
Autumn Diet -1-

Algorithms & Data Structures: Questions and Answers: May 2008
Duration: 2 hours (including 15 minutes reading time).
Rubric: Answer any three questions.

1. (a) Table 1 shows the array quick-sort algorithm. Illustrate its behaviour as it sorts
the following array of country-codes:

 Your illustration must show the contents of the array, and the value of p, after
step 1.1, after step 1.2, and after step 1.3.

 Assume that step 1.1 takes a[left] as the pivot, and does not reorder the
components it puts into either sub-array.

[Unseen problem]

[3]

 (b) State the time complexity of the quick-sort algorithm (in terms of the number of
comparisons performed). Informally justify your answer.

[Notes]

Step 1.1 performs about n comparisons.

In the best case, step 1.1 partitions the array into two sub-arrays of length about
n/2, so comps(n) ≈ 2 comps(n/2) + n, with comps(1) = 0. The solution is comps(n)
≈ n log2 n. So the best-case time complexity is O(n log n).

In the worst case, step 1.1 partitions the array into a sub-array of length 0 and a
sub-array of length n–1, so comps(n) = comps(n–1) + n, with comps(1) = 0. The
solution is comps(n) = n(n+1)/2. So the worst-case time complexity is O(n2).

[6]

After step 1.3:

After step 1.2:

After step 1.1:
0 1 2 3 4 5 6 7 8 9 p

DE BE DK UK IT FR IE NL ES GR 2

BE DE DK UK IT FR IE NL ES GR 2

BE

DE DK ES FR GR IE IT NL UK 2

0 1 2 3 4 5 6 7 8 9
DK UK IT FR DE IE NL ES BE GR

Autumn Diet -2-

 (c) Write down the array merge-sort algorithm. Assume that an array merging
algorithm is already available.

[Notes]

To sort a[left...right]:
1. If left < right:
 1.1. Let m be an integer about midway between left and right.
 1.2. Sort a[left...m].
 1.3. Sort a[m+1...right].
 1.4. Merge a[left...m] and a[m+1...right] into an auxiliary array b.
 1.5. Copy all components of b into a[left...right].
2. Terminate.

[5]

 (d) Illustrate the merge-sort algorithm’s behaviour as it sorts the following array of
country-codes:

 Your illustration must show the contents of the array after each step of the
algorithm.

[Unseen problem]

[3]

 (e) State the time complexity of the merge-sort algorithm (in terms of the number of
comparisons performed). Informally justify your answer.

[Notes]

Step 1.1 divides the array into two sub-arrays of length about n/2, so comps(n) ≈
2 comps(n/2) + n, with comps(1) = 0. The solution is comps(n) ≈ n log2 n. So the
time complexity is O(n log n).

[3]

After step 1.3:

After step 1.2:

After step 1.1:

After step 1.5:

0 1 2 3 4 5 6 7 8 9 m
DK UK IT FR DE IE NL ES BE GR 4

DE DK FR IT UK IE NL ES BE GR 4

DE DK FR IT UK BE ES GR IE NL 4

DE DK ES FR GR IE IT NL UK BE 4

0 1 2 3 4 5 6 7 8 9
DK UK IT FR DE IE NL ES BE GR

Autumn Diet -3-

To sort a[left…right]:

1. If left < right:
 1.1. Partition a[left…right] such that
 a[left…p–1] are all less than or equal to a[p], and
 a[p+1…right] are all greater than or equal to a[p].
 1.2. Sort a[left…p–1].
 1.3. Sort a[p+1…right].
2. Terminate.

Table 1 Array quick-sort algorithm (Question 1).

Autumn Diet -4-

2. (a) Briefly explain what is meant by an abstract data type (ADT). Why are ADTs
important?

[Notes]

An ADT is a data type whose representation is hidden.

ADTs are important because they facilitate the design and implementation of
large systems, e.g., by enabling the implementation of an ADT to be changed
without affecting application code.

[2]

 (b) Explain what is meant by a queue.

 Write down a design for a homogeneous queue ADT. Express your design in the
form of a Java generic interface, with each operation accompanied by a comment
specifying its behaviour. Your ADT must provide appropriate operations to add
and remove elements, and to determine the length of the queue.

[Notes + tweak]

A queue is a first-in-first-out sequence of elements.

public interface Queue <E> {

 // Each Queue<E> object is a queue with elements of type E.

 public boolean isEmpty ();
 // Return true iff this queue is empty.

 public int length ();
 // Return the number of elements in this queue.

 public void addLast (E x);
 // Add x to the rear of this queue.

 public E removeFirst ();
 // Remove and return the frontmost element of this queue.

