
Autumn Diet -1-

Algorithms & Data Structures: Questions and Answers: May 2007

1. (a) What is meant by the time complexity of an algorithm?

 In particular, what is meant when we say that a particular algorithm’s time
complexity is O(n)? O(log n)? O(1)?

[4]

[Notes]

An algorithm’s time complexity is a measure of the growth rate of the time it
requires, as a function of the algorithm’s input.

O(n) means that the time grows proportionately to n
(where n is the algorithm’s input, or size of input).
O(log n) means that the time grows proportionately to log n.
O(1) means that the time is constant.

 (b) Recall that a list is an indexed sequence of elements. How you would
represent a list (i) by an array and (ii) by a linked-list?

 Illustrate your answer by showing both representations of the following lists
of words:

«‘time’, ‘flies’»
«‘I’, ‘think’, ‘therefore’, ‘I’, ‘am’»

[4]

[Notes + unseen problem]

(i) Represent a bounded list (maximum length cap) by an integer length plus
an array elems[0…cap−1]. Illustrations:

(ii) Represent an unbounded list by a doubly-linked-list whose header
contains an integer length. Illustrations:

[Alternatively, use a singly-linked-list with links to both first and last nodes.]

I think therefore

time flies

I am

first
last

2 length

first
last

5 length

 time flies
0 cap−1

I am I think therefore
0 cap−1

elems

elems

2 length

5 length

1 2 3 4

1

Autumn Diet -2-

 (c) Assuming (i) the array representation of lists, and (ii) the linked-list
representation of lists, as in your answer to part (b), briefly outline algorithms
to do the following:

• fetch the element at index i of a list (e.g., if i = 0 then the answer
should be the list’s first element);

• insert a new element at index i of a list (e.g., if i = 0 then the new
element should be inserted before the list’s first element);

• insert a new element at the end of a list (i.e., after the list’s last
element).

 Also write down the time complexity of each algorithm.
[9]

[Partly seen problem]

(i) Array representation:

• To fetch the element at index i of the list, fetch elems[i]. Time complexity
is O(1).

• To insert a new element at index i of the list, shift elems[i…length−1] to
the right and increment length. Expand the array if it’s full. Time
complexity is O(n).

• To insert a new element at the end of the list, store it in elems[length] and
increment length. Expand the array if it’s full. Time complexity is O(1)
normally, but O(n) if the array must be expanded. [Bonus ½ mark for
pointing out that the amortised time complexity is O(1) if the array grows
geometrically when expanded.]

(ii) Linked-list representation:

• To fetch the element at index i of the list, follow i+1 links from the header.
Time complexity is O(n) or O(i).

• To insert a new element at index i of the list, follow i links from the header
then insert a new node. Time complexity is O(n) or O(i). [Bonus ½ mark
for noting that right-to-left traversal of a DLL is faster when i > n/2.]

• To insert a new element at the end of the list, insert a new node after the
last one. Time complexity is O(1).

Autumn Diet -3-

 (d) What factors would you take into account in choosing between arrays and
linked-lists to represent lists in a particular application?

[3]

[Unseen problem]

If the application needs lists that are highly variable in length, linked-lists
would be best. An array would waste space when the list is short, and would
have to be expanded occasionally when the list gets too long.

If it is known which list operations are likely to be most frequent in the
application, prefer a representation that makes as many of these operations as
possible O(1) rather than O(n).

Autumn Diet -4-

2. (a) You are given the following requirements for a stack abstract data type:

• It must be possible to make an existing stack empty.

• It must be possible to push a given element on to a stack.

• It must be possible to pop the topmost element from a stack.

• It must be possible to test whether a stack is empty.

 Write a contract for a homogeneous stack abstract data type, expressing your
contract in the form of a Java generic interface with suitable comments.

[5]

[Seen problem]

public interface Stack <E> {
 // Each Stack object is a homogeneous stack with elements of type E.

 public boolean empty ();
 // Return true if and only if this stack is empty.

 public void clear ();
 // Make this stack empty.

 public void push (E elem);
 // Add elem as the top element of this stack.

 public E pop ();
 // Remove and return the element at the top of this stack.

}

 (b) Briefly describe a possible representation for a stack.
[3]

[Notes]

Represent a bounded stack (maximum depth cap) by an integer depth plus an
array elems[0…cap–1]. The stacked elements are held in elems[0…depth–1]:

[Alternatively, represent an unbounded stack by a singly-linked-list.]

