

Saturday, 1 st May 2010
2.00 pm – 4.00 pm

(Duration: 2 hours)

DEGREE OF MSc in Information Technology

ALGORITHMS & DATA STRUCTURES (M)

Answer any 3 out of 4 questions.

This examination paper is worth a total of 60 marks .

You must not leave the examination room within the first hour or the last half-
hour of the examination.

Summer Diet - 1 - Continued Overleaf/

1. (a) What is meant by the time complexity of an algorithm?
[2]

 (b) Suppose that you have to choose between two alternative algorithms to solve the
same problem. Given n items of data, algorithm A take 2n seconds, whilst
algorithm B take (10 log2 n) seconds.

(i) What is each algorithm’s time complexity?

(ii) Without doing any calculations, state which algorithm you would choose.
Explain your answer.

(iii) Now calculate and tabulate both algorithms’ running times for n = 10, 20,
30, 40. Do your calculations confirm your answer to (b)(ii)?

 (Note: log2 10 ≈ 3.3; log2 20 ≈ 4.3; log2 30 ≈ 4.9; log2 40 ≈ 5.3.)
[2+2+2]

 (c) Assume that you are given the following standard algorithms:

(i) a merging algorithm, which merges the elements of two sorted arrays a1
and a2 into a third sorted array a3;

(ii) a sorting algorithm, which takes an unsorted array a and rearranges its
elements into ascending order.

 Write down an algorithm to create a sorted array containing all the elements of
two unsorted arrays a1 and a2. Your algorithm should call algorithm (i) and/or
(ii) where required. (It should not reproduce the steps of algorithm (i) or (ii).)

 Your algorithm should be as efficient as possible.
[6]

 (d) Analyse the efficiency of your algorithm, in terms of the number of comparisons
performed. For simplicity, assume that a1 and a2 each contains n elements.

 Assume that the sorting algorithm (ii) performs approximately n2/2 comparisons.

 What is your algorithm’s time complexity?
[3]

 (e) Repeat (d), now assuming that the sorting algorithm (ii) performs approximately
n log2 n comparisons.

[3]
[total 20]

Summer Diet - 2 - Continued Overleaf/

2. (a) Define what is meant by a list.

 Explain clearly how lists differ from stacks and queues.
[2]

 (b) Write a contract for a list abstract data type to meet the following requirements:

(1) The values must be lists, of any length, whose elements are of a particular
type E.

(2) It must be possible to determine the length of a list.

(3) It must be possible to inspect the element at a given position in a list.

(4) It must be possible to add an element at the end of a list.

(5) It must be possible to add an element at any given position in a list.

(6) It must be possible to iterate from left to right over all the elements of a
list.

 Your contract must be expressed as a Java interface List<E>, including
comments specifying the behaviour of each method.

[5]

 (c) Suppose that your contract is to be implemented by a Java class
LinkedList<E>, in which the data structure is a doubly-linked-list. Use a
diagram to show this representation. Also explain briefly how each method in the
class would work.

[5]

 (d) Using the interface List<E> and the class LinkedList<E>, write application
code that performs the following steps:

(i) create an empty list of strings;

(ii) add “the” at the end of the list;

(iii) add “spring” at the end of the list;

(iv) add “Paris” before the first element of the list;

(v) add “in” after the first element of the list;

(vi) add “the” after the second element the list;

(vii) print all the strings in the list in order from left to right.
[4]

 (e) Draw diagrams to show the doubly-linked-list data structure after each of the
steps (i) – (vi) of the application code of part (d).

[4]
[total 20]

Summer Diet - 3 - Continued Overleaf/

3. (a) Define what is meant by a set.

 Explain clearly how sets differ from lists.
[2]

 Box 1 (next page) shows a contract for a homogeneous Set abstract data type,
expressed in the form of a Java interface Set<E>.

 In parts (b) – (d) of this question, assume that a set is to be represented by a
binary-search-tree (BST).

 (b) Draw diagrams showing the contents of the BST after adding each of the
following strings to an empty set:

“to”, “be”, “or”, “not”, “to”, “be”.
[5]

 (c) Name and write down an algorithm that would be used to implement the method
contains.

[4]

 (d) Tabulate the best-case and worst-case time complexities of the methods
contains, add, and remove.

 Explain any differences between the best and worst cases. What could be done to
improve the worst case?

[5]

 (e) How would your answer to (d) be affected if a set were represented by a closed-
bucket hash-table?

[4]
[total 20]

Summer Diet - 4 - Continued Overleaf/

interface Set<E> {

 // Each Set<E> object is a homogeneous set whose elements are of type E.

 public void clear ();
 // Make this set empty.

 public boolean contains (E x);
 // Return true iff x is an element of this set.

 public void add (E x);
 // Add the element x to this set.

 public void remove (E x);
 // Remove the element x (if any) from this set.

 public void addAll (Set<E> that);
 // Add all elements of that to this set.

 public boolean equals (Set<E> that);
 // Return true if this set is equal to that.

}

Box 1 A contract for homogeneous sets (Question 3).

Summer Diet - 5 - Continued Overleaf/

4. This question is about the tree abstract data type (not about search-tree data
structures).

 (a) What is meant by a tree?
[2]

 (b) Suppose that a fictional university comprises Colleges of Humanities,
Biomedicine, and Science. The College of Humanities comprises Schools of
Languages, History, and Economics. The College of Biomedicine comprises
Schools of Biology and Medicine. The College of Science comprises Schools of
Mathematics, Physics, and Chemistry. Draw a tree that captures the structure of
this university.

[2]

 (c) Explain what are meant by breadth-first traversal and depth-first traversal of a
tree.

[2]

 (d) Write down a recursive algorithm that performs a depth-first traversal of a given
tree t.

[6]

 (e) Box 2 (next page) shows a contract for a heterogeneous Tree abstract data type,
expressed in the form of a Java interface Tree with an inner interface
Tree.Vertex.

 Assuming this contract, develop a Java method that traverses a given tree (with
string elements) and prints out the tree elements indented to show their
relationship. For example, the tree below left should be printed as shown below
right:

[8]

[total 20]

A
 B
 D
 E
 C
 F
 G
 H

A

E

C

H G F D

B

Summer Diet -6- /END

public interface Tree {

 // Each Tree object is a heterogeneous tree whose elements are arbitrary objects.

 public Tree.Vertex root ();
 // Return the root vertex of this tree, or null if this tree is empty.

 public Tree.Vertex parent (Tree.Vertex v);
 // Return the parent of vertex v in this tree, or null if v is the root vertex.

 public void makeRoot (Object elem);
 // Make this tree consist of just a root vertex containing elem.

 public Tree.Vertex addChild (Tree.Vertex v,
 Object elem);
 // Add a new vertex containing elem as a child of vertex v in this tree, and return
 // the new vertex. The new vertex has no children of its own.

 public void remove (Tree.Vertex v);
 // Remove vertex v from this tree, together with all its descendants.

 public Iterator<Tree.Vertex> children (Tree.Vertex v);
 // Return an iterator that will visit all the children of vertex v in this tree.

 //////////// Inner interface for tree vertices ////////////

 public interface Vertex {

 // Each Tree.Vertex object is a vertex of a tree, and contains a single
 // element.

 public Object getElement ();
 // Return the element in this vertex.

 public void setElement (Object elem);
 // Change the element in this vertex to be elem.

 }

}

Box 2 A contract for heterogeneous trees (Question 4).

