
 

Algorithms & Data Structures (M): Questions and Answers: Spring 2012 

Duration: 120 minutes. 
Rubric: Answer any three questions. Total 60 marks. 

1. (a) What is meant by the time complexity of an algorithm? 

[Notes] 

The time complexity of an algorithm is the rate at which its time requirement 

grows as a function of its input data. 

[2] 

 (b) Suppose that you are given two different algorithms that solve the same problem. 

Given n items of data, algorithm A takes 20n
2
 milliseconds, whilst algorithm B 

takes (100 n log2 n) milliseconds. 

(i) What is each algorithm’s time complexity? 

(ii) Without doing any calculations, state which algorithm you would choose. 

Explain your answer. 

 (iii) Now calculate (to the nearest second) each algorithm’s running times for n 

= 8, 16, 32, 64. Tabulate the results. Comment on whether the results 

confirm your answer to (b)(ii). 

[Unseen problem] 

(i) Algorithm A is O(n
2
). Algorithm B is O(n log n). 

(ii) Algorithm B has the slower growth rate, so will be much faster than algorithm 

A for larger values of n. (Smaller values of n don’t matter.) 

(iii) n 8 16 32 64 

 algorithm A 1 5 20 82 secs 

 algorithm B 2 6 16 38 secs 

These results confirm that algorithm B is faster for n greater than about 16. 

[2+2+2] 

 (c) Write down the array merge-sort algorithm. (Note: Code is not required.) 

[Notes] 

To sort a[left…right]: 

1. If left < right: 

 1.1. Let m be an integer about halfway between left and right. 

 1.2. Sort a[left…m].  

 1.3. Sort a[m+1…right]. 

 1.4. Merge a[left…m] and a[m+1…right] into auxiliary array b. 



 

 1.5. Copy b into a[left…right]. 

2. Terminate. 

[3] 

  Illustrate the merge-sort algorithm’s behaviour as it sorts the following array of 

words: 

 

  Your illustration must show the contents of the array after each step of the 

algorithm. (Note: If the algorithm calls itself or another algorithm, treat the call as 

a single step.) 

 [Unseen problem] 

 
 [3] 

 (d) In terms of time and space complexity, how does the merge-sort algorithm 

compare with the quick-sort algorithm? 

[Notes] 

Merge-sort is O(n log n) time and O(n) space. 

Quick-sort’s best case is O(n log n) time and O(log n) space. Its worst case is 

O(n
2
) time and O(n) space. 

So merge-sort tends to be less time-consuming but also more space-consuming. 

 [6] 
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2. (a) What is meant by an abstract data type (ADT)? 

  How are ADTs supported by Java? 

[Notes] 

An ADT is a type characterised by its values and operations only. Its data 

representation is hidden. 

An ADT contract can be expressed as a Java interface, which specifies each 

operation (public method) to be provided. An ADT implementation can be 

expressed as a Java class, in which each operation is fully defined, and in which 

the data representation is defined by private instance variables. 

[4] 

 (b) Box 2 shows a simplified contract for a homogeneous queue ADT. 

  Write a class LinkedQueue<E> that implements this contract using a singly-

linked-list representation. 

[Notes] 

public class LinkedQueue<E> implements Queue<E> { 

 private int n; 

 private Node front, rear; 

 public LinkedQueue<E> () { 

  n = 0; 

  front = rear = null; 

 } 

 public int size () { 

  return n; 

 } 

 public E getFirst () { 

  if (front == null) throw ...; 

  return front.element; 

 } 

 public E removeFirst () { 

  if (front == null) throw ...; 

  E elem = front.element; 

  front = front.succ; 

  if (front == null) rear = null; 

  n--; 

  return elem; 

 } 

 public void addLast (E it) { 

  Node newest = new Node(it);  

  if (rear == null) 

   front = newest; 



 

  else 

   rear.succ = newest; 

  rear = newest; 

  n++; 

 } 

 private static class Node { 

  public E element; 

  public Node succ; 

  public Node (E it) { 

   element = it; succ = null; 

  } 

 } 

} 

 [8] 

 (c) A deque (or double-ended queue) is a sequence of elements with the property that 

elements can be added and removed at both ends. 