 (c) Consider stack-machine code consisting of the instructions summarised in
Table 1. Each of these instructions acts on a stack of integers.

 Any integer expression can be translated to such stack-machine code. After
the code is executed, the stack will contain a single integer, which is the result
of evaluating the expression. For example:

depth 0 cap–1

elems

Autumn Diet -5-

Expression Stack machine code Expected result

1 – (3 × 4) LOAD 1; LOAD 3; LOAD 4;
MUL; SUB

–11

9 + (6 / 3) – 5 LOAD 9; LOAD 6; LOAD 3;
DIV; ADD; LOAD 5; SUB

6

(9 + 6) / 3 – 5 LOAD 9; LOAD 6; ADD;
LOAD 3; DIV; LOAD 5; SUB

0

 Draw diagrams showing the contents of the stack after executing each
instruction in the stack-machine code “LOAD 1; LOAD 3; LOAD 4; MUL;
SUB”. Assume your stack representation of part (b).

[4]

[Notes]

Assuming the array representation:

 (d) Assume the following representation of stack-machine instructions:

public class Instruction {
 // Each Instruction object is a stack-machine instruction.

 public byte opcode; // LOAD, ADD, SUB, MUL, or DIV
 public int operand; // used only if opcode = LOAD

 public static final byte LOAD = 0,
 ADD = 1, SUB = 2, MUL = 3, DIV = 4;
}

 In terms of your stack contract of part (a), implement the following Java
method:

static int execute (Instruction[] instructions);
// Execute the stack-machine code in instructions, and return
// the result.

[8]

After “LOAD 1”: 1

After “LOAD 3”: 1 3

After “LOAD 4”: 1 3 4

After “MUL”: 1 12

After “SUB”: –11

Autumn Diet -6-

[Notes]

static int execute (Instruction[] instructions) {
 Stack<Integer> vals = new ArrayStack<Integer>();
 for (Instruction inst : instructions) {
 switch (inst.opcode) {
 case LOAD:
 vals.push(inst.operand);
 break;
 case ADD: {
 int i2 = vals.pop(), i1 = vals.pop();
 vals.push(i1 + i2);
 break; }
 case SUB: {
 int i2 = vals.pop(), i1 = vals.pop();
 vals.push(i1 - i2);
 break; }
 case MUL: {
 int i2 = vals.pop(), i1 = vals.pop();
 vals.push(i1 * i2);
 break; }
 case DIV: {
 int i2 = vals.pop(), i1 = vals.pop();
 vals.push(i1 / i2);
 break; }
 }
 return vals.pop();
}

Table 1 Stack machine instructions (Question 2).

Instruction Effect

LOAD i Push the integer i on to the stack.

ADD Pop two integers off the stack, add them, and push the result
back on to the stack.

SUB Pop two integers off the stack, subtract the topmost integer
from the second-topmost integer, and push the result back on
to the stack.

MULT Pop two integers off the stack, multiply them, and push the
result back on to the stack.

DIV Pop two integers off the stack, divide the second-topmost
integer by the topmost integer (discarding any remainder), and
push the result back on to the stack.

Autumn Diet -7-

3. (a) In the context of abstract data types, define what we mean by a set.
[2]

[Notes]

A set is a collection of distinct elements which are in no particular order.

 (b) You are given the following (simplified) requirements for a set abstract data
type:

• It must be possible to make an existing set empty.

• It must be possible to add a given element to a set.

• It must be possible to remove a given element from a set.

• It must be possible to determine the cardinality of a set.

• It must be possible to test whether a given value is a member of a set.

 Write a contract for a homogeneous set abstract data type, expressing your
contract in the form of a Java generic interface with suitable comments.

[5]

[Seen problem]

public interface Set <E> {
 // Each Set object is a homogeneous set whose elements are of type E.

 public void clear ();
 // Make this set empty.

 public void add (E elem);
 // Add elem to this set.

 public void remove (E elem);
 // Remove elem from this set.

 public int size ();
 // Return the cardinality of this set.

 public boolean contains (E elem);
 // Return true if and only if elem is a member of this set.

}

 (c) Explain how a set can be represented by a closed-bucket hash-table (CBHT).

