
Algorithms & Data Structures: Questions and Answers: May 2006

1. (a) Explain how to merge two sorted arrays a1 and a2 into a third array a3, using
diagrams to illustrate your answer. What is the time complexity of the array
merge algorithm? (Note that you are not asked to write down the array merge
algorithm itself.)

[Notes]

First compare the leftmost elements in a1 and a2, and copy the lesser element
into a3. Repeat, ignoring already-copied elements, until all elements in either
a1 or a2 have been copied. Finally, copy all remaining elements from either
a1 or a2 into a3.

Loop invariant:

Time complexity is O(n), in terms of copies or comparisons, where n is the
total length of a1 and a2.

(6)

already copied

a1
i right1 left1 i–1 … …

still to be copied

a2
j right2 left2 j–1 … …

already copied

a3
right left left+1 … …

unoccupied

right–1 k k–1

2

 (b) Write down the array merge-sort algorithm. Use diagrams to show how this
algorithm works. What is its time complexity?

[Notes]

To sort a[left…right]:

1. If left < right:
 1.1. Let mid be an integer about midway between left and right.
 1.2. Sort a[left…mid].
 1.3. Sort a[mid+1…right].
 1.4. Merge a[left…mid] and a[mid+1…right] into an auxiliary array b.
 1.5. Copy b into a[left…right].
2. Terminate.

Invariants:

Time complexity is O(n log n), in terms of comparisons.
(6)

a After step 1.1:
left mid right

a After step 1.2:

sorted

a After step 1.3:

sorted sorted

a After step 1.5:

sorted

unsorted

unsorted

3

 (c) Develop an algorithm to merge two sorted SLLs (singly-linked lists) into a
third SLL. Your algorithm should start:

To merge the SLL headed by first1 and the SLL headed by first2
into an SLL headed by (first3,last3):

[Unseen problem]

To merge the SLL headed by first1 and the SLL headed by first2
into an SLL headed by (first3,last3):

1. Set cur1 to first1, and set cur2 to first2.
2. Set first3 and last3 to null.
3. While cur1 � null and cur2 � null, repeat:
 3.1. If cur1’s element is less than cur2’s element:
 3.1.1. Append cur1’s element to the SLL headed by (first3, last3).
 3.1.2. Set cur1 to cur1’s successor.
 3.2. Else:
 3.2.1. Append cur2’s element to the SLL headed by (first3, last3).
 3.2.2. Set cur2 to cur2’s successor.
4. If cur1 � null, append cur1’s element, and all subsequent elements in the
 SLL headed by first1, to the SLL headed by (first3, last3).
5. If cur2 � null, append cur2’s element, and all subsequent elements in the
 SLL headed by first2, to the SLL headed by (first3, last3).
6. Terminate.

(8)

4

2. (a) Explain the fundamental difference between a stack and a queue. How do
they both differ from a list?

[Notes]

A stack allows elements to be added and removed at one end only. A queue
allows elements to be added at one end and removed at the other end. A list
allows elements to be added and removed anywhere.

(3)

5

 (b) A dequeue (or double-ended queue) is a sequence of elements with the
property that elements can be added, inspected, and removed at both ends.
Design a dequeue abstract data type, whose elements are objects, and which
enables application programs to:

(1) make a dequeue empty;

(2) add a given element at the front or rear of a dequeue;

(3) remove the element at the front or rear of a dequeue;

(4) inspect the element at the front or rear of a dequeue;

(5) test whether the dequeue is empty.

 Express your design in the form of a Java interface. Each operation must be
accompanied by a comment specifying the operation’s observable behaviour.

[Seen problem]

public interface Dequeue {

 // A Dequeue object represents a dequeue whose elements are objects.

 public void clear ();
 // Make this dequeue empty.

 public boolean isEmpty ();
 // Return true iff this dequeue is empty.

 public void addFirst (Object x);
 // Add x at the front of this dequeue.

 public void addLast (Object x);
 // Add x at the rear of this dequeue.

 public Object removeFirst ();
 // Remove and return the front element of this dequeue.

 public Object removeLast ();
 // Remove and return the rear element of this dequeue.

 public Object getFirst ();
 // Return the front element of this dequeue.

 public Object getLast ();
 // Return the rear element of this dequeue.

}
(6)

6

 (c) Show how a dequeue could be represented by a DLL (doubly-linked list),
using a diagram to display the invariant of this representation.

 Also draw diagrams showing the DLL representation after each step of the
following sequence:

(i) make the dequeue empty;

(ii) add “ant” to the rear;

(iii) add “bat” to the front;

(iv) add “cat” to the rear;

(v) remove the front element;

(vi) remove the rear element.

