

Monday, 18 May 2009
2.00 pm – 4.00 pm

(Duration: 2 hours)

EXAMINATION FOR MSc & POSTGRADUATE DIPLOMA IN
INFORMATION TECHNOLOGY

ALGORITHMS & DATA STRUCTURES (M)

Answer any 3 out of 4 questions.

This examination paper is worth a total of 60 marks .

You must not leave the examination room within the first hour or the last half-
hour of the examination.

Summer Diet - 1 - Continued Overleaf/

1. (a) What is meant by the time complexity of an algorithm? In particular, what is
meant when we say that an algorithm has time complexity O(n2)?

[2]

 (b) Write down the selection-sort algorithm to sort the elements of an array
a[left…right] into ascending order. What is this algorithm’s time complexity?

[4]

 (c) Name and write down a more efficient algorithm to sort the elements of an array
a[left…right] into ascending order. What is this algorithm’s time complexity?

[4]

 (d) Modify the selection-sort algorithm of part (b) to make it sort a singly-linked-list
(SLL):

To sort the SLL headed by first into ascending order:
…

 What is the modified algorithm’s time complexity? Briefly justify your answer.
[6]

 (e) Show how the algorithm of part (c) could be modified to sort the elements of an
SLL? Outline how the modified algorithm would work. (You need not write it
down in detail.) How efficient would it be?

[4]

Summer Diet - 2 - Continued Overleaf/

2. (a) What is meant by an abstract data type (ADT)?
[2]

 (b) A deque (or double-ended queue) is a sequence of elements with the property
that elements can be added and removed at both ends.

 Design a homogeneous deque ADT, whose elements are objects of type E. Your
ADT must enable application programs to:

(1) make a deque empty;

(2) add a given element at the front or rear of a deque;

(3) fetch and remove the element at the front or rear of a deque;

(4) test whether the deque is empty.

 Express your design in the form of a Java generic interface. Each operation must
be accompanied by a comment specifying the operation’s observable behaviour.

[6]

 (c) Describe how a bounded deque could be represented by a cyclic array, using a
diagram to show the invariant of this representation.

 Also draw diagrams showing the representation of a deque (with string elements)
after each step of the following sequence:

(i) make the deque empty;

(ii) add “cat” to the rear of the deque;

(iii) add “hat” to the front;

(iv) add “mat” to the rear;

(v) remove the front element;

(vi) remove the rear element.

 In your diagrams, assume a cyclic array of length 8. Also assume that the first
element is added in slot 0 of the cyclic array.

[3+3]

 (d) Assuming the cyclic array representation of part (c), what is the time complexity
of each operation? (Ignore the possibility that the array becomes full.)

[2]

 (e) How would your answer to part (d) be affected if you used an ordinary (non-
cyclic) array representation instead?

[4]

Summer Diet - 3 - Continued Overleaf/

3. (a) Define precisely what is meant by a map.
[2]

 Box 1 shows a contract for maps, in the form of a Java generic interface
Map<K,V>.

 (b) Explain how a map can be represented by a binary-search-tree (BST). Illustrate
your answer by showing the BST representation of the following map:

roman value
‘I’ 1
‘V’ 5
‘X’ 10
‘L’ 50
‘C’ 100

 assuming that the entries are added in the above order: (‘I’,1) then (‘V’,5) then …
[3]

 (c) Assuming the BST representation, show how each of the following operations
could be implemented efficiently. If a standard algorithm can be used, identify
that algorithm. If not, outline a possible algorithm. (You need not write it down
in detail.)

(i) get

(ii) remove

(iii) put

(iv) equals

(v) keySet
[1+1+2+3+3]

 (d) Explain why the BST representation of a map is not always efficient. Suggest
how the search-tree representation could be improved to ensure that it is always
efficient.

[5]

Summer Diet - 4 - Continued Overleaf/

interface Map<K,V> {

 // Each Map<K,V> object is a homogeneous map whose keys and values are of types K
 // and V respectively.

 public void clear ();
 // Make this map empty.

 public V get (K key);
 // Return the value in the entry with key in this map, or null if there is no such entry..

 public V remove (K key);
 // Remove the entry with key (if any) from this map. Return the value in that entry, or
 // null if there was no such entry.

 public V put (K key, V val);
 // Add the entry (key, val) to this map, replacing any existing entry whose key is
 // key. Return the value in that entry, or null if there was no such entry.

 public void putAll (Map<K,V> that);
 // Overlay this map with that, i.e., add all entries of that to this map, replacing
 // any existing entries with the same keys.

 public boolean equals (Map<K,V> that);
 // Return true if this map is equal to that.

 public Set<K> keySet ();
 // Return the set of all keys in this map.

}

Box 1 A contract for homogeneous maps

Summer Diet -5- /END

4. (a) Explain the concept of an undirected graph.

 A road network is an application of undirected graphs. The vertices correspond to
towns, and the edges correspond to roads connecting these towns. Box 2 shows
an example of such a road network, in which the edge attributes are distances.

 Briefly describe one other application of undirected graphs.
[3]

 (b) Box 3 shows the breadth-first graph traversal algorithm. Explain why this
algorithm uses a queue, rather than a stack.

[3]

 (c) Consider a road network whose edge attributes are distances (as in Box 2). Write
down an algorithm to find the distance along the shortest path in a road network
from town start to every other town.

[6]

 (d) A routing application finds the shortest path between two given towns (not just
the distance along that path). Outline how you would modify the algorithm of
part (c) to do this. (You need not write down the modified algorithm in detail.)

[4]

 (e) Describe a representation of road networks that would be suitable for the
algorithms of parts (c) and (d). Illustrate your answer by showing how the road
network of Box 2 would be represented.

[4]

Box 2 A road network

To traverse graph g in breadth-first order, starting at vertex start:

1. Make vertex-queue contain only vertex start, and mark start as reached.
2. While vertex-queue is not empty, repeat:
 2.1. Remove the front element of vertex-queue into v.
 2.2. Visit vertex v.
 2.3. For each unreached successor w of vertex v, repeat:
 2.3.1. Add vertex w to vertex-queue, and mark w as reached.
3. Terminate.

Box 3 The breadth-first graph traversal algorithm

4 2 1

5
3

6

A B C D

E

