

Algorithms & Data Structures (M) Solutions to Tutorial Exercises

Algorithms & Data Structures (M)

Solutions to Tutorial Exercises

Here are sample solutions to most of the tutorial exercises. For some of the exercises

(especially coding exercises), alternative solutions are possible.

 Attempt each exercise before consulting the sample solution.

Algorithms & Data Structures (M) Solutions to Tutorial Exercises

Solutions to Exercises 1

 1A The GCD of 6 and 9 is 3; the GCD of 12 and 18 is 6; the GCD of 15 and 21 is 3;

the GCD of 11 and 15 is 1.

 1B Using Newton’s algorithm to calculate the square root of a number accurate to

two decimal places, the square root of 4 is 2.00; the square root of 6 is 2.45; the

square root of 8 is 2.83; and the square root of 9 is 3.00.

Method to calculate the square root of a to 2 decimal places:

static float squareRoot (float a) {

 float r = (1 + a)/2;

 while (Math.abs(r*r - a) > 0.01)

 r = (r + a/r)/2;

 return r;

}

If step 2 of the algorithm continued while r
2
 ≠ a, the algorithm would be unlikely

to terminate, since two approximately-computed numbers are unlikely to be

exactly equal.

 1D To find the (real) roots of the general quadratic equation ax
2
 + bx + c = 0:

1. Let d be b
2
 – 4ac.

2. If d > 0:

 2.1. Let r be the square root of d.

 2.2. Terminate with answers (–b + r) / 2a and (–b – r) / 2a.

3. Else, if d = 0:

 3.1. Terminate with answer –b / 2a.

4. Else, if d < 0:

 4.1. Terminate with no answer.

Algorithms & Data Structures (M) Solutions to Tutorial Exercises

Solutions to Exercises 2

 2A In the test case b = 2, n = 11, the simple power algorithm performs 11

multiplications, while the smart power algorithm performs 7 multiplications.

 2B The midpoint algorithm has time complexity O(1).

 2D The matrixAdd method performs n
2
 additions. Its time complexity is O(n

2
).

The matrixMult method performs n
3
 additions and n

3
 multiplications. Its time

complexity is O(n
3
).

 2E To analyze the recursive integer rendering algorithm, count the number of

characters required to render i to base r. If i is positive, the number of characters

is logr i + 1. If i is negative, the number of characters is logr(abs(i)) + 2 (the extra

character being ‘–’). The time complexity is O(log(abs(i))).

 2F To print a given integer i to base r:

1. Set s to the empty string “”.

2. Set p to the absolute value of i.

3. Repeat the following until p = 0:

 3.1. Let d be the digit corresponding to (p modulo r).

 3.2. Insert d at the front of s.

 3.3. Divide p by r.

4. If i < 0, insert ‘–’ at the front of s.

5. Print s.

6. Terminate.

This algorithm’s time complexity is O(log(abs(i))).

 2G The factorial algorithm (recursive version) performs n multiplications. Its time

complexity is O(n).

Method to calculate the factorial of n (recursive version):

static int factorial (int n) {

 if (n == 0)

 return 1;

 else

 return n * factorial(n-1);

}

To calculate the factorial of n (non-recursive version):

1. Set f to 1.

2. For i = 1, …, n, repeat:

 2.1. Multiply f by i.

3. Terminate with answer f.

Method to calculate the factorial of n (non-recursive version):

static int factorial (int n) {

 int f = 1;

 for (int i = 1; i <= n; i++)

 f *= i;

 return f;

}

Algorithms & Data Structures (M) Solutions to Tutorial Exercises

 2H Outline of program:

static void moveTower (int n,

 int source, int dest) {

 if (n == 1)

 moveDisk(source, dest);

 else {

 int spare = 6 - source - dest;

 moveTower(n-1, source, spare);

 moveDisk(source, dest);

 moveTower(n-1, spare, dest);

 }

}

static void moveDisk (int source, int dest) {

 System.out.println("Move disk from " + source

 + " to " + dest);

}

To make the program count the moves, modify moveTower to return the

required number of moves, as follows:

static int moveTower (int n,

 int source, int dest) {

 if (n == 1) {

 moveDisk(source, dest);

 return 1;

 } else {

 int spare = 6 - source - dest;

 int moves1 = moveTower(n-1, source, spare);

 moveDisk(source, dest);

 int moves2 = moveTower(n-1, spare, dest);

 return moves1 + 1 + moves2;

 }

}

Algorithms & Data Structures (M) Solutions to Tutorial Exercises

Solutions to Exercises 3

 3A To test whether the array a[left…right] is sorted in ascending order:

1. For p = left+1, …, right, repeat:

 1.1. If a[p–1] is greater than a[p], terminate with answer false.

2. Terminate with answer true.

The number of comparisons is between 1 and n–1, i.e., n/2 on average.