[Unseen problem]

Invariant:

Illustration:

(8)

front element rear element

(i)

bat ant cat

bat ant

ant (ii)

(iii)

(iv)

(v) ant cat

(vi) ant

7

 (d) An alternative representation for a dequeue might be an SLL (singly-linked
list) whose header contains links to both first and last nodes. Explain why the
SLL representation would be inferior to the DLL representation.

[Unseen problem]

The removeLast operation needs a link to the penultimate node, in order to
update the link to the last node and to set the successor link in that node to
null.

With the DLL representation, removeLast’s time complexity is O(1).

With the SLL representation, removeLast would have to follow links from
the first node to the penultimate node, so its time complexity would be O(n).

(3)

8

3. (a) What is a map?

 Explain briefly how a map can be represented by a BST (binary search tree).

[Notes]

A map is a set of (key, value) entries, with the property that no two entries
have equal keys.

A map can be represented by a BST sorted by keys.
(3)

9

 (b) A multimap is a collection of (key, value) entries in which keys are not
necessarily unique. An example of a multimap is one that associates countries
with their official languages:

country language
IT Italian
DE German
NL Dutch
FR French
BE French
BE Flemish
UK English
IE English
IE Irish

 Design an abstract data type, Multimap, representing multimaps whose keys
and values are objects. Your design must enable application programs to:

(1) make a multimap empty;

(2) add a given entry to a multimap;

(3) test whether there is at least one entry with a given key in a multimap;

(4) find all the values associated with a given key in a multimap;

(5) remove all the entries with a given key from a multimap.

 Express your design in the form of a Java interface. Each operation must be
accompanied by a comment specifying the operation’s observable behaviour.

[Unseen problem]

public interface Multimap {

 // A Multimap object represents a multimap whose keys and values
 // are objects.

 public void clear ();
 // Make this multimap empty.

 public void add (Object k, Object v);
 // Add the entry (k, v) to this multimap.

 public Boolean containsKey (Object k);
 // Return true iff this multimap contains at least one entry with key k.

 public Set getAll (Object k);
 // Return the set of values in all entries with key k in this multimap.

 public void removeAll (Object k);
 // Remove all entries with key k in this multimap.

}
(6)

10

 (c) Show how a multimap could be represented by a BST. Illustrate your answer
by showing how the (country, language) multimap of part (b) would be
represented.

[Unseen problem]

Use a BST sorted by keys, with a single node for each key. That node is
linked to a singly-linked list of values associated with that key in the
multimap.

Illustration:

[An alternative solution would be an ordinary BST, in which multiple BST
nodes may contain the same key. But this would make getAll and
removeAll much more difficult to implement.]

(6)

French Flemish

Dutch

French

Italian

French

German

IT

DE

BE FR UK

NL

English

IE

Irish

11

 (d) Assuming your representation of part (c), explain briefly how each of your
multimap operations would be implemented.

[Unseen problem]

clear()
Make the BST empty.

add(k,v)
Search the BST for k. If found, add v to the corresponding SLL. If not,
construct an SLL containing only v, and insert a new BST node containing k
and a link to the SLL.

containsKey(k)
Search the BST for k as usual.

getAll(k)
Search the BST for k as usual. If found, return a set containing the values in
the corresponding SLL. If not found, return an empty set.

removeAll(k)
Delete the BST entry for k as usual.

(5)

12

4. (a) Define what is meant by a graph. What is the difference between a directed
graph and an undirected graph?

[Notes]

A graph is a collection of nodes connected by edges. Each node contains an
element, and each edge optionally contains an attribute.

In a directed graph, edges are directed, i.e., each connects a source node to a
destination node. In an undirected graph, edges are undirected.

(3)

13

 (b) Explain how an airline might model its flight network by means of an
undirected graph. Illustrate your answer by drawing a graph to model the
network of a fictional airline Teuchtair, which has the following flights:
Glasgow from/to Stornoway and Inverness; Edinburgh from/to Glasgow and
Inverness; and Inverness from/to Kirkwall.

[Seen problem]

Use an undirected graph in which each node represents an airport, and an
edge between A and B represents the existence of flights between A and B.

Illustration:

(4)

Stornoway Inverness

Kirkwall

Edinburgh Glasgow

14

 (c) Explain how the airline might model its flight network now including
information about flight times. Each flight time consists of a departure time
and an arrival time. Assume, for simplicity, that any given flight is available
at the same flight time every day of the year. (You are not required to
illustrate your answer to this part, unless you want to.)

[Unseen problem]

Make the graph directed, with a distinct edge for every flight. Make the flight
time an attribute of each edge.

(5)

15

 (d) Outline how you would use such a flight network (with information about
flight times) to find all possible routes from airport A to airport B. Where a
route uses an intermediate airport, a connection time of at least 30 minutes
must be allowed.

[Unseen problem]

The answer should be a variant of directed graph search, finding all routes
from A to B. A route is a path in which the flight times on each pair of
consecutive edges are separated by at least 30 minutes.

(8)