  Design a homogeneous deque ADT, whose elements are objects of type E. Your 

ADT must enable application programs to: 

(1) determine the number of elements in the deque; 

(2) add a given element at the front or rear of a deque; 

(3) fetch and remove the element at the front or rear of a deque. 

  Express your design in the form of a Java generic interface. Each operation must 

be accompanied by a comment specifying the operation’s observable behaviour. 

[Seen problem] 

public interface Deque<E> { 

 // Each Deque<E> object is a deque whose elements are objects of type E. 

 public boolean size (); 

 // Return the number of elements in this deque. 

 public void addFirst (E it); 

 // Add it at the front of this deque. 

 public void addLast (E it); 

 // Add it at the rear of this deque. 

 public E removeFirst (); 

 // Remove and return the front element of this deque. 

 public E removeLast (); 

 // Remove and return the rear element of this deque. 

} 

[6] 

 (c) What data structure would you choose to represent an unbounded deque? Briefly 

explain your answer. 



 

 [Seen problem] 

Choose a doubly-linked-list. This enables all operations including addFirst and 

removeLast to be O(1). 

 [2] 

 [total 20] 

 

public interface Queue <E> { 

 // Each Queue<E> object is a homogeneous queue whose elements are objects  

 // of type E. 

 public int size (); 

 // Return the number of elements in this queue. 

 public E getFirst (); 

 // Return the frontmost element of this queue. 

 public void addLast (E it); 

 // Add it to the rear of this queue. 

 public E removeFirst (); 

 // Remove and return the frontmost element of this queue. 

} 

Box 2  A contract for homogeneous queues. 



 

3. (a) Define what is meant by a set.  

  Explain clearly how sets differ from lists. 

[Notes] 

A set is a collection of distinct elements (members), in no particular order. 

Sets differ from lists in that duplicate elements are not allowed and the order in 

which elements are added is of no significance. 

[2] 

  Box 3 shows a simplified contract for a homogeneous Set abstract data type, 

expressed in the form of a Java interface Set<E>. 

 (b) Explain how a bounded set could be represented by an array. Briefly explain how 

each of the operations of Box 3 would be implemented. (Note: If you use 

standard algorithms, just identify them; you do not need to explain how the 

standard algorithms work.) 

[Notes] 

For a bounded set of capacity m, use an integer n and an array a[0...m-1]. Store 

the set elements in a[0...n-1]. 

contains should use binary search. 

add should use binary search followed (if necessary) by array insertion. 

remove should use binary search followed (if necessary) by array deletion. 

 addAll should merge the two arrays, eliminating common elements. 

equals should compare the elements of the two arrays pairwise. 

 [5] 

  Illustrate your answer with a diagram showing the array after the following words 

have been added to an empty set: 

“to”, “be”, “or”, “not”, “to”, “be” 

[Unseen problem] 

 
 [2] 

  State the time complexities of the contains and add operations. 
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[Notes] 

contains is O(log n). 

add is O(n). 

 [2] 

 (c) Describe a data structure that is more efficient than the array representation, and 

which could be used to represent unbounded sets. Briefly explain how each of the 

operations of Box 3 would be implemented. 

[Notes + insight] 

One possible data structure is a binary-search-tree (BST). 

contains should use BST search. 

add should use BST insertion. 

remove should use BST deletion. 

addAll should traverse the second BST, and add each element to the first BST 

using BST insertion. 

equals should first compare cardinalities; then it should traverse one BST, and 

test each element’s presence in the other BST using BST search. 

[Equally acceptable answer: Use a hash-table together with a hash function that 

tends to distribute the elements evenly among the buckets.] 

 [5] 

  Illustrate your answer with a diagram showing your data structure after the 

following words have been added to an empty set: 

 “to”, “be”, “or”, “not”, “to”, “be” 

[Unseen problem] 

 
[2] 

  State the time complexities of the contains and add operations. 

