Duration: 120 minutes.
Rubric: Answer any three questions.

1. (@ What is meant by théme complexity of an algorithm? In particular, what is
meant when we say that an algorithm has time coxitpl®(n?)?

The time complexity of an algorithm encapsulatesgiowth rate in the ‘
i algorithm’s time requirement, expressed as a fonatif the algorithm’s input(s).

: O(n®) means that the time requirement is proportionaft

(b) Write down theselection-sort algorithm to sort the elements of an array
a[left...right] into ascending order. What is this algorithmiaéi complexity?

To sorta[left...right] into ascending order:
. 1. Forl =Ieft, ..., right-1, repeat:
i 1.1. Sep such thag[p] is the least o&[l...right].

. 1.2. Ifp#1, swapa[p] anda[l].
2. Terminate.

This algorithm’s time complexity is @)

(c) Name and write down a more efficient algorithmstot the elements of an array
a[left...right] into ascending order. What is this algorithmiaei complexity?

--

i [Notes; either merge-sort or quick-sort is accelgfab
. Merge-sort algorithm:

. To sorta[left...right] into ascending order:
P 1. If left <right:
. 1.1. Letmbe an integer about midway betweeit andright.
1.2. Sorig[left...m] into ascending order.
1.3. Sor@a[m+1...right] into ascending order.
1.4. Mergeq[left...m] anda[n+1...right] into auxiliary array b.
i 1.5. Copy all elements &finto a[left...right].
i 2. Terminate.

' The merge-sort algorithm’s time complexity isndgg n).

(d)

(€)

i Quick-sort algorithm:

| To sorta[left...right] into ascending order:
1. If left <right:
. 1.1. Partitiors[left...right] such thag[left...p—1] contains values a[p]
anda[p+1...right] contains values a[p].
1.2. Sorig[left...p-1] into ascending order.
i 1.3. Sorig[p+1...right] into ascending order.
1 2. Terminate.

The quick-sort algorithm’s time complexity ispg n) in the best case, or
. O(n°) in the worst case.

Modify the selection-sort algorithm of part (b)wake it sort aingly-linked-list
(SLL):

To sort the SLL headed Hiyst into ascending order:

What is the modified algorithm’s time complexity?dly justify your answer.

. [Unseen problem]

| To sort the SLL headed Hiyst into ascending order:

. 1. Setl =first.

i 2. Whilel # null, repeat: ‘

. 2.1. Set linkp such thap’s element is the least of the elements in the tail |
whose first node ik ‘

2.2. Ifp#1, swapp’s element andfs element.
; 2.3. Set tol's successor.
. 3. Terminate.

ThIS algorlthm s time compIeX|ty is still @f), smce step 2. 1 is @Xand step 2. 2

__

Show how the algorithm of part (c) could be maatifito sort the elements of an
SLL? Outline how the modified algorithm would work. (You needt mwrite it
down in detail.) How efficient would it be?

——

. [Unseen problem; either merge-sort or quick-sodciseptable]]

. The merge-sort algorithm could be modified to soriSLL. However, step 1.1 in
order to split the SLL into two would have to loedhe SLL's middle node

i (which takes Qf) time even if the SLL’s length is known). Step2 and 1.3 !

. would sort the two SLLs separately. Step 1.4 wonédge the two SLLs, taking |

i O(n) time as before. Step 1.5 would be redundant.riibéified algorithm’s tlme

. complexity would still be Q(logn) in terms of comparisons.

i The quick-sort algorithm could be modified to samtSLL. Step 1.1 would ‘
| partition the SLL into three separate SLLs, whéeerniddle SLL contains only |
i the pivot, the “left” SLL contains lesser valuesddhe “right” SLL contains !
| greater values. Steps 1.2 and 1.3 would sort fthare right SLLs separately. A
' new step 1.4 would concatenate the three SLLs,iwtan be done in O(1) time
(if a link to the left SLL’s last node is retainedhe modified algorithm’s time
. complexity would still be Q{log n) or O in terms of comparisons. :

__

2.

(@

(b)

(©)

What is meant by aabstract data type (ADT)?

An ADT is a data type characterized by its values @perations only. The data
| representation is hidden.

A deque (or double-ended queue) is a sequence of elements with the property
that elements can be added and removed at both ends

Design a homogeneous deque ADT, whose elementsbgets of typeE. Your
ADT must enable application programs to:

(1) make a deque empty;

(2) add a given element at the front or rear oéque;

(3) fetch and remove the element at the front ar of a deque;
(4) testwhether the deque is empty.