}

[The isEmpty method is not strictly necessary, and so may be omitted.]
[5]

 (c) Using your queue ADT, complete the following Java method:

static void printShortWords
 (BufferedReader input);
// input contains a sequence of words of varying lengths.
// Read these words from input. Print out all the 1-letter words,
// followed by the 2-letter words, followed by the 3-letter words,

Autumn Diet -5-

// without changing the order of the words within each group.
// Ignore all words longer than 3 letters.

 You should use the auxiliary method of Table 2.

[Unseen problem]

static void printShortWords (BufferedReader input) {
 Queue<String>[] wqs = new Queue<String>[4];
 for (int wl = 1; wl <= 3; i++)
 wqs[wl] = new LinkedQueue<String>();
 for (;;) {
 String w = readWord(input);
 if (w == null) break;
 int wl = w.length();
 if (wl <= 3)
 wqs[wl].addLast(w);
 }
 for (int wl = 1; wl <= 3; i++) {
 Queue<String> wq = wqs[wl];
 while (! wq.isEmpty())
 System.io.println(wq.removeFirst());
 }
}

[6]

 (d) Using diagrams, outline an efficient implementation of your queue ADT.

 Explain briefly how each operation would be implemented. What is the time
complexity of each operation?

 Note: Where a standard algorithm can be used, you need only name the
algorithm.

[Notes + tweak]

One possible choice would be a singly-linked-list whose header contains the
queue length plus links to both first and last nodes:

isEmpty and length would simply test the length field: O(1).

addLast would insert a new node at the rear of the linked-list: O(1).

removeFirst would delete the node at the front of the linked-list: O(1).

[Another possible choice would be a cyclic array. But a doubly-linked-list (too
elaborate) or a non-cyclic array (inefficient) would lose marks.]

[7]

elem first elem …
last

length

Autumn Diet -6-

static String readWord (BufferedReader input);
// Read and return the next word from input, skipping any preceding
// spaces or punctuation. Return null if no word remains to be read.

Table 2 A Java auxiliary method (Questions 2 and 4).

Autumn Diet -7-

3. (a) Explain the differences between lists and sets.

[Notes]

A list is a collection of elements (not necessarily distinct) in a fixed order.

A set is a collection of distinct elements in no particular order.
[2]

 (b) Table 3 outlines a contract for a list ADT, expressed in the form of a Java
interface List<E>.

 Using a diagram, show how a list can be represented by an array.

 How would the addLast, add, remove, and get operations be implemented?
What is each operation’s time complexity?

 Note: In this part of the question, neglect the possibility that the addLast and
add operations might exceed the array’s capacity.

[Notes]

Represent a list by a variable length plus an array elems[0…cap−1]:

addLast would be implemented by array insertion after the last element: O(1).

add would be implemented by array insertion: O(n).

remove would be implemented by array deletion: O(n).

get would be implemented by array indexing: O(1).
[6]

 (c) Now consider the possibility that the addLast and add operations might
exceed the array’s capacity. In this situation, you are required to expand the array,
so that the application code can continue normally.

 Show how this can be done in such a way that each operation’s amortized time
complexity is as good as its best-case time complexity.

 What is the addLast operation’s time complexity: (i) in the best case, (ii) in the
worst case, and (iii) in the average case? Informally justify your answer.

[Notes + insight]

The add and addLast operations should, when array is about to overflow, copy
all list elements into a newly created array with doubled capacity.

elem
0

elems … elem

length
−1

length

…

cap−1 …

length elem
1

Autumn Diet -8-

The time complexity of addLast is O(1) in the best case (no overflow), O(n) in
the worst case (overflow), and O(1) in the average case.

Explanation for O(1) in the average case: Doubling the array capacity on
overflow makes overflow occur less and less frequently. E.g., starting with an
empty list represented by an array of capacity 4, successive calls to add require
the following numbers of copies:

1, 1, 1, 1, 5, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 17, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 33,
1, 1, …

The average number of copies per call is about 2, which is independent of n.
[6]

 (d) Now consider the iterator operation of Table 3. How would the resulting
iterator be represented?

[Notes]

The iterator would be represented by an integer in the range 0…length (the index
of the next element to be visited), plus a link to the underlying list object.

[3]

 (e) Show how application code could print all the elements of a list xs of type
List<T>.