Method to test whether the array a[left…right] is sorted in ascending order:

static boolean isSorted (Comparable[] a,

 int left, int right) {

 for (int p = left+1; p <= right; p++) {

 if (a[p-1].compareTo(a[p]) > 0)

 return false;

 }

 return true;

}

 3B To test whether the character array a[left…right] is a palindrome:

1. Set l to left, and set r to right.

2. While l < r, repeat:

 2.1. If a[l]  a[r], terminate with answer false.

 2.2. Increment l and decrement r.

3. Terminate with answer true.

The number of comparisons is between 1 and n/2, i.e., about n/4 on average.

Therefore the algorithm’s time complexity is O(n). Its space complexity is O(1).

Method to test whether the character array a[left…right] is a palindrome:

static boolean isPalindrome (char[] a,

 int left, int right) {

 int l = left, r = right;

 while (l < r) {

 if (a[l] != a[r]) return false;

 l++; r--;

 }

 return true;

}

 3C To test whether the character array a[left…right] is a palindrome, ignoring

spaces and punctuation:

1. Set l to left, and set r to right.

2. While l < r, repeat:

 2.1. If a[l] is a space or punctuation:

 2.1.1. Increment l.

 2.2. Else, if a[r] is a space or punctuation:

 2.2.1. Decrement r.

 2.3. Else (if neither a[l] nor a[r] is a space or punctuation):

 2.3.1. If a[l]  a[r], terminate with answer false.

 2.3.2. Increment l and decrement r.

3. Terminate with answer true.

Algorithms & Data Structures (M) Solutions to Tutorial Exercises

 3D To delete val from the unsorted array a[left…right]:

1. For p = left, …, right, repeat:

 1.1. If val is equal to a[p]:

 1.1.1. Copy a[p+1…right] into a[p…right–1].

 1.1.2. Make a[right] unoccupied.

 1.1.3. Terminate.

2. Terminate.

To delete val from the sorted array a[left…right]:

1. For p = left, …, right, repeat:

 1.1. If val is equal to a[p]:

 1.1.1. Copy a[p+1…right] into a[p…right–1].

 1.1.2. Make a[right] unoccupied.

 1.1.3. Terminate.

 1.2. Else, if val is less than a[p], terminate.

2. Terminate.

To insert val in the sorted array a[left…right]:

1. For p = right, …, left, repeat:

 1.1. If val is less than a[p]:

 1.1.1. Copy a[p] into a[p+1].

 1.2. Else (if val is greater than or equal to a[p]):

 1.2.1. Copy val into a[p+1].

 1.2.2. Terminate.

2. Copy val into a[left].

3. Terminate.

(Note: This algorithm overwrites a[right+1], assuming that it exists.)

To find the least component of the unsorted array a[left…right]:

1. Set least to a[left].

2. For p = left+1, …, right, repeat:

 2.1. If a[p] is less than least, set least to a[p].

2. Terminate with answer least.

All these algorithms have time complexity O(n).

Algorithms & Data Structures (M) Solutions to Tutorial Exercises

 3E The phone-book should be sorted by name, allowing the most frequently-called

method searchByName to be implemented using binary search. Methods:

static String searchByName

 (Contact[] book,

 String targetName) {

 int l = 0, r = book.length - 1;

 while (l <= r) {

 int m = (l + r)/2;

 int comp =

 targetName.compareTo(book[m].name);

 if (comp == 0)

 return book[m].number;

 else if (comp < 0)

 r = m - 1;

 else // comp > 0

 l = m + 1;

 }

 return null;

}

static String[] searchByNumber

 (Contact[] book,

 String targetNumber) {

 String[] names1 = new String[book.length];

 int count = 0;

 for (int p = 0; p < book.length; p++) {

 if (targetNumber.equals(book[p].number))

 names1[count++] = book[p].name;

 }

 if (count == 0)

 return null;

 else {

 String[] names2 = new String[count];

 System.arraycopy(names1, 0, names2, 0,

 count);

 return names2;

