(@)

(b)

(©

(d)

(€)

Table 1 shows the arrayick-sort algorithm. Illustrate its behaviour as it
sorts the following array of country-codes:

0 1 2 3 4 5 6 7 8 9
[DKJUK][IT]TFR]IDE] IENL]ES]|BE][GR]

Your illustration must show the contents of tieay and the value qf,
after step 1.1, after step 1.2, and after step 1.3.

Assume that step 1.1 takaldeft] as the pivot, and does not reorder the
components it puts into either sub-array.
3]

State the time complexity of the quick-sort algom (in terms of the
number of comparisons performed). Informally jusyibur answer.

[6]

Write down the arraymerge-sort algorithm. Assume that an array
merging algorithm is already available.

[5]

lllustrate the merge-sort algorithm’s behaviouritasorts the following
array of country-codes:

0O 1 2 3 4 5 6 7 8 9
[DKJUK] IT]FR]IDEJ IE [NL]ES|BE]GR]

Your illustration must show the contents of tmeag after each step of
the algorithm.

[3]

State the time complexity of the merge-sort alyoni (in terms of the
number of comparisons performed). Informally jusyibur answer.

3]

To sorta[left...right]:

1. Ifleft <right:
1.1. Partitiora[left...right] such that
a[left...p—1] are all less than or equaldfp], and
a[pt+1...right] are all greater than or equaldfp].
1.2. Sort[left...p-1].
1.3. Sorta[p+1...right].
2. Terminate.

Table1l Array quick-sort algorithm (Question 1).

(@)

(b)

(©)

(d)

Briefly explain what is meant by an abstract dgfse (ADT). Why are
ADTs important?
[2]

Explain what is meant byqueue.

Write down a design for a homogeneous queue ABApress your
design in the form of a Java generic interfacehwaich operation
accompanied by a comment specifying its behavigour ADT must
provide appropriate operations to add and remoesnehts, and to
determine the length of the queue.

[3]
Using your queue ADT, complete the following Javethod:

static void printShortWrds

(Buf f eredReader i nput);
/1 i nput contains a sequence of words of varying lengths.
/| Read these words frormput . Print out all the 1-letter words,
/| followed by the 2-letter words, followed by theeter words,
/I without changing the order of the words within egobup.
/' Ignore all words longer than 3 letters.

You should use the auxiliary method of Table 2.

[6]
Using diagrams, outline an efficient implementatad your queue ADT.

Explain briefly how each operation would be impented. What is the
time complexity of each operation?

Note: Where a standard algorithm can be used, you nelgchame the
algorithm.

[7]

static String readWrd (BufferedReader input);
/| Read and return the next word fromput , skipping any preceding
/' spaces or punctuation. Retural | if no word remains to be read.

Table2 A Java auxiliary method (Questions 2 and 4).

(@)

(b)

(©)

(d)

(€)

Explain the differences betwebsas andsets.

[2]

Table 3 outlines a contract for a list ADT, exex$in the form of a Java
interfaceLi st <E>.

Using a diagram, show how a list can be represeloy an array.

How would theaddLast, add, renove, and get operations be
implemented? What is each operation’s time compjexi

Note: In this part of the question, neglect the posybithat the
addLast andadd operations might exceed the array’s capacity.

[6]

Now consider the possibility that theddLast and add operations
might exceed the array’s capacity. In this situgtipou are required to
expand the array, so that the application codecoatinue normally.

Show how this can be done in such a way that epehation’samortized
time complexity is as good as its best-case tinmeptexity.

What is theaddLast operation’s time complexity: (i) in the best case,
(ii) in the worst case, and (iii) in the averagseaInformally justify your
answer.

[6]

Now consider the t er at or operation of Table 3. How would the
resulting iterator be represented?

[3]

Show how application code could print all the ebes of a listxs of
typelLi st <T>.
3]

public interface List <BE> {
/'l ALi st <E> object is a homogeneous list whose elements are of
/'l typeE.

public void addLast (E x);
/] Addx as the last element of this list.

public void add (int i, E Xx);
/] Addx as the element at indéxin this list.

public E renmove (int i);
/| Remove and return the element at inder this list.

public E get (int i);
/| Return the element at indéexin this list.

public Iterator<E> iterator ();
/' Return an iterator that will visit the elementdiut from left to right.

Table3 Outline of aLi st <E> interface (Question 3).

(@

(b)

(©)

(d)

A bag is a collection of elements, in no fixed order, vilnich each
element may occur several times. For example, #ys Bapple, banana,
apple} and {apple, apple, banana} are equal to edlelr, but unequal to
{apple, banana}.

Note: Bags resemble sets, except that each element eif @acsurs just
once.

Design an abstract data type (ADT) to meet thiediohg requirements:

* It must be possible to obtain the cardinalitydfag, counting all
occurrences of all elements. For example, the wcality of {apple,
apple, banana} is 3.

* It must be possible to determine the number otizences of a given
element in a bag. For example, the number of appl&pple, apple,
banana} is 2.

» It must be possible to add several occurrencesgifen element to a
bag. For example, adding 2 apples to {apple, badnsimauld yield
{apple, banana, apple, apple}.

» It must be possible to remove several occurrentagyiven element
from a bag. For example, removing 3 apples fronpfepbanana,
apple, apple} should yield {banana}.

» It must be possible to render a bag as a stirng suitable format.

Express your ADT design in the form of a Javaiisice with suitable
comments.

[5]

Outline an efficient representation of bags ushigary-search-trees
(BSTs). Explain briefly how you would implement thperations to add
and remove occurrences.

lllustrate your answer with a diagram showing B®T that results if we
start with an empty bag, then add 2 apples, 1 IBriemons, 1 banana, 3
apples, and 1 orange (in that order).

[5]

Assuming your BST representation of a bag, wraem an algorithm to
render a bag as a string. Choose a suitable fautdt as “{apple, apple,
apple, banana}’ or “{apple 3, banana 1}’. The eletsemust be in
ascending order.

[3]
Using your bag ADT, complete the following Javatioel:
static void countWrds (BufferedReader doc);
/' Count and print the frequency of words in the bdumendoc.
You should use the auxiliary method of Table 2. -

