class is equipped with
a compareTo method.

A diagram showing the representation of Languages is required.
(5)

Answers 9

4. (a) Explain the basic principles of hash tables. Distinguish between closed-
bucket hash tables and open-bucket hash tables.

[Notes]

A hash table is an array of buckets numbered 0…m–1, together with a
function hash that translates each key to a bucket number. The home bucket
of an entry with key k is hash(k).

In a closed-bucket hash table (CBHT), bucket b contains a linked list of all
entries whose home bucket is b.

In an open-bucket hash table (OBHT), each bucket either is occupied by a
single entry or is unoccupied. If a new entry’s home bucket is b, but bucket b
is already occupied, that entry is displaced to another unoccupied bucket.

(5)

 (b) Consider a map whose keys are course-codes and whose values are
course descriptions. Assume that a course-code consists of two letters
and three digits: the letters identify the department, the first digit is the
level number (1–5), and the remaining digits are a serial number. For
example, BI101 might be the course-code for a Biology level-1 course.
Assume also that the map contains about 200 courses at any one time.

 Suppose that a programmer decides to represent the map by a closed-
bucket hash table with 26 buckets, with a hash function that simply uses
the course-code’s first letter. Explain clearly why this particular
representation is unsuitable.

[Unseen problem, similar to a seen problem]

There are too few buckets. The load factor could rise to 200/26, well above
the recommended 0.75.

Also, the hash function will distribute course-codes very unevenly: some
letters are far more common than others.

(2)

 (c) Design a better hash-table representation for the map.

[Unseen problem, similar to a seen problem]

The number of buckets should be a prime number m ≅ 270. This ensures
that the load factor does not exceed 0.75.

The hash function should use all characters of the course-code, say:

 hash(k) = (weighted sum of characters of k) mod m
(3)

Answers 10

 (d) Write down an algorithm to find the course description corresponding to
a given course-code.

[Simple adaptation of notes]

To find the course description corresponding to code:

 1. Set b to hash(code).
 2. Find which node if any in the linked list of bucket b of the CBHT
 contains the key code.
 3. Return the course description in that node, or none if there is no
 such node.

Step 2 is a standard linked-list linear search.
(3)

 (e) What are the best-case and worst-case time complexities of your
algorithm? Explain your answers.

[Notes]

Best case: O(1). This arises when the courses are evenly distributed, with no
bucket containing more than (say) 2 courses. In that case step 2 performs at
most 2 comparisons.

Worst case: O(n). This arises when all the courses are in one bucket. In that
case step 2 performs up to n comparisons.

(3)

 (f) The following is a true story. An application program was written to
maintain a large set of URLs. The program used Java’s String class to
represent each URL, and the HashTable class to represent the set of
URLs. (HashTable was a precursor of HashMap.)

 At first, searching the set of URLs was found to be unexpectedly slow.
Later, when a new version of the Java class library was installed,
searching was found to be much faster. Neither the application code nor
the size of the hash table had been changed.

 What might account for this phenomenon?

[Unseen problem]
[The following is the historical account. Any other reasonable hypothesis
earns the marks.]

The first implementation of the String class’s hashcode method used only the
first few characters of the string, so URLs (which usually start with
“http.\\www.”) were distributed unevenly, so searching was slow.

The later implementation used all characters of the string, so URLs were
distributed more evenly, so searching was faster.

(4)