 }

}

Algorithms & Data Structures (M) Solutions to Tutorial Exercises

 3F To compute the union of s1[l1…r1] and s2[l2…r2] in s3[l3…r3]:

1. Set i to l1, set j to l2, and set k to l3.

2. While i  r1 and j  r2, repeat:

 2.1. If s1[i] is equal to s2[j]:

 2.1.1. Copy s1[i] into s3[k], then increment i, j, and k.

 2.2. Else, if s1[i] is less than s2[j]:

 2.2.1. Copy s1[i] into s3[k], then increment i and k.

 2.3. Else (if s1[i] is greater than s2[j]):

 2.3.1. Copy s2[j] into s3[k], then increment j and k.

3. If i  r1, copy s1[i…r1] into s3[k…r3].

4. If j  r2, copy s2[j…r2] into s3[k…r3].

5. Terminate.

To compute the intersection of s1[l1…r1] and s2[l2…r2] in s3[l3…r3]:

1. Set i to l1, set j to l2, and set k to l.

2. While i  r1 and j  r2, repeat:

 2.1. If s1[i] is equal to s2[j]:

 2.1.1. Copy s1[i] into s3[k], then increment i, j, and k.

 2.2. Else, if s1[i] is less than s2[j]:

 2.2.1. Increment i.

 2.3. Else (if s1[i] is greater than s2[j]):

 2.3.1. Increment j.

3. Terminate.

 3G To read values from the unsorted file f into a sorted array a[0…] (version 1):

1. Set m to 0.

2. While not at end of file f, repeat:

 2.1. Read val from f.

 2.2. Copy val into a[m].

 2.3. Increment m.

3. Sort a[0…m–1].

4. Terminate.

Step 2 performs 0 comparisons. If step 3 uses (say) selection sort, it performs

about n
2
/2 comparisons. Version 1 therefore performs about n

2
/2 comparisons.

To read values from the unsorted file f into a sorted array a[0…] (version 2):

1. Set m to 0.

2. While not at end of file f, repeat:

 2.1. Read value val from f.

 2.2. Insert val in the sorted array a[0…m–1].

 2.3. Increment m.

3. Terminate.

Step 2.2 would use the sorted-array insertion algorithm of Exercise 3D(c). This

performs about m/2 comparisons. Since m ranges from 0 to n–1, the total number

of comparisons is 0 + 1/2 + ... + (n–1)/2 = n(n–1)/4  n
2
/4.

Both versions have time complexity O(n
2
), but version 2 is about twice as fast as

version 1.

Algorithms & Data Structures (M) Solutions to Tutorial Exercises

 3H To sort an array of colors a[left…right] into the order red–white–blue:

1. Set r to left, set w to left, and set b to left.

2. While b  right, repeat:

 2.1. If a[b] is blue:

 2.1.1. Increment b.

 2.2. If a[b] is white:

 2.2.1. If b > w, swap a[b] with a[w].

 2.2.2. Increment w and b.

 2.3. If a[b] is red:

 2.3.1. If b > r, swap a[b] with a[r].

 2.3.2. If b > w, swap a[b] with a[w].

 2.3.3. Increment r, w, and b.

3. Terminate.

The loop invariant is:

This algorithm performs 1 color comparison and at most 4 copies per iteration,

i.e., n color comparisons and at most 4n copies in total. Its time complexity is

O(n).

 3J Let n1 = r1 – l1 + 1, n2 = r2 – l2 + 1, and n = n1 + n2.

To copy all values from unsorted arrays a1[l1…r1] and a2[l2…r2] into sorted

array a3[l3…r3] (version 1):

1. Concatenate a1[l1…r1] and a2[l2…r2] into a3[l3…r3].

2. Sort a3[l3…r3].

3. Terminate.

Step 1 performs 0 comparisons. If step 2 uses (say) selection sort, it performs

about n
2
/2 comparisons. The total number of comparisons is therefore about n

2
/2

= (n1 + n2)
2
/2 = n1

2
/2 + n2

2
/2 + n1n2.

To copy all values from unsorted arrays a1[l1…r1] and a2[l2…r2] into sorted

array a3[l3…r3] (version 2):

1. Sort a1[l1…r1].

2. Sort a2[l2…r2].

3. Merge a1[l1…r1] and a2[l2…r2] into a3[l3…r3].

4. Terminate.

If steps 1 and 2 use selection sort, they perform about n1
2
/2 and n2

2
/2

comparisons, respectively. Step 3 performs about n = n1 + n2 comparisons. The

total number of comparisons is therefore about n1
2
/2 + n2

2
/2 + n1 + n2.

