
 

Algorithms & Data Structures (M): Questions and Answers: Spring 2009 
Duration: 120 minutes. 
Rubric: Answer any three questions. 

1. (a) What is meant by the time complexity of an algorithm? In particular, what is 
meant when we say that an algorithm has time complexity O(n2)?  

[Notes] 

The time complexity of an algorithm encapsulates the growth rate in the 
algorithm’s time requirement, expressed as a function of the algorithm’s input(s). 

O(n2) means that the time requirement is proportional to n2. 
[2] 

 (b) Write down the selection-sort algorithm to sort the elements of an array 
a[left…right] into ascending order. What is this algorithm’s time complexity?  

[Notes] 

To sort a[left…right] into ascending order: 
1. For l = left, …, right–1, repeat: 
 1.1. Set p such that a[p] is the least of a[l…right]. 
 1.2. If p ≠ l, swap a[p] and a[l]. 
2. Terminate. 

This algorithm’s time complexity is O(n2). 
[4] 

 (c) Name and write down a more efficient algorithm to sort the elements of an array 
a[left…right] into ascending order. What is this algorithm’s time complexity?  

[Notes; either merge-sort or quick-sort is acceptable] 

Merge-sort algorithm: 

To sort a[left…right] into ascending order: 
1. If left < right: 
 1.1. Let m be an integer about midway between left and right. 
 1.2. Sort a[left…m] into ascending order. 
 1.3. Sort a[m+1…right] into ascending order. 
 1.4. Merge a[left…m] and a[m+1…right] into auxiliary array b. 
 1.5. Copy all elements of b into a[left…right]. 
2. Terminate. 

The merge-sort algorithm’s time complexity is O(n log n). 



 

Quick-sort algorithm: 

To sort a[left…right] into ascending order: 
1. If left < right: 
 1.1. Partition a[left…right] such that a[left…p–1] contains values ≤ a[p]  
  and a[p+1…right] contains values ≥ a[p]. 
 1.2. Sort a[left…p–1] into ascending order. 
 1.3. Sort a[p+1…right] into ascending order. 
2. Terminate. 

The quick-sort algorithm’s time complexity is O(n log n) in the best case, or 
O(n2) in the worst case. 

[4] 

 (d) Modify the selection-sort algorithm of part (b) to make it sort a singly-linked-list 
(SLL): 

To sort the SLL headed by first into ascending order: 
…   

  What is the modified algorithm’s time complexity? Briefly justify your answer. 

[Unseen problem] 

To sort the SLL headed by first into ascending order: 
1. Set l = first. 
2. While l ≠ null, repeat: 
 2.1. Set link p such that p’s element is the least of the elements in the tail  
  whose first node is l. 
 2.2. If p ≠ l, swap p’s element and l’s element. 
 2.3. Set l to l’s successor. 
3. Terminate. 

This algorithm’s time complexity is still O(n2), since step 2.1 is O(n) and step 2.2 
is O(1), just like the corresponding steps of the original algorithm. 

[6] 

 (e) Show how the algorithm of part (c) could be modified to sort the elements of an 
SLL? Outline how the modified algorithm would work. (You need not write it 
down in detail.) How efficient would it be? 

[Unseen problem; either merge-sort or quick-sort is acceptable]] 

The merge-sort algorithm could be modified to sort an SLL. However, step 1.1 in 
order to split the SLL into two would have to locate the SLL’s middle node 
(which takes O(n) time even if the SLL’s length is known). Steps 1.2 and 1.3 
would sort the two SLLs separately. Step 1.4 would merge the two SLLs, taking 
O(n) time as before. Step 1.5 would be redundant. The modified algorithm’s time 
complexity would still be O(n log n) in terms of comparisons. 



 

The quick-sort algorithm could be modified to sort an SLL. Step 1.1 would 
partition the SLL into three separate SLLs, where the middle SLL contains only 
the pivot, the “left” SLL contains lesser values, and the “right” SLL contains 
greater values. Steps 1.2 and 1.3 would sort the left and right SLLs separately. A 
new step 1.4 would concatenate the three SLLs, which can be done in O(1) time 
(if a link to the left SLL’s last node is retained). The modified algorithm’s time 
complexity would still be O(n log n) or O(n2) in terms of comparisons. 

[4] 



 

2. (a) What is meant by an abstract data type (ADT)? 

[Notes] 

An ADT is a data type characterized by its values and operations only. The data 
representation is hidden. 

[2] 

 (b) A deque (or double-ended queue) is a sequence of elements with the property 
that elements can be added and removed at both ends. 

