Duration: 2 hours (including 15 minutes readingg)m
Rubric: Answer any three questions.

1. (a) Table 1 shows the arrayick-sort algorithm. lllustrate its behaviour as it sorts
the following array of country-codes:

0 1 2 3 4 5 6 7 8 9
[DKJUK]IT [EFR]DE] IE [NL] ES]BE][GR]

Your illustration must show the contents of thieag, and the value gf, after
step 1.1, after step 1.2, and after step 1.3.

Assume that step 1.1 takefleft] as the pivot, and does not reorder the
components it puts into either sub-array.

. [Unseen problem]

0 1 2 3 4 5 6 7 8 9 p

After step 1.1 [DE|BE|DKJUK|IT [FR]IE [NL]|ES|GR| [ 2 | |

Afterstep 1.2 [BE|DE|DKJUK|IT [FR]IE [NL]ES|GR]| [ 2 |

Afterstep 1.2 [BE|DE|DK|ES|FRJGRJIE JIT [NL]UK] [2 |
[3]

(b) State the time complexity of the quick-sort algaom (in terms of the number of
comparisons performed). Informally justify your wes.

----------------------------------------------------------------------------------------------------------

. Step 1.1 performs abontcomparisons.

In the best case, step 1.1 partitions the arraytimb sub-arrays of length about%
i n/2, socomps(n) = 2 comps(n/2) +n, with comps(1) = 0. The solution isomps(n)
i =nlog n. So the best-case time complexitydg log n).

In the worst case, step 1.1 partitions the arrayansub-array of length 0 and a§
i sub-array of length—1, socomps(n) = comps(n—1) +n, with comps(1) = 0. The

__________________________________________________________________________________________________________

Autumn Diet -1-



(c) Write down the arraymerge-sort algorithm. Assume that an array merging
algorithm is already available.

' To sorta[left...right]:
L 1. If left <right:
: 1.1. Letmbe an integer about midway betwéefth andright.
1.2. Sorig[left...m].
1.3. Sorta[m+1..right].
1.4. Mergeg(left...m] anda[m+1..right] into an auxiliary arrap.
i 1.5. Copy all components bfinto afleft.. right].
i 2. Terminate.

(d) lllustrate the merge-sort algorithm’s behaviouritasorts the following array of
country-codes:

0 1 2 3 4 5 6 7 8 9
[DKJUK][IT]TFR]IDE] IENL]ES|BE][GR]

Your illustration must show the contents of threaw after each step of the
algorithm.

. [Unseen problem]

: 0 1 2 3 4 5 6 7 8 9 m
. After step 1.1 [DK]UK] IT [FR]DE] IE [NL]ES[BE[GR] [ 4] §
EAfterstepl.E [DE[DK]FR[IT JUK[IE [NL]ES[BE|GR]| [ 4 ]
;Afterstepl.E [DE[DK]FR[IT [UK[BE[ES|GR[IE [NL] [4 ]
;Afterstepl.E [BE[DE|DK[ES[FR]GR]IE [ IT [NL]UK] [4 ]
[3]

(e) State the time complexity of the merge-sort alyaomi (in terms of the number of
comparisons performed). Informally justify your eses.

| Step 1.1 divides the array into two sub-array®nfith about/2, socomps(n) =
: 2 comps(n/2) + n, with comps(1) = 0. The solution isomps(n) = n log; n. So the |
i time complexity iSO(n log n).

Autumn Diet -2-



To sorta[left...right]:

1. Ifleft <right:
1.1. Partitiorg[left...right] such that
a[left...p—1] are all less than or equaldfp], and
a[pt+1...right] are all greater than or equaldfp].
1.2. Sort[left...p-1].
1.3. Sorta[p+1...right].
2. Terminate.

Table1l Array quick-sort algorithm (Question 1).

Autumn Diet -3-



2.

(@

(b)

(©)

Briefly explain what is meant by an abstract dgfze (ADT). Why are ADTs
important?

' An ADT is a data type whose representation is mdde

. ADTs are important because they facilitate thegfreaind implementation of
. large systems, e.g., by enabling the implementatf@n ADT to be changed
i without affecting application code.

Explain what is meant byqueue.

Write down a design for a homogeneous queue AEXpress your design in the
form of a Java generic interface, with each openaéiccompanied by a comment
specifying its behaviour. Your ADT must provide apgriate operations to add
and remove elements, and to determine the lengtieajueue.