For all but small values of n1 and n2, n1 + n2 < n1n2. Therefore version 2 is faster

than version 1.

red still to be
considered

a

r–1 left …

white

w–1 r …

blue

b–1 w … right b …

Algorithms & Data Structures (M) Solutions to Tutorial Exercises

 3K To find the position of the leftmost subarray of a[0…n–1] that matches b[0…m–

1] (assuming that m  n):

1. For p = 0, …, n–m, repeat:

 1.1. If a[p…p+m–1] matches b[0…m–1], terminate with answer p.

2. Terminate with answer none.

To determine whether a[p…p+m–1] matches b[0…m–1]:

1. For d = 0, …, m–1, repeat:

 1.1. If a[p+d] is unequal to b[d], terminate with answer false.

2. Terminate with answer true.

The auxiliary algorithm performs between 1 and m comparisons, i.e., (m+1)/2

comparisons on average. The main algorithm performs between 1 and n

iterations, i.e., (n+1)/2 iterations on average. Therefore it performs (m+1)(n+1)/4

comparisons on average. Its time complexity is O(mn).

Algorithms & Data Structures (M) Solutions to Tutorial Exercises

Solutions to Exercises 4

 4A To access the kth element of the SLL headed by first, counting the first element

as 0:

1. Set curr to first.

2. Repeat k times:

 2.1. If curr is null, terminate with answer none.

 2.2. Set curr to node curr’s successor.

3. Terminate with answer curr.

This algorithm follows up to k links. Its time complexity is O(k).

 4B To access the kth element of the DLL headed by (first, last), counting the first

element as 0:

1. Let n be the length of the DLL headed by (first, last).

2. If 2k < n:

 2.1. Set curr to first.

 2.2. Repeat k times:

 2.2.1. If curr is null, terminate with answer none.

 2.2.2. Set curr to node curr’s successor.

3. Else, if 2k  n:

 2.1. Set curr to last.

 2.2. Repeat n–1–k times:

 2.2.1. If curr is null, terminate with answer none.

 2.2.2. Set curr to node curr’s predecessor.

4. Terminate with answer curr.

If the DLL’s length is immediately available, step 1 follows 0 links. Step 2

follows k links, while step 3 follows (n–1–k) links. This algorithm’s time

complexity is O(max(n, n–k)).

If the DLL’s length is not immediately available, step 1 would have to follow n

links, so it would be better just to mimic the algorithm of Exercise 4A.

 4C To reverse the elements of the SLL headed by first:

1. Set curr to first and set pred to null.

2. While curr is not null, repeat:

 2.1. Let succ be curr’s successor.

 2.2. Set curr’s successor to pred.

 2.3. Set pred to curr.

 2.4. Set curr to succ.

3. Set first to pred.

4. Terminate.

This algorithm follows n links, so its time complexity is O(n). Its space

complexity is O(1).

Algorithms & Data Structures (M) Solutions to Tutorial Exercises

 4D To reverse the elements of the DLL headed by (first, last):

1. Set curr to first.

2. While curr is not null, repeat:

 2.1. Let succ be curr’s successor.

 2.2. Swap curr’s predecessor and successor links.

 2.2. Set curr to succ.

3. Swap first and last.

4. Terminate.

This algorithm follows n links, so its time complexity is O(n). Its space

complexity is O(1).

 4E To test whether the SLL headed by first is a palindrome:

1. Let n be the length of the SLL headed by first.

2. Copy characters in reverse order from the first n/2 nodes of the SLL

 headed by first into another SLL headed by prefix, and let suffix be a

 link to the next node of the SLL headed by first.

3. If n is odd, set suffix to suffix’s successor.

4. Let matched be the result of testing whether the SLL headed by prefix

 matches the SLL headed by suffix.

5. Terminate with answer matched.

To copy characters in reverse order from the first k nodes of the SLL headed by

first into another SLL headed by prefix, and let suffix be a link to the next node

of the SLL headed by first:

1. Set curr to first, and set prefix to null.

2. Repeat k times:

 2.1. Insert curr’s character before the first node of the SLL

 headed by prefix.

 2.2. Set curr to curr’s successor.

3. Set suffix to curr.

4. Terminate with answers prefix and suffix.

To test whether the SLL headed by prefix matches the SLL headed by suffix:

1. Set p to prefix, and set s to suffix.

2. While p and s are not null, repeat:

 2.1. If node p’s character  node s’s character, terminate with answer

 false.