Express your design in the form of a Java genet&face. Each operation must
be accompanied by a comment specifying the operatabservable behaviour.

. [Seen problem]

public interface Deque<BE> {

/| A Deque<E> object represents a deque whose elements are
/' | objects of typee.

public void clear ();
/' Make this deque empty.

publ i c bool ean i sEnpty ();
/1 Return true iff this deque is empty.

public void addFirst (E x);
// Addx at the front of this deque.

public void addLast (E x);
/1 Addx at the rear of this deque.

public E renmoveFirst ();
/I Remove and return the front element of this deque.

public E renpvelLast ();
/I Remove and return the rear element of this deque.

Describe how dounded deque could be represented by a cyclic array gusin
diagram to show the invariant of this representatio

(d)

(€)

Also draw diagrams showing the representatioa @éque (with string elements)
after each step of the following sequence:

(i) make the deque empty;

(i) add “cat” to the rear of the deque;
(iif) add “hat” to the front;

(iv) add “mat” to the rear;

(v) remove the front element;

(vi) remove the rear element.

In your diagrams, assume a cyclic array of ler@jti\lso assume that the first
element is added in slot O of the cyclic array.

. [Similar to seen problem]

: Use an arrag[0...cap—1] together with variablefsont, rear, andsize.

| . . front .. rear ... cap-1
Elnva”ant- | [[elemer]elemer]elemerelemer] [[|
or: 0 rear front cap-1
" [elemen]elemer] [[[elemerelemer] elemer] elemer]
 Illustration front=
; =8): , rear=0 1 2 3 4 5 6 7
=8y T T T T T T
. front=0 rear=1 2 3 4 5 6 7
(i) [cal] | | | | | | |
0 rear=1 2 3 4 5 6 front=7
(i) [cal] | | | | | | ha
) (0] 1 rear=2 3 4 5 6 front=7
(iv) [ca | mar | | | | | | hal |
front=0_ 1 rear=2 3 4 5 6 7
(v) [ca | mar] | | | | | |
. front=0 rear=1_ 2 3 4 5 6 7
(v) [cal] | | | | | | |

Assuming the cyclic array representation of payt\What is the time complexity
of each operation? (Ignore the possibility thatalray becomes full.)

How would your answer to part (d) be affected auyused an ordinary (non-
cyclic) array representation instead?

TheaddLast (addFi r st) operation would have to shift all elements if the
. rightmost (leftmost) array slot were already ocedpiThus both operations
i would be Of) in the worst case.

(a) Define precisely what is meant byrap.

A map is a collection of (key, value) entries, in noefikorder, in which all
i entries have distinct keys.

Box 1 shows a contract for maps, in the form ofava generic interface
Map<K, V>.

(b) Explain how a map can be represented by a bireayeh-tree (BST). lllustrate
your answer by showing the BST representation @fdllowing map:

roman | value
T 1
vV 5
X’ 10
‘L’ 50
‘C 100

assuming that the entries are added in the abolez: 'I’,1) then (‘V’,5) then ...

. [Notes + unseen problem]

Represent a map by a BST with one node per enttly,the nodes distributed |
i according to the keys only. The BST header sholsll @ontain the map’s size.:

 lllustration:

|.‘L' loo.l |‘ ‘X' 10 .l

(c) Assuming the BST representation, show how eactheffollowing operations
could be implemented efficiently. If a standardaoaithm can be used, identify
that algorithm. If notputline a possible algorithm. (You need not write it down
in detail.)

(i) get
(i) renove
(iii) put
(iv) equal s
(v) keySet

(d)

i [Notes + insight]
(i) get would be implemented by BST search.
(ii) r emove would be implemented by BST deletion.

(iif) put would be implemented by BST insertion, modifiedt@rwrite any
: existing entry with the same key.

: (iv) equal s would be implemented as follows. First check thatmaps have |
. equal sizes. Then traverse ntdpat ; for each entry, catjet to check whether
i mapt hi s contains an equal entry.

. (v) keySet could be implemented simply by returning a refeeeto the same |
. BST (assuming that a set is represented in exdwlgame way as a map, with|
i the value field of each node ignored). Alternatyy&ley Set could be ‘
. implemented by creating an empty set, then trangrtie BST, adding each key
' to the set.

[1+1+2+3+3]

Explain why the BST representation of a map is alatays efficient. Suggest
how the search-tree representation could be improweensure that it is always
efficient.