 [Notes + tweak]
A queue is a first-in-first-out sequence of elemsent
public interface Queue <EBE> {
/| EachQueue<E> object is a queue with elements of type

publ i c bool ean i sEnpty ();
/| Return true iff this queue is empty.

public int length ();
/| Return the number of elements in this queue.

public void addLast (E x);
/| Add x to the rear of this queue.

public E renoveFirst ();
/| Remove and return the frontmost element of thisigue

3
[Thei sEnpt y method is not strictly necessary, and so may bigeufr

Using your queue ADT, complete the following Javethod:

static void printShortWrds
(Buf f eredReader i nput);
/'l i nput contains a sequence of words of varying lengths.
/| Read these words frormput . Print out all the 1-letter words,
/'l followed by the 2-letter words, followed by theeter words,

Autumn Diet -4-



/' without changing the order of the words within egobup.
/'l Ignore all words longer than 3 letters.

You should use the auxiliary method of Table 2.

----------------------------------------------------------------------------------------------------------

[Unseen problem]

i static void printShortWrds (BufferedReader input) {
Queue<String>[] wgs = new Queue<String>[4];
for (int W =1; W <= 3; i++4)
wgs[wW ] = new Li nkedQueue<String>();
for (;;) {
String w = readWord(i nput);
if (w==null) break;
int Ww = w. length();
if (W <= 23)
wgs[ W ] . addLast (w) ;
}
for (int W =1, W <= 3; i++) {
Queue<String> wg = wgqs[w |;
while (! wg.isEnmpty())
Systemio.println(wg. renmoveFirst());

(d) Using diagrams, outline an efficient implementatod your queue ADT.

Explain briefly how each operation would be immpénted. What is the time
complexity of each operation?

Notee Where a standard algorithm can be used, you nedéy rame the
algorithm.

. [Notes + tweak]

' One possible choice would be a singly-linked-listose header contains the
. queue length plus links to both first and last rsode

first | «—>| elen o .. —>| elen o]
last | o —
length

i sEnpty andl engt h would simply test théength field: O(1).
addLast would insert a new node at the rear of the linkstd-O(1).
renoveFi r st would delete the node at the front of the linkistt-O(1).

[Another possible choice would be a cyclic arrayt B doubly-linked-list (too
. elaborate) or a non-cyclic array (inefficient) wolbse marks.]

Autumn Diet -5



static String readWwrd (BufferedReader input);
/' Read and return the next word fromput , skipping any preceding
/' spaces or punctuation. Retural | if no word remains to be read.

Table2 A Java auxiliary method (Questions 2 and 4).

Autumn Diet -6-



3. (a) Explain the differences betwebsas andsets.
A list is a collection of elements (not necessatlistinct) in a fixed order.

. A set is a collection of distinct elements in notjcalar order.

(b) Table 3 outlines a contract for a list ADT, exges in the form of a Java
interfacelLi st <E>.

Using a diagram, show how a list can be represelny an array.

How would theaddLast , add, r enove, andget operations be implemented?
What is each operation’s time complexity?

Note: In this part of the question, neglect the posi$ybthat theaddLast and
add operations might exceed the array’'s capacity.

----------------------------------------------------------------------------------------------------------

Represent a list by a variablngth plus an arraglems|0...cap—1]:

length
0 1 -1 length ... cap-1
length [ ] elems [elenJelen] ... [elen] | | |

addLast would be implemented by array insertion afterlt#s elementO(1).
add would be implemented by array inserti@(n).
r enove would be implemented by array deleti@(n).

get would be implemented by array indexir@(1).

(0 Now consider the possibility that treddLast and add operations might
exceed the array’s capacity. In this situation, sgoeirequired to expand the array,
so that the application code can continue normally.

Show how this can be done in such a way that egelnation’samortized time
complexity is as good as its best-case time conitglex

What is theaddLast operation’s time complexity: (i) in the best ca@g,in the
worst case, and (iii) in the average case? Infdymastify your answer.

| [Notes + insight]

Theadd andaddLast operations should, when array is about to overﬂmpy
+ all list elements into a newly created array witlubled capacity.

Autumn Diet -7-



i The time complexity ohddLast isO(1) in the best case (no overfloMd(n) in
. the worst case (overflow), a®(1) in the average case. ‘

i Explanation forO(1) in the average case: Doubling the array capaait

. overflow makes overflow occur less and less fretlyeB.g., starting with an
. empty list represented by an array of capacityidcsssive calls tadd require
: the following numbers of copies:

1,1,51,11911,1111,1114,1,1,12,1,1,1,1,1,1,1,1, 1, 33

b1, 1,
b1, 1,

' The average number of copies per call is aboutiwis independent of

(d) Now consider the t er at or operation of Table 3. How would the resulting
iterator be represented?

' The iterator would be represented by an integérérrange 0.length (the index
. of the next element to be visited), plus a linktte underlying list object. |

(e) Show how application code could print all the etes of a listxs of type
Li st<T>.

