

Algorithms & Data Structures (M): Questions and Answers: Spring 2014

Duration: 120 minutes.
Rubric: Answer any three questions. Total 60 marks.

1. (a) What is meant by the time complexity of an algorithm?

[2]

 [Notes]

The time complexity of an algorithm is the rate at which its time requirement

grows as a function of its input data.

 (b) Suppose that you have to choose between two alternative algorithms to solve the

same problem. Given n items of data, algorithm A take (10n log2 n) milliseconds,

whilst algorithm B takes (2n
2
 + 5n) milliseconds.

(i) What is each algorithm’s time complexity?

(ii) Without doing any calculations, state which algorithm you would choose.

Explain your answer.

(iii) Now calculate and tabulate both algorithms’ running times for n = 10, 20,

30, 40. Do your calculations confirm your answer to (b)(ii)?

 (Note: log2 10 ≈ 3.3; log2 20 ≈ 4.3; log2 30 ≈ 4.9; log2 40 ≈ 5.3.)

[7]

[Similar to seen problem]

(i) Algorithm A is O(n log n), algorithm B is O(n
2
). [2]

(ii) Algorithm A has the slower growth rate, so Algorithm A will be much faster

for larger values of n. (Smaller values of n don’t matter.) [2]

(iii) n 10 20 30 40

 Algorithm A 330 860 1470 2120 ms

 Algorithm B 250 900 1950 3400 ms

This confirms that Algorithm A is faster for n >= 20. [3]

 (c) Box 1 shows an algorithm that takes an array a and searches it for a subarray that

matches a shorter array b. This uses an auxiliary algorithm that compares two

subarrays of equal length.

 For example:

Q W E R T Y W E R E

0 1 2 3 4 5 6 7 8 9

a

W E R

0 1 2

b

 Here the answer should be 1 (the index of the leftmost matching subarray of a).

(i) What is the time complexity of the auxiliary algorithm? Informally justify

your answer.

(ii) What is the time complexity of the main algorithm? Informally justify your

answer.

[6]

[Similar to seen problem]

(i) The auxiliary algorithm is O(m), since it must perform up to m character

comparisons. [2]

(ii) The main algorithm is O(m(n‒m)), since it must call the auxiliary algorithm

up to about n‒m times. [4]

 (d) Name a sorting algorithm that is faster than O(n
2
). Write down your chosen

algorithm. What is its time complexity?

[5]

[Notes]

Either merge-sort or quick-sort would be acceptable. Both are O(n log n).

Main algorithm:

 To search the array a[0…n‒1] for a subarray that matches b[0…m‒1],

 where m < n:

 1. For i = 0, …, n‒m, repeat:

 1.1. If a[i…i+m‒1] matches b[0…m‒1], terminate with answer i.

 2. Terminate with answer none.

Auxiliary algorithm:

 To test whether a[i…i+m‒1] matches b[0…m‒1]:

 1. For j = 0, …, m‒1, repeat:

 1.1. If a[i+j] ≠ b[j], terminate with answer false.

 2. Terminate with answer true.

Box 1 An algorithm to search an array for a matching subarray.

2. (a) Define what is meant by a queue.

[2]

[Notes]

A queue is a first-in-first-out sequence of elements.

 (b) Box 2 shows a contract for a homogeneous queue ADT (abstract data type), in the

form of a Java interface Queue<E>.

 Outline a class ArrayQueue<E> that implements the interface Queue<E>.

Your implementation must represent a queue by a circular array with capacity 5.

Your answer must include declarations of all necessary instance variables, and a

full implementation of the remove and add methods. Do not implement the

other methods.

[10]

[Notes]

class ArrayQueue <E> implements Queue<E> {

 private E[] elems;

 private int front, rear, size; [2]

 public ArrayQueue<E> () { … }

 public int size () { … }

 public E get () { … }

 public E remove () { … }

 if (size == 0) … -- throw an exception
 E it = elems[front++]:

 if (front == elems.length) front = 0;

 size--;

 return it;

 } [4]

 public void add (E it) {

 if (size == elems.length) … -- expand the array
 elems[rear++] = it;

 if (rear == elems.length) rear = 0;

 size++;

 } [4]

}

 (c) Show what happens when the following operations are performed:

String s;

Queue<String> q = new ArrayQueue<String>(); --1

q.add("Bob");

q.add("Mick");

q.add("John");

q.add("Christine"); --2

s = q.remove(); --3

q.add("Lindsay"); --4

q.add("Stevie"); --5

 Your answer should consist of diagrams showing the contents of the data

structure immediately after each of the statements 1, 2, 3, 4, and 5.

[5]

[Unseen problem]

 (d) Explain carefully why a circular array is better than an ordinary array for

representing queues.

[3]

[Notes]

If an ordinary array is chosen, whenever the queue bumps into the right end of the

array, it has to be shifted to the left end of the array. That makes the add

operation O(n) instead of O(1).

