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Solutions to Exercises 13 

 13A The class hierarchy of a Java program, reflecting the subclass relationship 

between classes, can be represented by a tree. 

(a) The root vertex of the class hierarchy tree corresponds to the Object class. 

(b) The class hierarchy is a tree because Java enforces single inheritance, i.e., 

each class (except Object) has exactly one superclass. 
 
 

(d) If Java interfaces are included, the ‘hierarchy’ is no longer a tree because a 

class may implement any number of interfaces. 



 

Algorithms & Data Structures (M) Solutions to Exercises 

 13B Here is an outline of an implementation of ordered trees: 

public class LinkedOrderedTree<E> implements Tree<E> { 

 // Each LinkedOrderedTree object is an ordered tree whose  

 // elements are of type E. 

 // This tree is represented by a reference to its root vertex (root), which is  

 // null if the tree is empty. Each vertex contains links to its first and last  

 // children, to its parent, and to its next sibling. 

 private MyVertex root; 

 //////////// Constructor //////////// 

 public LinkedOrderedTree () { 

 // Construct a tree, initially empty. 

  root = null; 

 } 

 //////////// Accessors //////////// 

 … 

 //////////// Transformers //////////// 

 public void makeRoot (E elem) { 

 // Make this tree consist of just a root vertex containing element elem. 

  root = new MyVertex(elem); 

 } 

 public Tree.Vertex addChild (Tree.Vertex v,  

       E elem) {  

 // Add a new vertex containing element elem as the last child of v in  

 // this tree, and return the new vertex. The new vertex has no children of its  

 // own. 

  MyVertex parent = (MyVertex)v; 

  MyVertex newChild = new MyVertex(elem); 

  newChild.parent = parent; 

  if (parent.firstChild == null) 

   parent.firstChild = newChild; 

  else 

   parent.lastChild.nextSib = newChild; 

  parent.lastChild = newChild; 

  return newChild; 

 } 

 public void remove (Tree.Vertex v) { 

 // Remove v from this tree, together with all its descendants.  

  if (v == root) { 

   root = null; 

   return; 

  } 

  MyVertex parent = v.parent; 

  if (v == parent.firstChild) { 

   parent.firstChild = v.nextSib; 

   if (parent.firstChild == null) 

    parent.lastChild = null; 

  } else { 

   MyVertex prevSib = parent.firstChild; 

   while (prevSib.nextSib != v) 

    prevSib = prevSib.nextSib; 

   prevSib.nextSib = v.nextSib; 

   if (prevSib.nextSib == null) 

    parent.lastChild = prevSib; 

  } 
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 } 

 //////////// Iterator //////////// 

 … 

 //////////// Inner class //////////// 

 private static class MyVertex  

       implements Tree.Vertex { 

  // Each MyVertex object is a vertex of an ordered tree,  

  // and contains a single element. 

  // This vertex consists of an element (element), a link to its first  

  // and last children (firstChild, lastChild) a link to its parent  

  // (parent), and a link to its next sibling (nextSib). 

  private E element; 

  private MyVertex firstChild, lastChild,  

    parent, nextSib; 

  … 

 } 

} 
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 13C The following methods visit, in pre-order, all of the vertices in a given tree: 

static void traversePreorder (Tree<E> tree) { 

 if (tree.root() != null) 

  traverseSubtreePreorder(tree, tree.root()); 

} 

static void traverseSubtreePreorder ( 

      Tree<E> tree, 

      Tree<E>.Vertex top) { 

 …  // Visit top. 

