

Friday, 11 May 2012
9.30 am – 11.30 am
(Duration: 2 hours)

DEGREES OF MSc in Information Technology
AND MSc in Software Development

ALGORITHMS & DATA STRUCTURES (M)

Answer any 3 out of 4 questions.

This examination paper is worth a total of 60 marks.

You must not leave the examination room within the first hour or the last half-
hour of the examination.

Summer Diet - 1 - Continued Overleaf/

1. (a) What is meant by the time complexity of an algorithm?

[2]

 (b) Suppose that you are given two different algorithms that solve the same problem.

Given n items of data, algorithm A takes 20n
2
 milliseconds, whilst algorithm B

takes (100 n log2 n) milliseconds.

(i) What is each algorithm’s time complexity?

(ii) Without doing any calculations, state which algorithm you would choose.

Explain your answer.

 (iii) Now calculate (to the nearest second) each algorithm’s running times for n

= 8, 16, 32, 64. Tabulate the results. Comment on whether the results

confirm your answer to (b)(ii).

 [6]

 (c) Write down the array merge-sort algorithm. (Note: Code is not required.)

 [3]

 Illustrate the merge-sort algorithm’s behaviour as it sorts the following array of

words:

 Your illustration must show the contents of the array after each step of the

algorithm. (Note: If the algorithm calls itself or another algorithm, treat the call as

a single step.)

 [3]

 (d) In terms of time and space complexity, how does the merge-sort algorithm

compare with the quick-sort algorithm?

 [6]

0 1 2 3 4 5 6 7 8 9

it or my he an is be in me am

Summer Diet - 2 - Continued Overleaf/

2. (a) What is meant by an abstract data type (ADT)?

 How are ADTs supported by Java?

 [4]

 (b) Box 2 shows a simplified contract for a homogeneous queue ADT.

 Write a class LinkedQueue<E> that implements this contract using a singly-

linked-list representation.

 [8]

 (c) A deque (or double-ended queue) is a sequence of elements with the property that

elements can be added and removed at both ends.

 Design a homogeneous deque ADT, whose elements are objects of type E. Your

ADT must enable application programs to:

(1) determine the number of elements in the deque;

(2) add a given element at the front or rear of a deque;

(3) fetch and remove the element at the front or rear of a deque.

 Express your design in the form of a Java generic interface. Each operation must

be accompanied by a comment specifying the operation’s observable behaviour.

 [6]

 (c) What data structure would you choose to represent an unbounded deque? Briefly

explain your answer.

 [2]

Summer Diet - 3 - Continued Overleaf/

public interface Queue <E> {

 // Each Queue<E> object is a homogeneous queue whose elements are objects

 // of type E.

 public int size ();

 // Return the number of elements in this queue.

 public E getFirst ();

 // Return the frontmost element of this queue.

 public void addLast (E it);

 // Add it to the rear of this queue.

 public E removeFirst ();

 // Remove and return the frontmost element of this queue.

}

Box 2 A contract for homogeneous queues.

Summer Diet - 4 - Continued Overleaf/

3. (a) Define what is meant by a set.

 Explain clearly how sets differ from lists.

 [2]

 Box 3 shows a simplified contract for a homogeneous Set abstract data type,

expressed in the form of a Java interface Set<E>.

 (b) Explain how a bounded set could be represented by an array. Briefly explain how

each of the operations of Box 3 would be implemented. (Note: If you use

standard algorithms, just identify them; you do not need to explain how the

standard algorithms work.)

 [5]

 Illustrate your answer with a diagram showing the array after the following words

have been added to an empty set:

“to”, “be”, “or”, “not”, “to”, “be”

 [2]

 State the time complexities of the contains and add operations.

 [2]

 (c) Describe a data structure that is more efficient than the array representation, and

which could be used to represent unbounded sets. Briefly explain how each of the

operations of Box 3 would be implemented.

 [5]

 Illustrate your answer with a diagram showing your data structure after the

following words have been added to an empty set:

 “to”, “be”, “or”, “not”, “to”, “be”

 [2]

 State the time complexities of the contains and add operations.

 [2]

Summer Diet - 5 - Continued Overleaf/

public interface Set<E> {

 // Each Set<E> object is a homogeneous set whose members are objects

 // of type E.

 public boolean contains (E it);

 // Return true iff it is a member of this set.

 public void add (E it);

 // Add it as a member of this set.

 public void remove (E it);

 // Remove it from this set.

 public void addAll (Set<E> that);

 // Add all elements of that to this set.

 public boolean equals (Set<E> that);

 // Return true if this set is equal to that.

}

Box 3 A contract for homogeneous sets.

Summer Diet - 6 - Continued Overleaf/

4. (a) Define the concept of a graph, and the concept of an undirected graph.

 Box 4A shows a road network, in which A–E are towns and the numbers are road

distances. Show that a road network such as this (where all roads are two-way) is

an example of an undirected graph.

 [4]

 (b) Box 4B shows the shortest-distances algorithm, which determines the shortest

distance from a given town, start, to every other town in a road network. For each

town t, the variable distt contains the shortest distance so far discovered from

start to t.

 Trace this algorithm as it finds the shortest distance from town A to every other

town in the road network of Box 4A. Present your trace in tabular fashion as

follows:

 distA distB distC distD distE town-set

 0 ∞ ∞ ∞ ∞ {A, B, C, D, E}

 … … … … … …

 … … … … … …

 where the first line shows the values of the variables after step 2, and the

remaining lines show their values after each iteration of the loop in step 3.

 [6]

 (c) Now consider a related problem: to find the shortest path from town start to town

dest in a road network.

 Modify the shortest-distances algorithms to solve this problem. (Hint: You might

find it helpful to write down your ideas before writing down the modified

algorithm itself.)

 [10]

Summer Diet - 7 - End/

Box 4A A road network.

To find the distance of the shortest path from town start to every other town in a road
network:

1. Make town-set contain all towns in the network.
2. Set diststart to 0, and set distt to infinity for all other towns t.
3. While town-set is not empty, repeat:
 3.1. Remove from town-set the town t with least distt.
 3.2. For each road connecting t and another town u,
 such that u is in town-set, repeat:
 3.2.1. Let d = distt + (distance along road from t to u).
 3.2.2. If d < distu, set distu to d.
4. Terminate with the distances distt.

Box 4B Shortest-distances algorithm.

6

1
2

8
3

1
2

6

1
1 4 A

C

D

B

E

A

B C

D E

12

8 12

4
11 3

