
Questions and Answers: May 2005

1. (a) What is meant by the time complexity of an algorithm? Give an example of
the O-notation, and explain what it means.

[Notes]

Time complexity is the growth rate of the algorithm’s time requirement as a
function of its input (or input size).

Example: O(log n) means that the algorithm’s time requirement is
proportional to log n.

(2)

 (b) Table 1 shows the array quick-sort algorithm. Illustrate its behaviour as it
sorts each of the following arrays of letters, assuming that step 1.1 selects
a[left] as the pivot. Each illustration should show the contents of the array and
the value of p, after step 1.1, after step 1.2, and after step 1.3.

 (i)

 (ii)

[Unseen problem]

(i) After step 1.1:

 After step 1.2:

 After step 1.3:

(ii) After step 1.1:

 After step 1.2:

 After step 1.3:
(4)

 (c) In what circumstances does the quick-sort algorithm perform most
efficiently?

 Let comps(n) be the number of comparisons performed by the algorithm as it
sorts a (sub)array of length n. Assuming the best case, write down and explain
equations of the form:

comps(n) = … if n ≤ 1
comps(n) = … if n > 1

 Assume that step 1.1 performs approximately n comparisons.

B X D L C F M G
0 1 2 3 4 5 6 7

B X D L C F M G
p = 0 1 2 3 4 5 6 7

B X D L C F M G

B C D F G L M X

C A P M R S Z T
0 1 2 3 p = 4 5 6 7

A C M P R S Z T

A C M P R S T Z

R C A S P Z T M
0 1 2 3 4 5 6 7

2

 State (but do not derive) the quick-sort algorithm’s best-case time complexity.

[Notes]

Quick-sort performs most efficiently when the pivot always turns out to be
the median value in the array.

Equations:

 comps(n) = 0 if n ≤ 1
 comps(n) = 2 comps(n/2) + n if n > 1

Time complexity is O(n log n).
(3)

 (d) In what circumstances does the quick-sort algorithm perform least efficiently?
Write down and explain equations of the same form as in part (c). State (but
do not derive) the algorithm’s worst-case time complexity.

[Notes]

Quick-sort performs least efficiently when the pivot always turns out to be the
least (or greatest) value in the array.

Equations:

 comps(n) = 0 if n ≤ 1
 comps(n) = comps(n–1) + n if n > 1

Time complexity is O(n2).
(3)

 (e) Suggest how a partitioning algorithm might ensure that neither a[left…p–1]
nor a[p+1…right] is empty. You need not write out the partitioning algorithm
in detailed steps, but your answer must make the idea clear.

[Unseen problem]

One solution would be to choose the median of a[left], a[mid], and a[right] as
the pivot.

(6)

 (f) Repeat part (b)(ii), now assuming that step 1.1 uses the idea you suggested in
part (e).

3

[Unseen problem]

The median of {B, L, G} is G, so:

 After step 1.1:

 After step 1.2:

 After step 1.3:
(2)

To sort a[left…right]:

1. If left < right:
 1.1. Partition a[left…right] such that a[left…p–1] are all less than or equal to
 a[p], and a[p+1…right] are all greater than or equal to a[p].
 1.2. Sort a[left…p–1].
 1.3. Sort a[p+1…right].
2. Terminate.

Table 1 Array quick-sort algorithm (Question 1).

B D C F G X L M
0 1 2 3 p = 4 5 6 7

B C D F G X L M

B C D F G L M X

4

2. (a) What is an abstract data type (ADT)?

[Notes]

An ADT is a data type characterised by a set of values and a set of operations
over these values, but whose representation is hidden.

(2)

 (b) Design an ADT to meet the following requirements:

1. The values are to be immutable lists of any length.

2. It must be possible to test whether a list is empty.

3. It must be possible to determine the length of a list.

4. It must be possible to obtain the “head” of a non-empty list (i.e., the
first element).

5. It must be possible to obtain the “tail” of a non-empty list (i.e., the list
consisting of all elements except the first).

6. It must be possible to add a single element at the front of a list.

 Express your design in the form of a Java interface.

