

Algorithms & Data Structures (M) Solutions to Tutorial Exercises

Solutions to Exercises 5

 5A In principle, the solution to the ‘millenium bug’ was simply to change the date

representation to allow four digits for the year number.

In practice, the problem was enormous. In thousands of programs totaling

billions of lines of code, it was necessary to locate and modify every declaration

defining the date representation, and every statement whose effect depended on

the date representation. Thousands of files and databases containing date values

had to be translated to the new date representation.

The problem was compounded by the fact that many of the programs were

poorly structured and undocumented. If ADTs had been used, the change to each

program would have been localized in a single place.

 5C The following table shows the time complexity of each operation (where n, n1,

and n2 are the string lengths):

Operation Time complexity

(array representation)

Time complexity

(SLL representation)

length O(1) O(1)

charAt O(1) O(n)

equals O(min(n1, n2)) O(min(n1, n2))

compareTo O(min(n1, n2)) O(min(n1, n2))

substring O(n2) O(n1)

concat O(n1 + n2) O(n1)

The diagram below shows the effect of s3 = s1.concat(s2) when String

objects are represented by SLLs. The operation makes a copy of s1’s SLL, then

links the resulting SLL’s last node to s2’s first node. Thus the resulting SLL

shares nodes with s2’s SLL, rather than containing copies of these nodes. The

operation makes only n1 copies, so its time requirement does not depend on n2.

(Note: This implementation of concat is possible only because String

objects are immutable.)

s1 ‘u’ ‘s’ ‘e’ 3

length first

s2 ‘l’ ‘e’ ‘s’ 4

length first

s3 ‘u’ ‘s’ ‘e’ 7

length first

‘s’

Algorithms & Data Structures (M) Solutions to Tutorial Exercises

 5D Here is a possible contract for a Text ADT:

public class Text {

 // Each Text value is a sequence of characters subdivided into lines. The

 // characters and line-terminators have consecutive position numbers, starting at 0.

 private …;

 //////////// Constructors ////////////

 public Text ();

 // Construct an empty text.

 //////////// Accessors ////////////

 public void display ();

 // Display this text on the screen.

 public void save (String filename);

 // Save this text to the named file.

 //////////// Transformers ////////////

 public void load (String filename);

 // Load the contents of the named file into this text.

 public void insert (int p, char c);

 // Insert c just before the character at position p in this text.

 public void insert (int p, Text that);

 // Insert that just before the character at position p in this text.

 public void delete (int p);

 // Delete the character at position p in this text.

 public void delete (int p1, int p2);

 // Delete all characters at positions p1 through p2 in this text.

 public Text copy (int p1, int p2);

 // Return a copy of all characters at positions p1 through p2 in this text.

}

Cut would be achieved by:

clipboard = text.copy(start, finish);

text.delete(start, finish);

Paste would be achieved by:

text.insert(cursor, clipboard);

The simplest representation for a text would be a long array or SLL of

characters, where each line-terminator is represented by a suitable control

character (such as CR or LF).

Algorithms & Data Structures (M) Solutions to Tutorial Exercises

 5E Here is a possible contract for a TimeOfDay ADT:

public class TimeOfDay {

 // Each TimeOfDay value is a time-of-day, accurate to 1 second.

 private …;

 //////////// Constructors ////////////

 public TimeOfDay (int s);

 // Construct a time-of-day that is s seconds since midnight.

 public TimeOfDay (int h, int m, int s);

 // Construct a time-of-day that is h hours, m minutes, and s seconds since midnight.

 //////////// Accessors ////////////

 public int getHour ();

 // Return the hours part of this time-of-day.

 public int getMinute ();

 // Return the minutes part of this time-of-day.

 public int getSecond ();

 // Return the seconds part of this time-of-day.

 public int minus (TimeOfDay that);

 // Return the number of seconds between this time-of-day and that.

 //////////// Transformer ////////////

 public TimeOfDay plus (int s);

 // Return this time-of-day advanced by s seconds (or retarded if s < 0).