**********************************************************************************************************

Elterator<T> it = xs.iterator();
rwhile (it.hasNext())
! Systemout.printlin(it.next());

or equivalently:

;for (T x : Xs)
System out. println(x);

Autumn Diet -8-



public interface List <BE> {
/'l A Li st <E> object is a homogeneous list whose elements agpet.

public void addLast (E x);
[/ Addx as the last element of this list.

public void add (int i, E x);
/] Addx as the element at indéxin this list.

public E renove (int i);
/| Remove and return the element at inddar this list.

public E get (int i);
/| Return the element at indéexin this list.

public Iterator<E> iterator ();
/| Return an iterator that will visit the elementghig from left to right.

Table3 Outline of aLi st <E> interface (Question 3).

Autumn Diet -O-



4. A bag is a collection of elements, in no fixed orderwhich each element may
occur several times. For example, the bags {apgmeana, apple} and {apple,
apple, banana} are equal to each other, but uneggapple, banana}.

Note: Bags resemble sets, except that each elementedfoaaurs just once.

(@) Design an abstract data type (ADT) to meet thewohg requirements:

It must be possible to obtain the cardinality afbag, counting all
occurrences of all elements. For example, the wality of {apple, apple,
banana} is 3.

It must be possible to determine the number @uoences of a given
element in a bag. For example, the number of appldapple, apple,
banana} is 2.

It must be possible to add several occurrencasgien element to a bag.
For example, adding 2 apples to {apple, bananaulkhgield {apple,
banana, apple, apple}.

It must be possible to remove several occurreatagyiven element from
a bag. For example, removing 3 apples from {appknana, apple,
apple} should yield {banana}.

It must be possible to render a bag as a stinng suitable format.

Express your ADT design in the form of a Javarifaice with suitable comments.

_________

. [Unseen problem]

interface Bag <B> {
/] A Bag<E> object is a heterogeneous bag whose element$ tygedc.

public int cardinality ();
/' Return the total number of elements of this bag.

public int occurrences (Cbject Xx);
/' Return the number of occurrencescah this bag.

public void add (int n, Cbject Xx);
/1 Add n occurrences of to this bag.

public void renmove (int n, Object Xx);
/I Removen occurrences of from this bag.

| This interface inherits BOSt r i ng operation.

_________________________________________________________________________________________________

(b) Outline an efficient representation of bags usbigary-search-trees (BSTS).
Explain briefly how you would implement the opeoai$s to add and remove
occurrences.

Autumn Diet

-10-



lllustrate your answer with a diagram showing B&T that results if we start
with an empty bag, then add 2 apples, 1 lime, Dlesnl banana, 3 apples, and 1
orange (in that order).

: [Unseen problem]

Represent each bag yot (a link to the BST’s root node) together witrd ‘
i (the bag’s cardinality). Each BST node should coraa element and its number
. of occurrences, together with links to the node/s thildren. ‘

Theadd operation should search the BST by element. Ees&ful, it should
i increment the element’s number of occurrencesgtiacessful, it should msert a
. new node in the usual way.

' Ther enpve operation should search the BST by element. Ees&ful, it
i should decrement the element’s number of occursgrasel if this leaves no
occurrences, it should delete the node in the wsagl

lllustration:

root .—» apple
card * S ."\

lime
/, : .\\
lemor orangt
[ 2 ° ° 1 L
banan
° 1 °

__________________________________________________________________________________________________________

(c) Assuming your BST representation of a bag, wride/m an algorithm to render a
bag as a string. Choose a suitable format suckeaple, apple, apple, banana}”
or “{apple 3, banana 1}". The elements must besceading order.

. [Unseen problem]
Use an in-order traversal of the bag’'s BST.

. To rendelbag as a string:

. 1. Letroot be the root obag's BST.

i 2. Render the subtree headed b, yieldings.
. 3. Terminate with answer “{” £+ “}".

| To render the subtree headeddyy.
: 1. If top = null:
: 1.1. Terminate with answer
1 2. Iftop # null:
. 2.1. Render the subtree headeddms left child, yieldings, .
2.2. Letx betop’s element, and leh be the number of occurrencesxof
2.3. Render the subtree headeddms right child, yieldingsg.
2.4. Terminate with answer + x+m+ “,"” + sg.

wn

Autumn Diet -11-



[5]
(d) Using your bag ADT, complete the following Javatinoel:

static void countWrds (BufferedReader doc);
/1 Count and print the frequency of words in the iodtumentdoc.

You should use the auxiliary method of Table 2.

. [Unseen problem]

' static void countWrds (BufferedReader doc) {
Bag words = new TreeBag();

for (;;) {
String word = readWrd(doc);
if (word == null) break;

wor ds. add(1, word);

}
Systemout. println(words.toString());

Autumn Diet -12-