[Unseen problem]

interface PureList {

 // A PureList object is an immutable list whose elements are objects.

 public boolean isEmpty ();

 public int length ();

 public Object head ();

 public PureList tail ();

 public PureList prepend (Object x);

}

Each class implementing PureList must also provide a constructor capable
of constructing an empty list.

(6)

 (c) Outline a suitable data structure for representing immutable lists. Your
answer must include diagrams showing: (i) the data structure’s invariant; (ii)
an empty list; (iii) a list containing the strings “alpha”, “beta”, and “gamma”
in that order.

5

[Unseen problem]

Use a singly-linked list whose header includes a length field:

[Alternative solutions are possible.]
(4)

 (d) Write a Java class that implements your interface.

 For each operation of your ADT, briefly describe how it will be implemented,
and state its time complexity.

[Unseen problem]

class LinkedList implements PureList {

 // A LinkedList object is an immutable list represented by a
 // singly-linked list with a length field.

 private int size;
 private Node first;

 private class Node {
 // A Node object is a singly-linked list node.
 public Object element;
 public Node succ;
 public Node (Object e, Node s) {
 element = e; succ = s;
 }
 }

 public LinkedList () {
 size = 0; first = null;
 }

 private LinkedList (int lgth, Node fst) {
 size = lgth; first = fst;
 }

 public boolean isEmpty () {
 return (first == null);
 }

 public int size () {
 return length;
 }

Invariant: n

Empty list: 0

Example: 3 “alpha” “beta” “gamma”

6

 public Object head () {
 return first.element;
 }

 public PureList tail () {
 return new PureList(size-1, first.succ);
 }

 public PureList prepend (Object x) {
 return new PureList(size+1, new Node(x, first));
 }

}

All operations have time complexity O(1).
(8)

7

3. A bag is a collection of members, some of which may be duplicates, but in
which the order of the members is of no significance.

 For example, the bags {apple, banana, apple} and {apple, apple, banana} are
equal to each other, but unequal to {apple, banana} since the latter contains
only one occurrence of “apple”. The cardinality of {apple, apple, banana} is
3: the total number of members including duplicates.

 Note: Bags resemble sets in that the order of the members is of no
significance. Bags differ from sets in that bags may contain duplicate
members.

 (a) Design an abstract data type to meet the following requirements:

• The values are to be bags of any cardinality.

• It must be possible to test whether a bag is empty.

• It must be possible to obtain the cardinality of a bag.

• It must be possible to determine whether a given value is a member of a
bag.

• It must be possible to determine the number of occurrences of a given
value in a bag.

• It must be possible to add a single occurrence of a given value to a bag.
For example, adding “apple” to {apple, banana} should yield {apple,
apple, banana}.

• It must be possible to remove a single occurrence of a given value from
a bag. For example, removing “apple” from {apple, apple, banana}
should yield {apple, banana}; removing “apple” again should yield
{banana}.

• It must be possible to render a bag as a string, in a suitable format.

 Express your design in the form of a Java interface.

[Unseen problem]

interface Bag {

 // A Bag object is a bag whose members are objects.

 public boolean isEmpty ();

 public int cardinality ();

 public boolean contains (Object x);

 public int occurrences (Object x);

 public void add (Object x);

 public void remove (Object x);

8

 public String toString ();

}

Each class implementing Bag must also provide a constructor capable of
constructing an empty bag.

(8)

 (b) Outline an efficient representation of bags using hash tables.

 Illustrate your answer with a diagram showing how the bag {apple, kiwi,
apple, lime, lemon, date, lime, apple} would be represented. For the purposes
of illustration you may use a hash function that simply takes the first letter of
the word.

[Unseen problem]

Use a closed-bucket hash table in which each node contains a member and the
number of occurrences of that member.

Illustration:

(5)

 What hash function would you use in practice when the bag members are
English-language words?

[Seen problem]

In practice, use a hash function based on a weighted sum of the letters of the
word.

(1)

 (c) Write application code that uses your bag abstract data type to count the
frequency of words in a text document. Assume that the following method is
available:

static String readWord (BufferedReader doc)
// Read and return the next word from doc, skipping any preceding
// spaces or punctuation. Return null if no word remains to be read.