 Iterator<Tree<E>.Vertex> children =  

   tree.children(top); 

 while (children.hasNext()) { 

  Tree<E>.Vertex child = children.next(); 

  traverseSubtreePreorder(tree, child); 

 } 

} 

 13E To visit the vertices of tree in depth order: 

1. Make vertex-queue contain only the root vertex of tree. 

2. While vertex-queue is non-empty, repeat: 

 2.1. Remove the front element of vertex-queue into v. 

 2.2. Visit v. 

 2.3. Add all the children of v to the rear of vertex-queue. 

3. Terminate. 

Implementation (using the java.util.LinkedList representation of a 

queue): 

static void traverseDepthOrder (Tree<E> tree) { 

 Queue<Tree<E>.Vertex> vertexQueue =  

   new LinkedList<Tree<E>.Vertex>(); 

 vertexQueue.addLast(tree.root()); 

 while (! vertexQueue.isEmpty()) { 

  Tree<E>.Vertex v =  

    vertexQueue.removeFirst(); 

  …  // Visit v. 

  Iterator<Tree<E>.Vertex> children = 

    tree.children(v); 

  while (children.hasNext()) { 

   Tree.Vertex child = children.next(); 

   nodeQueue.addLast(child); 

  } 

 } 

} 
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 13F Here is an outline of an implementation of unordered trees using arrays: 

public class ArrayUnorderedTree<E>  

  implements Tree<E> { 

 // Each ArrayUnorderedTree<E> object is an unordered tree whose  

 // elements are of type E. 

 // This tree is represented by a reference to its root vertex (root), which is  

 // null if the tree is empty. Each tree vertex contains an array of children. 

 private MyVertex root; 

 //////////// Constructor //////////// 

 public ArrayUnorderedTree () { 

 // Construct a tree, initially empty. 

  root = null; 

 } 

 //////////// Accessors //////////// 

 public Tree.Vertex root () { 

 // Return the root vertex of this tree, or null if this tree is empty. 

  return root; 

 } 

 public Tree.Vertex parent (Tree<E>.Vertex v) { 

 // Return the parent of v in this tree, or null if v is the root vertex. 

  return v.parent; 

 } 

 public int childCount (Tree<E>.Vertex v) { 

 // Return the number of children of v in this tree. 

  MyVertex parent = (MyVertex)v; 

  return parent.childCount; 

 } 

 //////////// Transformers //////////// 

 public void makeRoot (E elem) { 

 // Make this tree consist of just a root vertex containing element elem. 

  root = new MyVertex(elem); 

 } 

 public Tree.Vertex addChild (Tree<E>.Vertex v,  

       E elem) { 

 // Add a new vertex containing element elem as a child of v in this  

 // tree, and return the new vertex. The new vertex has no children of its  

 // own. 

  MyVertex parent = (MyVertex)v; 

  MyVertex newChild = new MyVertex(elem); 

  newChild.parent = parent; 

  if (parent.childCount == parent.children.length) 

   parent.expand(); 

  parent.children[parent.childCount++] = newChild; 

  return newChild; 

 } 

 public void remove (Tree<E>.Vertex v) { 

 // Remove v from this tree, together with all its descendants.  

  if (v == root) { 

   root = null; 

   return; 

  } 

  MyVertex parent = v.parent; 

  parent.childCount--; 
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  int i = 0; 

  while (parent.children[i] != v)  i++; 

  while (i < parent.childCount) { 

   parent.children[i] = parent.children[i+1]; 

   i++; 

  } 

 } 

 //////////// Iterator //////////// 

 … 

 //////////// Inner class //////////// 

 private static class MyVertex  

       implements Tree<E>.Vertex { 

  // Each MyVertex object is a vertex of an unordered tree,  

  // and contains a single element. 

  // This tree vertex consists of an element (element), a link to its  

  // parent (parent), an array of links to its children (children), and  

  // the number of children (childCount). 

  private E element; 

  private MyVertex parent; 

  private MyVertex[] children; 

  private int childCount; 

  private MyVertex (E elem) { 

  // Construct a tree vertex, containing element elem, that has no parent   

  // and no children. 

   this.element = elem; 

   this.parent = null; 

   this.children = new MyVertex[4]; 

   this.childCount = 0; 

  } 

  … 

  public void expand () { 

  // Increase the length of this vertex’s array of links to children. 