[Notes + background reading]

BST search, insertion, and deletion are O@pm the best case, but @(in the
. worst case (when the BST becomes unbalanced).

| This could be fixed by modifying the insertion atheletion algorithms to keep
. the BST approximately balanced, i.e., adopt an Akée- or red-black-tree. ‘
i Alternatively, adopt a B-tree.

i nterface Map<K, V> {

/| EachMap<K, V> object is a homogeneous map whose keys and valuestgpesiK
/'l andV respectively.

public void clear ();
/'l Make this map empty.

public V get (K key);
/'l Return the value in the entry wikiey in this map, onul | if there is no such entry..

public V renpve (K key);
/I Remove the entry witkey (if any) from this map. Return the value in that enbry
/1 nul | if there was no such entry.

public V put (K key, V val);
/'l Add the entryKey, val) to this map, replacing any existing entry whose key is
/'l key. Return the value in that entry,oul | if there was no such entry.

public void putAl (Mp<K, V> that);
/' Overlay this map witt hat , i.e., add all entries afhat to this map, replacing
/| any existing entries with the same keys.

public bool ean equal s (Map<K, V> that);
/'l Returnt r ue if this map is equal tohat .

public Set<K> keySet ();
/' Return the set of all keys in this map.

Box 1 A contract for homogeneous maps

(@

(b)

(©)

Explain the concept of amdirected graph.

A road network is an application of undirectedpdr® The vertices correspond to
towns, and the edges correspond to roads connetisg towns. Box 2 shows
an example of such a road network, in which theeaattyibutes are distances.

Briefly describeone other application of undirected graphs.

. A graph is a collection of vertices connected byesd In an undirected graph
. the edges have no direction. |

Another application of undirected graphs is a coapoetwork. The vertices
i correspond to computers, and the edges correspgralrit-to-point connections.

Box 3 shows thebreadth-first graph traversal algorithm. Explain why this
algorithm uses a queue, rather than a stack.

| At each vertex, the algorithm queues the vertertgsited successors, and later
. it queuegheir unvisited successors. Thus direct successorbailemoved from
i the queue before indirect successors.

. If the algorithm stacked unvisited successors,latet stackedheir unvisited |
1 successors, indirect successors would be remoweattfre stack before direct
i successors. In fact this is depth-first traversal. ‘

Consider a road network whose edge attributesliatances (as in Box 2). Write
down an algorithm to find the distance along thertdst path in a road network
from townstart to every other town.

: To find the distance of the shortest path from tatant to every other town in a
: road network:
. 1. Maketown-set contain all towns in the road network.
1 2. Setdistgat to 0, and sedist; to infinity for all other towng.
. 3. Whiletown-set is not empty, repeat:
: 3.1. Remove fromown-set the townt with leastdist;.
3.2. For each roatth connecting and another town, such thatiis in
town-set, repeat:
3.2.1.Letd bedist; + (distance alonty).
: 3.2.2.1fd < dist, setdist, to d.
i 4. Terminate with the distancdsst;.

__

(d) A routing application finds the shortest path bEgw two given towns (not just
the distance along that patt@utline how you would modify the algorithm of
part (c) to do this. (You need not write down thedified algorithm in detail.)

i [Unseen problem]

. For each town, maintainpath; containing the shortest path so far found from
| start tot. (Thusdist; = total distance along roadsmsth;.) At step 2, sepathgat |
| to «start», and set all othggath; to null. At step 3.2.2, ifl < dist,, setpath, to the

. concatenation gbath; and «».

(e) Describe a representation of road networks thatildvdoe suitable for the
algorithms of parts (c) and (d). Illustrate yousaer by showing how the road
network of Box 2 would be represented.

[Unseen problem]

. Use the adjacency set representation. Represenetherk by a set of towns

. (DLL) together with an adjacency set (SLL) for eagstvn. Each town’s

. adjacency set contains the roads connecting ttat to other towns. Each road
. node contains the road’s distance attribute arid lio the two towns it connects.

' lllustration:
! links from each edge object to t

T s 7 3
2 o} [T o

T o6

5 o >3 o} 6 4

Box 2 A road network

To traverse grapg in breadth-first order, starting at vertsart:

Makevertex-queue contain only vertestart, and marlstart as reached.

2. Whilevertex-queue is not empty, repeat:
2.1. Remove the front elementvartex-queue into v.

2.2. Visit vertex.
2.3. For each unreached successof vertexv, repeat:
2.3.1. Add vertexv to vertex-queue, and markv as reached.

3. Terminate.

=

Box 3 The breadth-first graph traversal algorithm

