

Algorithms & Data Structures (M) Tutorial Exercises

Exercises 5 (Abstract Data Types)

 5A The so-called ‘millenium bug’ was a major problem for the software
industry in the late 1990s. In numerous application programs and
databases, each date was represented by a string of six decimal digits: two
digits for the day number, two digits for the month number, and two
digits for the year number. For example, 31 December 1999 was
represented by “311299”, the leading digits “19” of the year number
being implicit. Thus there was no means to represent dates after (or
before) the 1900s.

In principle, the solution was simple: what? In practice, the problem was
enormous: why?

 5B Enhance the Date class in the course notes. Provide sufficient operations
to allow application code to manipulate Date objects in all reasonable
ways – but provide no more operations than necessary.

 5C Consider the String contract in the course notes.

(a) Derive each operation’s time complexity, assuming the array
representation of strings.

(b) With the SLL representation, how is it possible to implement
concat with time complexity O(n), where n is the length of the
first string, i.e., independent of the length of the second string?

 5D A text is a sequence of characters subdivided into lines. One application
of a text is the internal buffer of a text editor.

(a) Design a text ADT suitable to support a text editor. Assume the
usual editing facilities: insertion and deletion of characters, cut,
copy, and paste.

(b) Choose a representation for texts, and implement your ADT in Java.

 5E Design an ADT to represent a time of day. What operations do you need
to provide?

Implement your ADT in Java in at least two different ways. Which
implementation is the easier?

 5F Design an ADT to represent a university course. Assume that a course
has a course code, a course title, at least one instructor, and one or more
teaching assistants. What operations do you need to provide?

Implement your ADT as a Java class.

Algorithms & Data Structures (M) Tutorial Exercises

Exercises 6 (Stack ADTs)

 6A Hand-test the bracket matching algorithm with the following phrases:

(a) ((4+8)*(3-2)

(b) {a,b,c} + {d,e,f}

(c) main(String[] args){print(arg[0]);}

 6B Assuming the array representation of stacks, show the contents of the
array while each of the phrases in Exercise 6A is checked.

 6C Repeat Exercise 6B assuming the SLL representation of stacks.

 6D Consider the following additional requirements for a stack ADT: it
should be possible to obtain a stack’s current size; and it should be
possible to access (but not remove) the element at any given depth d in a
stack. (For example, d = 1 would access the topmost element in the
stack.)

(a) Modify the stack contract accordingly.

(b) Modify the array implementation.

(c) Modify the SLL implementation.

 6E In the array implementation of stacks, an overflow occurs when the stack
size is about to exceed the array length.

(a) Show how to deal with an overflow by throwing an exception.

(b) Show how to deal with an overflow by substituting a longer array.
Copy all the stack elements into a new and longer new array, and
replace the existing array by that new array.

Algorithms & Data Structures (M) Tutorial Exercises

Exercises 7 (Queue ADTs)

 7A In the cyclic-array implementation of queues, make the add method deal
with an overflow by substituting a longer array. It should copy all the
queue elements into a new and longer new array, and replace the existing
array by that new array.

 7B In the ArrayQueue class, show that one of the three instance variables
size, front, and rear can be dropped. Which one? Modify the
implementation accordingly.

 7C Would you implement the queue ADT using a doubly-linked-list?
Explain your answer.

 7D (For those familiar with UNIX.) Outline how a UNIX pipe can be
implemented by a queue.

 7E A keyboard driver is a process (generally provided by the operating
system) that allows the user to enter characters at any speed, without
waiting for the application program to use these characters.

(a) Outline how the keyboard driver can communicate with the
application program via a queue.

(b) Write an algorithm for the keyboard driver. It should ‘echo’ to the
screen each graphic character (visible character or space) entered by
the user. It should simply ignore any control character.

(c) Suppose now that the DELETE character is to cancel the last graphic
character. A sequence of DELETEs is to cancel the same number of
graphic characters. What changes are needed to the keyboard driver,
and to the communication between the keyboard driver and the
application program?

* 7F A doubly-ended queue (or deque) allows elements to be added or
removed at both ends of the queue. In other words, it supports the
following operations in addition to the usual queue operations:
d.addFirst(x) adds x at the front of deque d; d.removeLast()
removes the element at the rear of deque d; d.getLast() retrieves the
element at the rear of deque d.

Write a deque contract in the form of a Java interface named Deque.

Write a linked implementation of a deque as a Java class
LinkedDeque. Make sure that all deque operations have time
complexity O(1).

Algorithms & Data Structures (M) Tutorial Exercises

Exercises 8 (List and Iterator ADTs)

 8A Compare the Stack and Queue ADTs with the List ADT.

(a) Show that the Stack ADT is a special case of the List ADT.
Which list operations correspond to push, pop, and peek?

(b) Show that the Queue ADT is a special case of the List ADT.
Which list operations correspond to addLast, removeFirst,
and getFirst?

 8B Using the List ADT, write the following method:

static List<Person> reorder (

 List<Person> persons) { … }

// Assume that the elements of persons are ordered by name.
// Return a similar list, ordered such that all children (aged
// under 18) come before all adults (aged 18 or over), but
// otherwise preserving the ordering by name.

Assume that each Person object has public instance variables name
and age.

 8C Use an iterator to extend the simple text editor in the course notes with
the following methods: findFirst(s) selects the first line in the text
that has a substring s; findNext() selects the next line in the text that
has the substring s that was most recently supplied as an argument to
findFirst. If there are no further occurrences of s, the selected line is
unchanged. To search the entire text, call findFirst once, then call
findNext as often as necessary.

 8D Suppose that the following operations are to be added to the List
interface. The operation l.contains(x) returns true if and only if
object x is an element of list l. The operation l.indexOf(x) returns the
index of object x in l if it is an element, or –1 otherwise.

(a) Modify the ArrayList class to implement these operations.

(b) Modify the LinkedList class to implement these operations.

 8E Suppose that the following operation is to be added to the List
interface. The operation l.subList(i, j) is to return a new list that
contains all of the elements in l with indices i through j–1.

(a) Modify the ArrayList class to implement this operation.

(b) Modify the LinkedList class to implement this operation.

 8F Modify the ArrayList implementation to deal with the possibility of
an overflow. Copy all the list elements into a new and longer new array,
and replace the existing array by that new array.

 8G Suppose that getFirst, getLast, addFirst, addLast,
removeFirst, and removeLast operations were added to the List
interface.

(a) Modify the ArrayList class to implement these operations.

(b) Modify the LinkedList class to implement these operations.

Modify the data representations if you think fit.

 8H The class java.util.LinkedList represents a list by a DLL, rather
than an SLL. Justify this decision. Show how you would modify the
LinkedList implementation to use a DLL.