   … 

  } 

 } 

} 

The addChild operations has time complexity O(1). If c is the maximum 

number of children per vertex, the remove operation has time complexity O(c). 
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 13G In the linked (or array) implementation of an unordered tree, the explicit 

reference to a vertex’s parent could be removed, but the parent operation must 

then search the tree to find the vertex’s parent. This search can be done by a pre-

order traversal, terminating when the parent is found: 

public Tree<E>.Vertex parent (Tree<E>.Vertex v) { 

// Return the parent of v in this tree, or null if v is the root  

// vertex. 

 if (root == v) 

  return null; 

 else 

  return findParent(v, root); 

} 

private Tree<E>.Vertex findParent ( 

      Tree<E>.Vertex v, 

      Tree<E>.Vertex ancestor) { 

// Return the parent of v in this tree, assuming that ancestor  

// is a parent or grandparent or … of v. 

 Iterator<Tree<E>.Vertex> children =  

   children(ancestor); 

 while (children.hasNext()) { 

  Tree<E>.Vertex child = children.next(); 

  if (child == v)  return ancestor;   

  Tree<E>.Vertex parent =  

    findParent(v, child); 

  if (parent != null)  return parent; 

 } 

 return null; 

} 

The parent operation now has time complexity O(n), as does any other 

operation that must call the parent operation. 
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Solutions to Exercises 14 

 14A Paths between Glasgow and Perth: 

«Glasgow, Stirling, Perth» 

« Glasgow, Edinburgh, Perth » 

« Glasgow, Edinburgh, Stirling, Perth » 
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 14B Edge-set representation of the Scottish road network: 

 

 

 

 

 

 

 

 

 

 

 

Adjacency-set representation of the Scottish road network (noting that edge 

nodes are duplicated): 

 

 

 

 

 

 

 

 

 

Adjacency-matrix representation of the Scottish road network (with m = 8) 

(noting that two matrix cells point to each edge node): 

 

 

 

 

 

 

 

 

(Here, for the sake of clarity, the edge objects are shown as containing vertex 

position numbers. In actual fact they contain links to the corresponding vertex 

objects.) 
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 14C In the edge-set representation of graphs, we can represent the vertex set by a SLL 

(rather than a DLL). The removeEdge operation then has to use the SLL 

deletion algorithm, which is O(ne), where ne is the number of edges. The 

following table summarizes the algorithms and their time complexities: 

Operation Algorithm Time complexity 

containsEdge linear search of edge-set DLL O(ne) 

addVertex insertion at front of vertex-set DLL O(1) 

addEdge insertion at front of edge-set SLL O(1) 

removeVertex deletion in vertex-set DLL, plus multiple 

deletions in edge-set SLL 

O(ne) 

removeEdge deletion in edge-set SLL O(ne) 

Alternatively we can represent the vertex set by a hash-table with elements as 

keys (rather than by a DLL). The addVertex and removeVertex operations 

then use (more or less) the standard hash-table insertion and deletion algorithms. 

The following table summarizes the algorithms and their time complexities, 

where n is the number of vertices: 

Operation Algorithm Time complexity 

containsEdge linear search of edge-set DLL O(ne) 

addVertex insertion in vertex-set hash table O(1) best 

O(n) worst 

addEdge insertion at front of edge-set DLL O(1) 

removeVertex deletion in vertex-set hash table, plus 

multiple deletions in edge-set DLL 

O(ne) best 

O(n+ne) worst 

removeEdge deletion in edge-set DLL O(1) 
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 14D In the adjacency-set representation of graphs, we can represent the adjacency sets 

by DLLs (rather than SLLs). The removeEdge operation then uses DLL 

deletion, which is faster. The following table summarizes the algorithms and 

their time complexities, where ne is the number of edges and d is the maximum 

degree of any vertex: 