}

A time-of-day could be represented by a triple (hours, minutes, seconds), or by

the number of seconds since midnight. The latter representation would make the

plus and minus operations easier to implement.

Algorithms & Data Structures (M) Solutions to Tutorial Exercises

 5F Here is a possible contract for a Course ADT:

public class Course {

 // Each Course value is a course description, consisting of a course-code, title,

 // names one or more instructors, and names of zero or more teaching assistants.

 // All fields can be updated except the course-code.

 private …;

 //////////// Constructor ////////////

 public Course (String code, String title,

 String[] instructors);

 // Construct a course description with the given details but no teaching assistants.

 //////////// Accessors ////////////

 public String getCode ();

 // Return this course’s course-code.

 public String getTitle ();

 // Return this course’s title.

 public String[] getInstructors ();

 // Return the names of this course’s instructors.

 public String[] getAssistants ();

 // Return the names of this course’s teaching assistants.

 //////////// Transformers ////////////

 public void changeTitle (String newTitle);

 // Change this course’s title to newTitle.

 public void addInstructor (String name);

 // Add an instructor with name to this course.

 public void removeInstructor (String name);

 // Remove the instructor with name from this course.

 public void addAssistant (String name);

 // Add a teaching assistant with name to this course.

 public void removeAssistant (String name);

 // Remove the teaching assistant with name from this course.

}

Algorithms & Data Structures (M) Solutions to Tutorial Exercises

Solutions to Exercises 6

 6B Assuming that the stack is represented by an array, the diagram below shows the

contents of symbolStack while the phrase ‘main (String[] args) {

print(arg[0]); }’ is being checked:

 6C Assuming that the stack is represented by an SLL, the diagram below shows the

contents of symbolStack while the phrase ‘main (String[] args) {

print(arg[0]); }’ is being checked:

‘(’

0

size=1

2

3

4

5
After scanning ‘main(’:

‘(’

0

‘[’

1

size=2

3

4

5
After scanning ‘String[’:

‘(’

0

size=1

2

3

4

5
After scanning ‘]’:

size=0

1

2

3

4

5
After scanning ‘args)’:

‘{’

0

size=1

2

3

4

5
After scanning ‘{’:

‘{’

0

‘(’

1

size=2

3

4

5
After scanning ‘print(’:

‘{’

0

‘(’

1

size=2

3

4

5
After scanning ‘0]’:

‘{’

0

size=1

2

3

4

5
After scanning ‘)’:

size=0

1

2

3

4

5
After scanning ‘;}’:

‘{’

0

‘(’

1

‘[’

2

size=3

4

5
After scanning ‘arg[’:

‘(’ After scanning ‘main(’:

After scanning ‘String[’:

After scanning ‘]’:

After scanning ‘args)’:

After scanning ‘{’:

After scanning ‘print(’:

After scanning ‘0]’:

After scanning ‘)’:

After scanning ‘;}’:

After scanning ‘arg[’:

‘(’ ‘[’

‘(’

‘{’

‘{’ ‘(’

‘{’ ‘(’ ‘[’

‘{’ ‘(’

‘{’

Algorithms & Data Structures (M) Solutions to Tutorial Exercises

 6D Add the following accessor to the homogeneous stack contract:

 public E get (int d);

 // Return the element at depth d in this stack, counting the topmost element

 // as having depth 1. Throw an exception if d < 1 or d > stack size.

Add the following to the array implementation:

 public E get (int d) {

 if (d < 1 || d > size) throw …;

 return elems[size-d];

 }

Add the following to the SLL implementation:

 public E get (int d) {

 if (d < 1) throw …;

 Node curr = top;

 for (int i = 1; i < d; i++) {

 if (curr == null) throw …;

 curr = curr.succ;

 }

 return curr.element;

 }

 6E To make the array implementation deal with an overflow by throwing an

exception:

 public void push (E it) throws StackException {

 // Add it as the top element on this stack.

 // Throw a StackException if there is no room.

 if (size == elems.length)

 throw new StackException();

 elems[size++] = it;

 }

This assumes that StackException is a subclass of Exception.