 2.2. Set p to node p’s successor, and set s to node s’s successor.

3. Terminate with answer true.

The main algorithm performs n/2 character comparisons. Step 1 follows either 0

or n links, depending on whether the SLL’s length is immediately available or

not. Step 2 follows n/2 links. Step 4 follows n/2 links in each of two SLLs. In

total, the algorithm follows either 3n/2 or 5n/2 links.

 4G If a sorted DLL contains words in alphabetical order, it would be advantageous

to search the DLL right-to-left when the target word’s initial letter is in the

second half of the alphabet.

Algorithms & Data Structures (M) Solutions to Tutorial Exercises

 4H To find which if any node of the unsorted DLL headed by (first, last) contains an

element equal to target (version that searches simultaneously from both ends):

1. If first and last are null, terminate with answer none.

2. Set p to first, and set s to last.

3. Repeat:

 3.1. If target is equal to node p’s element, terminate with answer p.

 3.2. If target is equal to node s’s element, terminate with answer s.

 3.3. If p and s are the same node, or node p is node s’s predecessor,

 terminate with answer none.

 3.4. Set p to node p’s successor, and set s to node s’s predecessor.

On a successful search, this algorithm performs between 1 and n comparisons,

i.e., (n+1)/2 comparisons on average. On an unsuccessful search, it performs n

comparisons. Thus it is no better than the original unsorted DLL linear search

algorithm.

This algorithm’s time complexity is O(n).

 4J To find which if any node of the unsorted SLL headed by first contains an

element equal to target (version that moves the node to the front of the SLL):

1. Set pred to null.

2. For each node curr of the SLL headed by first, repeat:

 2.1. If target is equal to curr’s element:

 2.1.1. If pred is not null:

 2.1.1.1. Set pred’s successor to curr’s successor.

 2.1.1.2. Set curr’s successor to first.

 2.1.1.3. Set first to curr.

 2.1.2. Terminate with answer curr.

 2.2. Set pred to curr.

3. Terminate with answer none.

If the same x is searched for 50 times out of the next 100 searches, x will be the

first or second element in the SLL for most of the time, so each of the 50

searches for x will perform only 1 or 2 comparisons. Each of the remaining 50

searches (if successful) will perform about n/2 comparisons on average. The total

number of comparisons for the 100 searches will be about 100 + 25n.

If we use the original unsorted SLL search algorithm, each of the 100 searches

(if successful) will perform about n/2 comparisons on average. The total number

of comparisons will be about 50n. Thus the above algorithm is faster for all but

small values of n.

Algorithms & Data Structures (M) Solutions to Tutorial Exercises

 4K To delete the node containing element elem in the SLL headed by first:

1. Set pred to null.

2. For each node curr of the SLL headed by first, repeat:

 2.1. If target is equal to curr’s element:

 2.1.1. Let succ be curr’s successor.

 2.1.2. If pred is null, set first to succ.

 2.1.3. If pred is not null, set pred’s successor to succ.

 2.1.4. Terminate.

 2.2. Set pred to curr.

3. Terminate.

To delete the node containing element elem in the DLL headed by (first, last):

1. For each node curr of the DLL headed by (first, last), repeat:

 2.1. If target is equal to curr’s element:

 2.1.1. Let pred be curr’s predecessor, and let succ be curr’s

 successor.

 2.1.2. If pred is null, set first to succ.

 2.1.3. If pred is not null, set pred’s successor to succ.

 2.1.4. If succ is null, set last to pred.

 2.1.5. If succ is not null, set succ’s predecessor to pred.

 2.1.6. Terminate.

3. Terminate.

 4L To insert elem after node pred in the SLL headed by first:

1. Let succ be pred’s successor.

2. Make ins a link to a newly-created node with element elem and

 successor succ.

3. Set pred’s successor to ins.

4. Terminate.

(Note: If we wish to insert elem before the SLL’s first node, pred will be the

dummy node.)

To delete node del in the nonempty SLL headed by first:

1. Let succ be del’s successor.

2. Let pred be del’s predecessor.

3. Set pred’s successor to succ.

4. Terminate.

(Note: Like the corresponding step of the SLL deletion algorithm, step 2 must

find the predecessor by traversing the SLL from its first node.)

The above algorithms are neater than the original algorithms, but they have the

same time complexities, O(1) and O(n) respectively.