Operation Algorithm Time complexity 

containsEdge linear search of adjacency-set DLL O(d) 

addVertex insertion at front of vertex-set DLL O(1) 

addEdge insertion at front of adjacency-set DLL O(1) 

removeVertex deletion in vertex-set DLL, plus traversal of 

all adjacency-set DLLs to find and delete 

connecting edges 

O(ne) 

removeEdge deletion in adjacency-set DLL O(1) 

Alternatively we can provide each vertex with an adjacency set for its in-edges 

(as well as one for its out-edges). However, we must continue to ensure that each 

edge is represented by a single Edge object. So we superimpose the in-edge 

SLLs on the out-edge SLLs, with each Edge object containing a link to the next 

in-edge as well as a link to the next out-edge. The removeVertex operation 

must delete all in-edges and out-edges, which is tricky because each in-edge 

must also be deleted from the out-edge SLL that contains it, and vice versa. The 

following table summarizes the algorithms and their time complexities: 

Operation Algorithm Time complexity 

containsEdge linear search of out-edges (or in-edges) 

SLL 

O(d) 

addVertex insertion at front of vertex-set DLL O(1) 

addEdge insertion at front of in-edges and out-edges 

SLLs 

O(1) 

removeVertex deletion in vertex-set DLL, plus deletion of 

all in-edges and out-edges 

O(ne) 

removeEdge deletion in adjacency-set SLL O(d) 
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 14E Starting from the adjacency-matrix representation of a directed graph in the 

course notes, the effect of removing vertex V is shown below. The matrix is no 

longer compact: position numbers 0, 1, 2, 4, and 5 are used, but not position 

number 3. 

 

 

 

 

 

 

 

 

 

To keep the matrix compact, the implementation would have to be modified as 

follows. Whenever the vertex with position number p is removed, decrement the 

position numbers of vertices p+1…n (e.g., vertices W and X above). Shift these 

vertices up by one row, and shift the corresponding columns in the matrix left by 

one column. Also adjust every edge whose source’s and/or destination’s position 

number has changed. 

The effect on time complexities of the graph operations is shown in the table 

below. The addVertex operation is now trivial and O(1), but the 

removeVertex operation now entails shifting of both rows and columns in the 

matrix. 

Operation Algorithm Time complexity 

containsEdge matrix indexing O(1) 

addVertex trivial O(1) 

addEdge matrix indexing O(1) 

removeVertex deleting a matrix row and column O(m2) 

removeEdge matrix indexing O(1) 
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 14F Depth-first and breadth-first graph search algorithms: 

To find which (if any) vertex of directed graph g contains an element equal to 

target-elem, searching in depth-first order and starting at vertex start: 

1. Make vertex-stack contain only vertex start, and mark start as reached. 

2. While vertex-stack is not empty, repeat: 

 2.1. Remove the top element of vertex-stack into v. 

 2.2. If v’s element is equal to target-elem: 

  2.2.1. Terminate with answer v. 

 2.3. For each unreached successor w of vertex v, repeat: 

  2.3.1. Add w to vertex-stack, and mark w as reached. 

3. Terminate with answer none. 

To find which (if any) vertex of directed graph g contains an element equal to 

target-elem, searching in breadth-first order and starting at vertex start: 

1. Make vertex-queue contain only vertex start, and mark start as reached. 

2. While vertex-queue is not empty, repeat: 

 2.1. Remove the front element of vertex-queue into v. 

 2.2. If v’s element is equal to target-elem: 

  2.2.1. Terminate with answer v. 

 2.3. For each unreached successor w of vertex v, repeat: 

  2.3.1. Add w to vertex-queue, and mark w as reached. 

3. Terminate with answer none. 
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 14G Implementations of the graph traversal algorithms are shown below. These 

implementations use sets to record which vertices have been marked during the 

traversal. 

static void traverseDepthFirst (Digraph<E,A> g, 

      Graph<E,A>.Vertex start) { 

 Stack<Graph<E,A>.Vertex> vertexStack =  

   new Stack<Graph<E,A>.Vertex>(); 

 vertexStack.addLast(start); 

 Set<Graph<E,A>.Vertex> marked =  

   new HashSet<Graph<E,A>.Vertex>(); 

 marked.add(start); 

 while (! vertexStack.empty()) { 

  Graph<E,A>.Vertex v = vertexStack.pop(); 

  …  // Visit vertex v. 

