

Algorithms & Data Structures (M) Tutorial Exercises

Exercises 13 (Tree ADTs)

 13A The class hierarchy of a Java program represents the subclass
relationship between classes. The class hierarchy can be represented by a
tree.

(a) For any Java program, what is the root vertex of the class hierarchy
tree?

(b) What property of the Java language makes the class hierarchy a tree?

(c) Draw the class hierarchy for the classes in a Java program you have
written.

(d) If Java interfaces are included along with classes, why is the result
no longer a tree?

 13B Implement an ordered tree ADT as a Java class,
LinkedOrderedTree.

 13C Using only the methods of the Tree interface, write a Java method,
traversePreorder, that visits, in pre-order, all of the vertices in a
given tree.

 13D Suppose that the Tree<E> interface is to be extended with the following
method:

public Iterator<E> verticesPreorder ();

// Return an iterator that will visit all elements of this tree,
// in pre-order (i.e., each vertex is visited before its
// children).

Write a Java class, TreePreorderIterator<E>, and use it to
implement this method.

 13F Implement an unordered tree ADT where each vertex’s children are
stored in an array rather than an SLL. What are the time complexities of
the addChild and remove operations?

 13G Consider the linked implementation of an unordered tree. The explicit
link to a vertex’s parent can be removed, at the expense of making the
parent operation slower.

Modify the unordered tree implementation accordingly. What is the time
complexity of the parent operation now?

* 13H Implement a specialized tree ADT for Java expressions. For simplicity,
include only the arithmetic and relational operators, and literals of the
primitive types boolean and int.

Equip your ADT with an evaluate method that returns the result of
evaluating the Java expression. (Hint: Make the method return an object
of class Boolean or Integer.)

** 13J Extend your answer to Exercise 13H with a method, typecheck, that
checks whether an operator is applied to operands of the correct type. For
example, it should reject the trees corresponding to the expressions ‘1 +
false’, ‘false < true’, and ‘6 == true’. Note that the result of an
arithmetic operation is of type double if any of its operands are of type
double, otherwise its result is of type int.

Algorithms & Data Structures (M) Tutorial Exercises

Exercises 14 (Graph ADTs)

 14A Consider the Scottish road network shown below. Find at least three
distinct paths connecting Glasgow and Perth.

 14B Consider the Scottish road network shown above. Draw diagrams
showing how this undirected graph could be represented:

(a) using the edge-set representation

(b) using the adjacency-set representation

(c) using the adjacency-matrix representation (with m = 8, say).

 14C In the edge-set representation of graphs, consider the following
alternatives:

(a) Represent the vertex set by an SLL.

(b) Represent the edge set by a hash-table.

For each alternative, state what algorithms would be used to implement
the graph operations, and determine their time complexities.

 14D In the adjacency-set representation of graphs, consider the following
alternatives:

(a) Represent the adjacency sets by DLLs.

(b) For a directed graph, provide each vertex with two adjacency sets,
one for its in-edges and one for its out-edges.

For each alternative, state what algorithms would be used to implement
the graph operations, and determine their time complexities.

 14E Consider the illustration of the adjacency-matrix representation in the
course notes.

(a) Show the effect of removing vertex V.

(b) Modify the implementation such that removeVertex keeps the
matrix compact by shifting rows and columns. (For example,
removing vertex V would reassign the numbers 3 and 4 to vertices
W and X.) How would this change affect the time complexities of
removeVertex and the other graph operations?

 14F Modify the graph depth-first and breadth-first traversal algorithms to
make them graph searching algorithms. Each should search the graph for
a vertex whose element is equal to target-elem.

 14G Implement the depth-first and breadth-first traversal algorithms in Java,
using the Graph and Digraph interfaces.

 14H Devise an algorithm to determine whether there is a path between two
given vertices, v and w, in a given directed graph. (Hint: This is just a
special case of a graph traversal algorithm.)

Implement your algorithm as a Java method.

Glasgow

Stirling

Perth Dundee A90

A9
M90

M80 M9
M8

Edinburgh

Algorithms & Data Structures (M) Tutorial Exercises

 14J Consider the Scottish road network shown below. Use the shortest-path
algorithm to determine the shortest path from Edinburgh to Dundee.

Glasgow

Stirling

Perth Dundee 60

40
100

50 50
70

Edinburgh