To make the array implementation deal with an overflow by substituting a longer

array:

 public void push (E it) throws StackException {

 // Add it as the top element on this stack.

 // Throw a StackException if there is no room.

 if (size == elems.length) {

 E[] newElems = (E[]) new Object [2*size];

 System.arraycopy(elems, 0, newElems, 0, size);

 elems = newElems;

 }

 elems[size++] = it;

 }

Algorithms & Data Structures (M) Solutions to Tutorial Exercises

Solutions to Exercises 7

 7A Make the add method call the following auxiliary method to expand the cyclic

array:

private void expand () {

// Make the elems array twice as long.

 E[] newElems =

 (E[]) new Object[2*elems.length];

 int j = front;

 for (int i = 0; i < size; i++) {

 newElems[i] = elems[j++];

 if (j == elems.length) j = 0;

 }

 elems = newElems;

 front = 0; rear = size;

}

 7B We could drop instance variable rear, since its value can be computed from

front and size whenever required. Modify the addLast operation as

follows:

public void addLast (E it) {

// Add it as the rear element of this queue.

 if (size == elems.length) expand();

 int rear = (front + size) % elems.length;

 elems[rear] = it;

 size++;

}

Also, remove all occurrences of rear in other operations.

(Note: We could similarly drop instance variable front. But we cannot drop

instance variable size, since it would be impossible to tell whether the queue is

empty or full when front and rear are equal.)

 7C It would be pointless to implement the queue ADT using a DLL, since none of

the operations needs to access any node’s predecessor.

 7D A UNIX pipe connecting process P1 to process P2 can be implemented by a queue

of bytes, q. Initially q is empty. Whenever P1 writes a byte to the pipe, that byte

is added to the rear of q. Whenever P2 reads a byte from the pipe, that byte is

removed from the rear of q.

(Note: Since processes P1 and P2 are concurrent, we must synchronize the queue

operations, i.e., ensure that only one operation is called at a time. If the

addLast and removeFirst operations were called at the same time, the

instance variables representing the queue would be left in an unpredictable state.)

Algorithms & Data Structures (M) Solutions to Tutorial Exercises

 7E The keyboard driver can communicate with the application program via a queue

whose elements are characters. The driver adds characters to the rear of the

queue, and the application removes them from the front.

(Note: As in Exercise 7D, we must synchronize the queue operations.)

To handle a keyboard (ignoring all control characters):

1. Make character queue q empty.

2. Repeat indefinitely:

 2.1. Accept a character char from the keyboard.

 2.2. If char is a graphic character:

 2.2.1. Echo char to the screen.

 2.2.2. Add char to the rear of q.

 2.3. Else, if char is a control character:

 2.3.1. Do nothing.

To handle a keyboard (ignoring all control characters other than DELETE):

1. Make character queue q empty.

2. Repeat indefinitely:

 2.1. Accept a character char from the keyboard.

 2.2. If char is a graphic character:

 2.2.1. Echo char to the screen.

 2.2.2. Add char to the rear of q.

 2.3. Else, if char is DELETE:

 2.3.1. Backspace the screen cursor, blanking out the character

 there.

 2.3.2. Remove the rearmost character of q.

 2.4. Else, if char is a control character other than DELETE:

 2.4.1. Do nothing.

(Note: Step 2.3.2 removes the rearmost (last) element of the queue. But that is

not an operation of the standard queue ADT, so we must instead use a special

kind of queue, namely the double-ended queue of Exercise 7F.)

Algorithms & Data Structures (M) Solutions to Tutorial Exercises

 7F A contract for a deque ADT is shown below.

A DLL implementation of deques is also outlined below. With this

implementation, all deque operations have time complexity O(1).

public interface Deque<E> {

 // Each Deque object is a homogeneous double-ended queue (dequeue)

 // whose elements are of type E.

 //////////// Accessors ////////////

 public boolean isEmpty ();

 // Return true if and only if this deque is empty.

 public int size ();

 // Return this deque’s size.

 public E getFirst ();

 // Return the element at the front of this deque. Throw an exception

 // if this deque is empty.

 public E getLast ();

 // Return the element at the rear of this deque. Throw an exception

 // if this deque is empty.