  Iterator<Graph<E,A>.Vertex> successors =  

    g.successors(v); 

  while (successors.hasNext()) { 

   Graph<E,A>.Vertex w = successors.next(); 

   if (! marked.contains(w)) { 

    vertexStack.push(w); 

    marked.add(w); 

   } 

  } 

 } 

} 

static void traverseBreadthFirst (Digraph<E,A> g, 

      Graph<E,A>.Vertex start) { 

 Queue<Graph<E,A>.Vertex> vertexQueue =  

   new LinkedList<Graph<E,A>.Vertex>(); 

 vertexQueue.addLast(start); 

 Set<Graph<E,A>.Vertex> marked =  

   new HashSet<Graph<E,A>.Vertex>(); 

 marked.add(start); 

 while (! vertexQueue.isEmpty()) { 

  Graph<E,A>.Vertex v = vertexQueue.removeFirst(); 

  …  // Visit vertex v. 

  Iterator<Graph<E,A>.Vertex> successors =  

    g.successors(v); 

  while (successors.hasNext()) { 

   Graph<E,A>.Vertex w = successors.next(); 

   if (! marked.contains(w)) { 

    vertexQueue.addLast(w); 

    marked.add(w); 

   } 

  } 

 } 

} 
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 14H The following algorithm determines whether there is a path between two given 

vertices in a directed graph, using a variant of the breadth-first graph search 

algorithm. (A variant of the depth-first graph search algorithm would also be 

suitable.) 

To determine whether directed graph g contains a path from vertex start to 

vertex finish: 

1. Make vertex-queue contain only vertex start, and mark start as reached. 

2. While vertex-queue is not empty, repeat: 

 2.1. Remove the front element of vertex-queue into v. 

 2.2. If v = finish: 

  2.2.1. Terminate with answer true. 

 2.3. For each unreached successor w of vertex v, repeat: 

  2.3.1. Add w to vertex-queue, and mark w as reached. 

3. Terminate with answer false. 

Here is a possible implementation: 

static boolean containsPath (Digraph<E,A> g, 

      Graph<E,A>.Vertex start,  

      Graph<E,A>.Vertex finish) { 

 Stack<Graph<E,A>.Vertex> vertexStack =  

   new Stack<Graph<E,A>.Vertex>(); 

 vertexStack.push(start); 

 Set<Graph<E,A>.Vertex> marked =  

   new HashSet<Graph<E,A>.Vertex>(); 

 marked.add(start); 

 while (! vertexStack.empty()) { 

  Graph<E,A>.Vertex v = vertexStack.pop(); 

  if (v == finish)  return true; 

  Iterator<Graph<E,A>.Vertex> successors =  

    g.successors(v); 

  while (successors.hasNext()) { 

   Graph<E,A>.Vertex w = successors.next(); 

   if (! marked.contains(w)) { 

    vertexStack.push(w); 

    marked.add(w); 

   } 

  } 

 } 

 return false; 

} 

 14J Shortest path from Ed(inburgh) to Du(ndee): 

Du Ed Gl Pe St places 

none,∞ none,0 none,∞ none,∞ none,∞ {Du,Ed,Gl,Pe,St} 

none,∞ none,0 Ed,70 Ed,100 Ed,50 {Du,Gl,Pe,St} 

none,∞ none,0 Ed,70 St,90 Ed,50 {Du,Gl,Pe} 

none,∞ none,0 Ed,70 St,90 Ed,50 {Du,Pe} 

Pe,160 none,0 Ed,70 St,90 Ed,50 {Du} 

 Shortest path is «Ed,St,Pe,Du». 