0 apple 3

kiwi 1
lime 2 lemon1

date 1

1
2
3

…
11
12

…
25

13

9

[Unseen problem]

BufferedReader doc = new BufferedReader(…);
Bag words = new HashBag();
for (;;) {
 String word = readWord(doc);
 if (word == null) break;
 words.add(word);
}
System.out.println(words.toString());

(6)

10

4. (a) What is meant by a tree? (Note: This question is about a tree abstract data
type, not about search-tree data structures.)

[Notes]

A tree is a hierachical collection of elements. It consists of nodes, each of
which contains an element and has branches to a number of other nodes (its
children). The tree has a unique root node; every other node is the child of
exactly one other node (its parent).

(2)

 (b) Suppose that a small university comprises Schools of Business, Science, and
Technology. The School of Business comprises Departments of Management,
Economics, and Law. The School of Science comprises Departments of
Physics and Mathematics. The School of Technology comprises Departments
of Computing and Electronic Engineering. Draw a tree that captures the
structure of this university.

[Similar to seen problem]

(2)

 (c) Explain what are meant by breadth-first traversal and depth-first traversal of
a tree (as opposed to a graph).

[Notes translated to a different context]

Breadth-first traversal of a tree visits all the nodes of the tree, in such a way
that a node’s children are all visited before any of the grandchildren.

Depth-first traversal of a tree visits all the nodes of the tree, in such a way that
a node’s descendants are all visited before the node’s next sibling.

(2)

 (d) Develop an algorithm that performs a depth-first traversal of a given tree.

[Notes translated to a different context]

To perform a depth-first traversal of tree t:
1. Perform a depth-first traversal of the subtree rooted at t’s root.

To perform a depth-first traversal of the subtree rooted at node n:
1. Visit node n.
2. For each child c of node n, repeat:
 2.1. Perform a depth-first traversal of the subtree rooted at node c.

(4)

University

Business

Manag’t Economics Law Physics Maths Computing EE

Science Tech

11

 (e) Table 2 shows the contract for a tree abstract data type. Assuming this
contract, develop a Java method that traverses a given tree and prints out the
tree elements indented to show their relationship. For example, the tree below
left should be printed as shown below right:

[Unseen problem]

public static void printall (Tree t) {
 printSubtree(t.root(), 0);
}

private static void printSubtree (Tree t,
 Node n, int i) {
 printIndented(n.getElement(), i);
 Iterator children = t.children(n);
 while (children.hasNext()) {
 Node c = (Node) children.next();
 printSubtree(t, c, i+1);
 }
}

private static void printIndented (String s, int i);
// Print s on a line by itself, preceded by i spaces.

(10)

A
 B
 D
 C
 E
 F
 G

A

B

D

C

G F E

12

public interface Tree {

 // Each Tree object is a tree whose elements are arbitrary objects.

 //////////// Accessors ////////////

 public Tree.Node root ();
 // Return the root node of this tree, or null if this tree is empty.

 public Tree.Node parent (Tree.Node node);
 // Return the parent of node in this tree, or null if node is the root node.

 public int childCount (Tree.Node node);
 // Return the number of children of node in this tree.

 //////////// Transformers ////////////

 public void makeRoot (Object elem);
 // Make this tree consist of just a root node containing element elem.

 public Tree.Node addChild (Tree.Node node,
 Object elem);
 // Add a new node containing element elem as a child of node in this
 // tree, and return the new node. The new node has no children of its own.

 public void remove (Tree.Node node);
 // Remove node from this tree, together with all its descendants.

 //////////// Iterator ////////////

 public Iterator children (Tree.Node node);
 // Return an iterator that will visit all the children of node in this tree.

 //////////// Inner interface for tree nodes ////////////

 public interface Node {

 // Each Tree.Node object is a node of a tree, and contains a single
 // element.

 public Object getElement ();
 // Return the element contained in this node.

 public void setElement (Object elem);
 // Change the element contained in this node to be elem.

 }

}

Table 2 Contract for a tree abstract data type (Question 4).