 //////////// Transformers ////////////

 public void clear ();

 // Make this deque empty.

 public void addFirst (E it);

 // Add it as the front element of this deque.

 public void addLast (E it);

 // Add it as the rear element of this deque.

 public E removeFirst ();

 // Remove and return the front element from this deque. Throw an

 // exception if this deque is empty.

 public E removeLast ();

 // Remove and return the rear element from this deque. Throw an

 // exception if this deque is empty.

}

public class LinkedDeque implements Deque {

 // Each LinkedDeque object is a deque (double-ended queue) whose

 // elements are objects.

 // This deque is represented as follows: its size is held in size;

 // front and rear are links to the first and last nodes of a DLL

 // containing its elements.

 private Node front, rear;

 private int size;

 //////////// Inner class ////////////

 …

 private class Node {

 public E element;

 public Node pred, succ;

 …

 }

 //////////// Constructor ////////////

 public LinkedDeque () {

 // Construct a deque, initially empty.

 front = rear = null;

 size = 0;

 }

 //////////// Accessors ////////////

Algorithms & Data Structures (M) Solutions to Tutorial Exercises

 …

 public E getLast () {

 // Return the element at the rear of this deque. Throw an exception

 // if this deque is empty.

 if (rear == null) throw …;

 return rear.element;

 }

 //////////// Transformers ////////////

 …

 public void addFirst (E it) {

 // Add it as the front element of this deque.

 Node newest = new Node(it, null, null);

 if (front != null)

 front.pred = newest;

 else

 rear = newest;

 front = newest;

 size++;

 }

 public E removeLast () {

 // Remove and return the rear element of this deque. Throw an exception

 // if this deque is empty.

 if (rear == null) throw …;

 Object rearElem = rear.element;

 rear = rear.pred;

 if (rear == null) front = null;

 size--;

 return rearElem;

 }

}

Algorithms & Data Structures (M) Solutions to Tutorial Exercises

Solutions to Exercises 8

 8A (a) The Stack ADT is a special case of the List ADT since all of the

operations required by the Stack ADT can be implemented using the

operations of the List ADT (but not vice versa). In particular, the

operations performed on a stack s can be rewritten using operations

performed on a corresponding list l as follows:

Stack operation Corresponding list operation(s)

s.push(x) l.add(x)

x = s.pop() x = l.remove(l.size() - 1)

x = s.top() x = l.get(l.size() - 1)

(b) The Queue ADT is a special case of the List ADT since all of the

operations required by the Queue ADT can be implemented using the

operations of the List ADT (but not vice versa). In particular, the

operations performed on a queue q can be rewritten using operations

performed on a corresponding list l as follows:

Queue operation Corresponding list operation

q.addLast(x) l.add(x)

x = q.removeFirst() x = l.remove(0)

x = q.getFirst() x = l.get(0)

 8B Using the List ADT, a possible version of the reorder method is as follows:

static List<Person> reorder (

 List<Person> persons) {

// Assume that persons is a list of Person objects, ordered by

// name. Return a similar list of Person objects, ordered such that all

// children (aged under 18) come before all adults (aged 18 or over), but

// otherwise preserving the ordering by name.

 List<Person> result =

 new LinkedList<Person>();

 List<Person> adults =

 new LinkedList<Person>();

 Iterator<Person> persons = persons.iterator();

 while (persons.hasNext()) {

 Person p = persons.next();

 if (p.age <= 18)

 result.add(p);

 else

 adults.add(p);

 }

 // Construct the result with children before adults.

 result.addAll(adults);

 return result;

}

Algorithms & Data Structures (M) Solutions to Tutorial Exercises

 8C A possible solution for using an iterator to extend the simple text editor with the

methods findFirst(s) and findNext() would be as follows:

private Iterator<String> lines;

private String searchString;

private int lineFound;

public void findFirst (String s) {

// Find the first line containing an occurrence of the given string, and

// make this the currently selected line.