  Design a homogeneous deque ADT, whose elements are objects of type E. Your 
ADT must enable application programs to: 

(1) make a deque empty; 

(2) add a given element at the front or rear of a deque; 

(3) fetch and remove the element at the front or rear of a deque; 

(4) test whether the deque is empty. 

  Express your design in the form of a Java generic interface. Each operation must 
be accompanied by a comment specifying the operation’s observable behaviour. 

[Seen problem] 

public interface Deque<E> { 

 // A Deque<E> object represents a deque whose elements are  
 // objects of type E. 

 public void clear (); 
 // Make this deque empty. 

 public boolean isEmpty (); 
 // Return true iff this deque is empty. 

 public void addFirst (E x); 
 // Add x at the front of this deque. 

 public void addLast (E x); 
 // Add x at the rear of this deque. 

 public E removeFirst (); 
 // Remove and return the front element of this deque. 

 public E removeLast (); 
 // Remove and return the rear element of this deque. 

} 
[6] 

 (c) Describe how a bounded deque could be represented by a cyclic array, using a 
diagram to show the invariant of this representation. 



 

  Also draw diagrams showing the representation of a deque (with string elements) 
after each step of the following sequence: 

(i) make the deque empty; 

(ii) add “cat” to the rear of the deque; 

(iii) add “hat” to the front; 

(iv) add “mat” to the rear; 

(v) remove the front element; 

(vi) remove the rear element. 

  In your diagrams, assume a cyclic array of length 8. Also assume that the first 
element is added in slot 0 of the cyclic array. 

[Similar to seen problem] 

Use an array a[0…cap–1] together with variables front, rear, and size. 

Invariant: 

           or: 

 

Illustration  
(cap = 8): 

 

 

 

 

 

 
[3+3] 

 (d) Assuming the cyclic array representation of part (c), what is the time complexity 
of each operation? (Ignore the possibility that the array becomes full.) 

[Notes] 

All operations are O(1). 
[2] 

 (e) How would your answer to part (d) be affected if you used an ordinary (non-
cyclic) array representation instead?  

front= 
rear=0 7 
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(vi) 
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[Notes] 

The addLast (addFirst) operation would have to shift all elements if the 
rightmost (leftmost) array slot were already occupied. Thus both operations 
would be O(n) in the worst case. 

[4] 



 

3. (a) Define precisely what is meant by a map. 

[Notes] 

A map is a collection of (key, value) entries, in no fixed order, in which all 
entries have distinct keys. 

[2] 

  Box 1 shows a contract for maps, in the form of a Java generic interface 
Map<K,V>. 

 (b) Explain how a map can be represented by a binary-search-tree (BST). Illustrate 
your answer by showing the BST representation of the following map: 

roman value 
‘I’ 1 
‘V’ 5 
‘X’ 10 
‘L’ 50 
‘C’ 100 

  assuming that the entries are added in the above order: (‘I’,1) then (‘V’,5) then … 

[Notes + unseen problem] 

Represent a map by a BST with one node per entry, with the nodes distributed 
according to the keys only. The BST header should also contain the map’s size. 

Illustration: 

 

 

 
[3] 

 (c) Assuming the BST representation, show how each of the following operations 
could be implemented efficiently. If a standard algorithm can be used, identify 
that algorithm. If not, outline a possible algorithm. (You need not write it down 
in detail.) 

(i) get 

(ii) remove 

(iii) put 

(iv) equals 

(v) keySet 

5 
‘I’  1  

‘V’  5  

‘X’  10 

‘C’  100 

‘L’  100 



 

[Notes + insight] 

(i) get would be implemented by BST search. 

(ii) remove would be implemented by BST deletion. 

(iii) put would be implemented by BST insertion, modified to overwrite any 
existing entry with the same key. 

(iv) equals would be implemented as follows. First check that the maps have 
equal sizes. Then traverse map that; for each entry, call get to check whether 
map this contains an equal entry. 

(v) keySet could be implemented simply by returning a reference to the same 
BST (assuming that a set is represented in exactly the same way as a map, with 
the value field of each node ignored). Alternatively, keySet could be 
implemented by creating an empty set, then traversing the BST, adding each key 
to the set. 

[1+1+2+3+3] 

 (d) Explain why the BST representation of a map is not always efficient. Suggest 
how the search-tree representation could be improved to ensure that it is always 
efficient. 

[Notes + background reading] 

BST search, insertion, and deletion are O(log n) in the best case, but O(n) in the 
worst case (when the BST becomes unbalanced). 