 Illustrate your answer by showing how the set of dates {05/11/1946,
06/06/1962, 05/11/1964, 05/05/1978, 23/02/1983, 01/01/2007} would be
represented by a CBHT with 13 buckets and the following hash function:

hash(date) = month number of date
[6]

Autumn Diet -8-

[Notes + unseen problem]

A CBHT is an array of buckets, where each bucket is a SLL containing 0 or
more elements. A hash function hash(e) translates each element e to a bucket
number b; element e is inserted, deleted, and searched for in bucket b.

Illustration:

 (d) Consider an application that uses a set of about 100 dates. Explain why hash
function of part (c) would be a poor choice in this application.

 Suggest a better hash function, and explain why it is better.
[7]

[Unseen problem]

The hash function of (c) would be poor because the load factor (100/13) is far
too high, resulting in long search times. Also, it might distribute the elements
unevenly among the buckets, and in particular bucket 0 would always be
empty.

A better hash function would be:

 hash(date) = (date measured in days since some fixed date) modulo 150

This would distribute dates evenly and thinly among the buckets. The load
factor (100/150) is well within the recommended range 0.5 … 0.75.

0

01/01/2007

05/11/1964 05/11/1946

1

2

3

4

5

6

8

9

7
06/06/1962

10

11

12

23/02/1983

05/05/1978

Autumn Diet -9-

4. (a) Write a short account of the Java Collections Framework (200–300 words).
Your account should cover the most important collection classes and
interfaces. Illustrate your account with a class diagram showing how these
classes and interfaces relate to one another.

 (Note: You should describe each class and interface briefly, mentioning only
its most important features. You need not cover iterators and comparators.)

[12]

[Notes]

Interface Collection‹E› covers collections with elements of type E. It specifies
general collection operations, e.g., isEmpty(), size(), contains(E), add(E), and
remove(E).

Interface List‹E› extends Collection‹E› with operations on elements at particular
positions in the list, e.g., add(int,E), remove(int), set(int,E), get(int). Class
ArrayList‹E› represents a list by an array. Class LinkedList‹E› represents a list by a
doubly-linked-list.

Interface Set‹E› extends Collection‹E› but specifies no further operations. Interface
SortedSet‹E› extends Set‹E› with operations that exploit the fact that the elements are
kept in ascending order, e.g., first(), last(). Class HashSet‹E› represents a set by a
hash-table. Class TreeSet‹E› represents a sorted set by a search-tree.

Interface Map‹K,V› covers maps with keys of type K and values of type V,
specifying operations such as isEmpty(), size(), containsKey(K), get(K), put(K,V),
and remove(K). Interface SortedMap‹K,V› extends Map‹K,V› with operations that
exploit the fact that the entries are kept in ascending order by key, e.g., firstKey(),
lastKey(). Class HashMap‹K,V› represents a map by a hash-table. Class
TreeMap‹K,V› represents a sorted map by a search-tree.

Class diagram:

«interface»
SortedSet‹E›

ArrayList‹E› LinkedList‹E› HashSet‹E› TreeSet‹E›

«interface»
Set‹E›

«interface»
List‹E›

«interface»
Collection‹E›

Key:

implements

extends

HashMap‹K,V› TreeMap‹K,V›

«interface»
SortedMap‹K,V›

«interface»
Map‹K,V›

Autumn Diet -10-

 (b) The Java Collections Framework does not support graphs. How might the
Framework be extended to support graphs? Illustrate your answer by
extending your class diagram of part (a).

[8]

[Unseen problem]

Add an interface Graph‹E,A›, covering (directed and undirected) graphs
whose elements are of type E and whose edge attributes are of type A, and
specifying operations to add and remove nodes and edges, get all connecting
edges of a given node, etc. Graph‹E,A› should include inner interfaces Node
and Edge. Node should specify operations to get and set the node’s element.
Edge should specify operations to get and set the edge’s attribute.

Add an interface Digraph‹E,A› that extends Graph‹E,A› with operations
specific to directed graphs, e.g., get all out-edges of a given node.

Add at least one class that implements Graph‹E,A›, representing a graph by
(say) adjacency sets. Similarly add at least one class that implements
Digraph‹E,A›, representing a directed graph in a similar way.

Addition to class diagram:

AdjacencyGraph‹E,A› AdjacencyDigraph‹E,A›

«interface»
Digraph‹E,A›

«interface»
Graph‹E,A›