“to” 
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[Notes] 

Both contains and add are O(log n) if the BST is well-balanced, O(n) 

otherwise. 

 [2] 
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public interface Set<E> { 

 // Each Set<E> object is a homogeneous set whose members are objects  

 // of type E. 

 public boolean contains (E it); 

 // Return true iff it is a member of this set. 

 public void add (E it); 

 // Add it as a member of this set. 

 public void remove (E it); 

 // Remove it from this set. 

 public void addAll (Set<E> that); 

 // Add all elements of that to this set. 

 public boolean equals (Set<E> that); 

 // Return true if this set is equal to that. 

} 

Box 3  A contract for homogeneous sets. 



 

4. (a) Define the concept of a graph, and the concept of an undirected graph. 

  Box 4A shows a road network, in which A–E are towns and the numbers are road 

distances. Show that a road network such as this (where all roads are two-way) is 

an example of an undirected graph. 

 [Notes] 

A graph is a collection of vertices connected by edges. Edges may have attributes. 

An undirected graph is one in which the edges have no direction. 

The road network is an undirected graph in which vertices correspond to towns, 

edges correspond to roads connecting these towns, and edge attributes are 

distances. 

 [4] 

 (b) Box 4B shows the shortest-distances algorithm, which determines the shortest 

distance from a given town, start, to every other town in a road network. For each 

town t, the variable distt contains the shortest distance so far discovered from 

start to t. 

  Trace this algorithm as it finds the shortest distance from town A to every other 

town in the road network of Box 4A. Present your trace in tabular fashion as 

follows: 

 distA  distB  distC  distD  distE  town-set 

 0 ∞ ∞ ∞ ∞ {A, B, C, D, E} 

 … … … … … … 

 … … … … … … 

  where the first line shows the values of the variables after step 2, and the 

remaining lines show their values after each iteration of the loop in step 3. 

 [Unseen problem] 

 distA  distB  distC  distD  distE  town-set 

 0 ∞ ∞ ∞ ∞ {A, B, C, D, E} 

 0 ∞ 12 8 ∞ {B, C, D, E} 

 0 19 11 8 20 {B, C, E} 

 0 17 11 8 20 {B, E} 

 0 17 11 8 20 {E} 

[6] 

 (c) Now consider a related problem: to find the shortest path from town start to town 

dest in a road network. 



 

  Modify the shortest-distances algorithms to solve this problem. (Hint: You might 

find it helpful to write down your ideas before writing down the modified 

algorithm itself.) 

 [Notes + seen problem] 

Ideas: For each town t, let predt be the predecessor of t on the shortest path from 

start to t. Update predt whenever distt is updated. Terminate when t = dest. 

To find the shortest path from town start to town dest in a road network: 

1. Make town-set contain all towns in the network. 

2. Set diststart to 0, and set distt to infinity for all other towns t. 

3. Set predt to null for all towns t. 

4. While town-set is not empty, repeat: 

 4.1. Remove from town-set the town t with least distt.  

 4.2. If t = dest, terminate with the path defined by preddest, etc. 

 4.3. For each road connecting t and another town u,  

  such that u is in town-set, repeat: 

  4.3.1. Let d = distt + (distance along road from t to u). 

  4.3.2. If d < distu, set distu to d and set predu to t. 

[10] 

 [total 20] 

 

 

 

Box 4A  A road network. 

 

To find the distance of the shortest path from town start to every other town in a 
road network: 

1. Make town-set contain all towns in the network. 
2. Set diststart to 0, and set distt to infinity for all other towns t. 
3. While town-set is not empty, repeat: 
 3.1. Remove from town-set the town t with least distt. 
 3.2. For each road connecting t and another town u,  
  such that u is in town-set, repeat: 
  3.2.1. Let d = distt + (distance along road from t to u). 
  3.2.2. If d < distu, set distu to d. 
4. Terminate with the distances distt. 

Box 4B  Shortest-distances algorithm. 
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