 After statement 1:
0 1 3 2 4

front = 0
rear = 0
size = 0

Bob Mick Christine John After statement 2: front = 0
rear = 4
size = 4

 Mick Christine John After statement 3: front = 1
rear = 4
size = 3

 Mick Christine John Lindsay After statement 4: front = 1
rear = 0
size = 4

Stevie Mick Christine John Lindsay After statement 5: front = 1
rear = 1
size = 5

[1]

[1]

[1]

[1]

[1]

public interface Queue <E> {

 // Each Queue<E> object is a homogeneous queue whose

 // elements are objects of type E.

 public int size ();

 // Return the number of elements in this queue.

 public E get ();

 // Return the front element of this queue.

 public E remove ();

 // Remove and return the front element of this queue.

 public void add (E it);

 // Add it to the rear of this queue.

}

Box 2 A contract for homogeneous queues.

3. (a) Define what is meant by a set. Your definition must clearly distinguish sets from

other types of collections (such as lists).

[2]

[Notes]

A set is a collection of elements (members), in no particular order, and in which

no member is duplicated.

 (b) Box 3 shows a simplified contract for a set ADT, in the form of a Java interface

Set<E>.

 Using this interface, implement the following Java method:

void printUnique (String[] words) { … }

 The method must print all the unique words in the array, in lexicographic order.

In other words, each distinct word in the array must be printed once only.

[4]

[Similar to seen problem]

void printUnique (String[] words) {

 Set<String> wordSet = new TreeSet<String>();

 for (String word: words)

 wordSet.add(word);

 for (String word: wordSet)

 System.out.println(word);

}

 (c) Explain how a set may be efficiently represented by a hash-table. Explain the role

of the hash function.

 Illustrate your answer by showing a hash-table representation of the set of words

{ ‘cat’, ‘dog’, ‘cow’, ‘pig’, ‘goat’, ‘rat’, ‘ant’}. For simplicity, use a hash function

based on the word’s initial letter only.

[6]

[Notes + unseen problem]

A (closed-bucket) hash-table is an array of buckets, where each bucket contains

some of the set members in a linked-list. A hash function is chosen to translate

each member to a bucket number, which determines that member’s “home

bucket”. [3]

Illustration: [3]

 (d) How should the hash function be chosen to ensure that the Set operations are

efficient?

[2]

[Notes]

The hash function should be chosen to distribute the members thinly and evenly

over the buckets.

 (e) Compare and contrast the hash-table and binary-search-tree representations of

sets. Your answer should cover the time complexities of the add, remove, and

contains operations, and any other relevant issues.

[6]

[Notes + insight]

Hash-table: In the best case (when the members are distributed evenly and thinly),

the add, remove, and contains operations are all O(1). In the worst case

(when the members are all in one bucket), these operations are all O(n). [2]

BST: In the best case (when the tree is well-balanced), the add, remove, and

contains operations are all O(log n). In the worst case (when the tree is ill-

balanced), these operations are all O(n). [2]

So a hash-table is potentially faster, but only if the hash function is well chosen.

BSTs do have the advantage of make it possible to iterate over the members in

ascending order. [2]

ant

cat

dog

goat

pig

rat

cow

0

25

…

[+1 for noting that a balancing insertion algorithm (AVL or red-black tree) can

guarantee O(log n) performance.]

public interface Set<E> {

 // Each Set<E> object is a homogeneous set whose members

 // are objects of type E.

 public boolean contains (E it);

 // Return true if and only if it is a member of this set.

 public void add (E it);

 // Add it as a member of this set.

 public void remove (E it);

 // Remove it from this set.

}

Box 3 A simplified contract for homogeneous sets.

4. (a) Define what is meant by a graph.

 What is the difference between a directed graph and an undirected graph?

[4]

[Notes]

A graph is a set of vertices together with a set of edges, where each edge connects

two vertices. [2]

A directed graph is one in which every edge has a direction. An undirected graph

is one in which no edge has a direction. [2]

 (b) Box 4 shows a city-centre street network. The street intersections are numbered 1,

2, 3, 4, 5, and 6. The streets themselves are named A, B, C, D, E, F, G and H.

Each street with an arrow is one-way; each street without an arrow is two-way.

 Draw a graph suitable for modeling this street network. Have you chosen a

directed or undirected graph? Briefly explain your decision.

[5]

[Unseen problem]

 [4]

This is a directed graph. This enables a 1-way street to be modelled by a single

edge, and a 2-way street to be modelled by a pair of edges. [1]

 (c) Carefully describe a data structure suitable for representing such a graph.

 Illustrate your answer by means of a diagram showing the representation of the

graph you have drawn in part (b).

[7]

[Notes + unseen problem]

The most natural data structure is an adjacency matrix, with one row and one

column for each intersection. If the graph contains an edge from intersection i to

intersection j, the matrix cell [i,j] contains a description of that edge (the street

name and the numbers of its end intersections). If the graph contains no such

edge, the matrix cell [i,j] is empty. [3]

1

4

2

5

3

6

A B

G
H

C D
F

E

 [4]

 [Acceptable alternatives: the edge-set representation or the adjacency-set

representation.]

 (d) Consider the problem of finding the shortest route from intersection start to

intersection dest. For simplicity, assume that all streets are of equal length.

Identify a standard graph algorithm suitable for solving this problem.

 [4]

[Notes]

Use the breadth-first search algorithm, starting at start, and terminating when it

reaches dest.

Box 4 A city-centre street network.

1

4

2

5

3

6

A B

G H

C
D

F
E

1

4

2

3

5

6

1 4 2 3 5 6

A

B

C

C

D E

F

G H

H