This could be fixed by modifying the insertion and deletion algorithms to keep 
the BST approximately balanced, i.e., adopt an AVL-tree or red-black-tree. 
Alternatively, adopt a B-tree. 

[5] 

 



 

interface Map<K,V> { 

 // Each Map<K,V> object is a homogeneous map whose keys and values are of types K  
 // and V respectively. 

 public void clear (); 
 // Make this map empty. 

 public V get (K key); 
 // Return the value in the entry with key in this map, or null if there is no such entry.. 

 public V remove (K key); 
 // Remove the entry with key (if any) from this map. Return the value in that entry, or  
 // null if there was no such entry. 

 public V put (K key, V val); 
 // Add the entry (key, val) to this map, replacing any existing entry whose key is  
 // key. Return the value in that entry, or null if there was no such entry. 

 public void putAll (Map<K,V> that); 
 // Overlay this map with that, i.e., add all entries of that to this map, replacing  
 // any existing entries with the same keys. 

 public boolean equals (Map<K,V> that); 
 // Return true if this map is equal to that. 

 public Set<K> keySet (); 
 // Return the set of all keys in this map. 

} 

Box 1  A contract for homogeneous maps 



 

4. (a) Explain the concept of an undirected graph. 

  A road network is an application of undirected graphs. The vertices correspond to 
towns, and the edges correspond to roads connecting these towns. Box 2 shows 
an example of such a road network, in which the edge attributes are distances. 

  Briefly describe one other application of undirected graphs. 

[Notes] 

A graph is a collection of vertices connected by edges. In an undirected graph, 
the edges have no direction. 

Another application of undirected graphs is a computer network. The vertices 
correspond to computers, and the edges correspond to point-to-point connections. 

[3] 

 (b) Box 3 shows the breadth-first graph traversal algorithm. Explain why this 
algorithm uses a queue, rather than a stack. 

[Notes] 

At each vertex, the algorithm queues the vertex’s unvisited successors, and later 
it queues their unvisited successors. Thus direct successors will be removed from 
the queue before indirect successors. 

If the algorithm stacked unvisited successors, and later stacked their unvisited 
successors, indirect successors would be removed from the stack before direct 
successors. In fact this is depth-first traversal. 

[3] 

 (c) Consider a road network whose edge attributes are distances (as in Box 2). Write 
down an algorithm to find the distance along the shortest path in a road network 
from town start to every other town. 

[Notes] 

To find the distance of the shortest path from town start to every other town in a 
road network: 
1. Make town-set contain all towns in the road network. 
2. Set diststart to 0, and set distt to infinity for all other towns t. 
3. While town-set is not empty, repeat: 
 3.1. Remove from town-set the town t with least distt. 
 3.2. For each road tu connecting t and another town u, such that u is in  
  town-set, repeat: 
  3.2.1. Let d be distt + (distance along tu). 
  3.2.2. If d < distu, set distu to d. 
4. Terminate with the distances distt. 

[6] 



 

 (d) A routing application finds the shortest path between two given towns (not just 
the distance along that path). Outline how you would modify the algorithm of 
part (c) to do this. (You need not write down the modified algorithm in detail.) 

[Unseen problem] 

For each town t, maintain patht containing the shortest path so far found from 
start to t. (Thus distt = total distance along roads of patht.) At step 2, set pathstart 
to «start», and set all other patht to null. At step 3.2.2, if d < distu, set pathu to the 
concatenation of patht and «u». 

[4] 

 (e) Describe a representation of road networks that would be suitable for the 
algorithms of parts (c) and (d). Illustrate your answer by showing how the road 
network of Box 2 would be represented. 

[Unseen problem] 

Use the adjacency set representation. Represent the network by a set of towns 
(DLL) together with an adjacency set (SLL) for each town. Each town’s 
adjacency set contains the roads connecting that town to other towns. Each road 
node contains the road’s distance attribute and links to the two towns it connects. 

Illustration: 

 

 

 

 

 

[The adjacency matrix representation would also be acceptable.] 
[4] 

 

 

 

 

Box 2  A road network 
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To traverse graph g in breadth-first order, starting at vertex start: 

1. Make vertex-queue contain only vertex start, and mark start as reached. 
2. While vertex-queue is not empty, repeat: 
 2.1. Remove the front element of vertex-queue into v. 
 2.2. Visit vertex v. 
 2.3. For each unreached successor w of vertex v, repeat: 
  2.3.1. Add vertex w to vertex-queue, and mark w as reached. 
3. Terminate. 

Box 3  The breadth-first graph traversal algorithm 
 