[Notes]

Iterator<T> it = xs.iterator();
while (it.hasNext())
 System.out.println(it.next());

or equivalently:

for (T x : xs)
 System.out.println(x);

[3]

Autumn Diet -9-

public interface List <E> {
 // A List<E> object is a homogeneous list whose elements are of type E.

 public void addLast (E x);
 // Add x as the last element of this list.

 public void add (int i, E x);
 // Add x as the element at index i in this list.

 public E remove (int i);
 // Remove and return the element at index i in this list.

 public E get (int i);
 // Return the element at index i in this list.

 …

 public Iterator<E> iterator ();
 // Return an iterator that will visit the elements of this from left to right.

}

Table 3 Outline of a List<E> interface (Question 3).

Autumn Diet -10-

4. A bag is a collection of elements, in no fixed order, in which each element may
occur several times. For example, the bags {apple, banana, apple} and {apple,
apple, banana} are equal to each other, but unequal to {apple, banana}.

 Note: Bags resemble sets, except that each element of a set occurs just once.

 (a) Design an abstract data type (ADT) to meet the following requirements:

• It must be possible to obtain the cardinality of a bag, counting all
occurrences of all elements. For example, the cardinality of {apple, apple,
banana} is 3.

• It must be possible to determine the number of occurrences of a given
element in a bag. For example, the number of apples in {apple, apple,
banana} is 2.

• It must be possible to add several occurrences of a given element to a bag.
For example, adding 2 apples to {apple, banana} should yield {apple,
banana, apple, apple}.

• It must be possible to remove several occurrences of a given element from
a bag. For example, removing 3 apples from {apple, banana, apple,
apple} should yield {banana}.

• It must be possible to render a bag as a string, in a suitable format.

 Express your ADT design in the form of a Java interface with suitable comments.

[Unseen problem]

interface Bag <E> {
 // A Bag<E> object is a heterogeneous bag whose elements are of type E.

 public int cardinality ();
 // Return the total number of elements of this bag.

 public int occurrences (Object x);
 // Return the number of occurrences of x in this bag.

 public void add (int n, Object x);
 // Add n occurrences of x to this bag.

 public void remove (int n, Object x);
 // Remove n occurrences of x from this bag.

}

This interface inherits a toString operation.
[5]

 (b) Outline an efficient representation of bags using binary-search-trees (BSTs).
Explain briefly how you would implement the operations to add and remove
occurrences.

Autumn Diet -11-

 Illustrate your answer with a diagram showing the BST that results if we start
with an empty bag, then add 2 apples, 1 lime, 2 lemons, 1 banana, 3 apples, and 1
orange (in that order).

[Unseen problem]

Represent each bag by root (a link to the BST’s root node) together with card
(the bag’s cardinality). Each BST node should contain an element and its number
of occurrences, together with links to the node’s two children.

The add operation should search the BST by element. If successful, it should
increment the element’s number of occurrences. If unsuccessful, it should insert a
new node in the usual way.

The remove operation should search the BST by element. If successful, it
should decrement the element’s number of occurrences, and if this leaves no
occurrences, it should delete the node in the usual way.

Illustration:

[5]

 (c) Assuming your BST representation of a bag, write down an algorithm to render a
bag as a string. Choose a suitable format such as “{apple, apple, apple, banana}”
or “{apple 3, banana 1}”. The elements must be in ascending order.

[Unseen problem]

Use an in-order traversal of the bag’s BST.

To render bag as a string:
1. Let root be the root of bag’s BST.
2. Render the subtree headed by root, yielding s.
3. Terminate with answer “{” + s + “}”.

To render the subtree headed by top:
1. If top = null:
 1.1. Terminate with answer “”.
2. If top ≠ null:
 2.1. Render the subtree headed by top’s left child, yielding sL.
 2.2. Let x be top’s element, and let m be the number of occurrences of x.
 2.3. Render the subtree headed by top’s right child, yielding sR.
 2.4. Terminate with answer sL + x + m + “,” + sR.

apple
5

lime
1

lemon
2

banana
1

orange
1

card
root

10

Autumn Diet -12-

[5]

 (d) Using your bag ADT, complete the following Java method:

static void countWords (BufferedReader doc);
// Count and print the frequency of words in the text document doc.

 You should use the auxiliary method of Table 2.

[Unseen problem]

static void countWords (BufferedReader doc) {
 Bag words = new TreeBag();
 for (;;) {
 String word = readWord(doc);
 if (word == null) break;
 words.add(1, word);
 }
 System.out.println(words.toString());
}

[5]