 lines = text.iterator();

 searchString = s;

 lineFound = -1;

 findNext();

}

public void findNext () {

// Find the next line containing an occurrence of the string specified by

// findFirst, and make this the currently selected line.

 while (lines.hasNext()) {

 String s = lines.next();

 lineFound++;

 if (s.indexOf(searchString) >= 0) {

 sel = lineFound;

 return;

 }

 }

}

Algorithms & Data Structures (M) Solutions to Tutorial Exercises

 8D Add the following operations to the List<E> interface:

public boolean contains (E target);

// Return true if and only if this list contains an element equal to

// target.

public int indexOf (E target);

// Return the index of the first element in this list that is equal to

// target, or –1 if there is no such element.

Implement these operations as follows in the ArrayList<E> class:

public boolean contains (E target) {

 return (indexOf(target) >= 0);

}

public int indexOf (E target) {

 for (int i = 0; i < size; i++) {

 E elem = elems[i];

 if ((target == null && elem == null) ||

 (target != null && target.equals(elem)))

 return i;

 }

 return -1;

}

Implement these operations as follows in the LinkedList<E> class:

public boolean contains (E target) {

 return (indexOf(target) >= 0);

}

public int indexOf (E target) {

 Node curr = first;

 while (curr != null) {

 E elem = curr.element;

 if ((target == null && elem == null) ||

 (target != null && target.equals(elem)))

 return i;

 curr = curr.succ;

 }

 return -1;

}

(Note: These implementations allow for the possibility that target is null.)

Algorithms & Data Structures (M) Solutions to Tutorial Exercises

 8E Add the following operation to the List<E> interface:

public List<E> subList (int i, int j);

// Return a new list containing all of the elements in this list with

// indices i through j–1.

Implement this operation as follows in the ArrayList<E> class:

public List<E> subList (int i, int j) {

 if (i < 0 || j > size || i > j) throw …;

 List<E> result = new ArrayList<E>(j-i+1);

 for (int p = i; p < j; p++)

 result.add(elems[p]);

 return result;

}

Implement this operation as follows in the LinkedList<E> class:

public List<E> subList (int i, int j) {

 if (i < 0 || j > size || i > j) throw …;

 List<E> result = new LinkedList();

 Node curr = get(i);

 for (int p = i; p < j; p++) {

 result.add(curr.element);

 curr = curr.succ;

 }

 return result;

}

 8F Implement an auxiliary method expand as follows:

private void expand () {

// Make the elems array twice as long.

 E[] newElems =

 (E[]) new Object[2*elems.length];

 System.arraycopy(elems, 0, newElems, 0, size);

 elems = newElems;

}

 8H Add the following operations to the List<E> interface:

public E getFirst ();

// Return the first element in this list, or throw an exception

// if this list is empty.

public E getLast ();

// Return the last element in this list, or throw an exception

// if this list is empty.

public void addFirst (E it);

// Add it before the first element in this list.

public E removeFirst ();

// Remove the first element in this list, or throw an exception

// if this list is empty.

public E removeLast ();

// Remove the last element in this list, or throw an exception

// if this list is empty.

(Note: addLast would be just a synonym for the existing add(E) operation.)

Implement these operations as follows in the ArrayList<E> class:

public E getFirst () {

 if (size == 0) throw …;

 return elems[0];

}

Algorithms & Data Structures (M) Solutions to Tutorial Exercises

public E getLast () {

 if (size == 0) throw …;

 return elems[size-1];

}

public void addFirst (E it) {

 add(0, it);

}

public E removeFirst () {

 if (size == 0) throw …;

 return remove(0);

}

public E removeLast () {

 if (size == 0) throw …;

 return remove(size-1);

}

Implement these operations as follows in the LinkedList<E> class:

public E getFirst () {

 if (size == 0) throw …;

 return first.element;

}

public E getLast () {

 if (size == 0) throw …;

 return last.element;

}

public E addFirst (E it) {

 add(0, it);

}

public E removeFirst () {

 if (size == 0) throw …;

 return remove(0);

}

public E removeLast () {

 if (size == 0) throw …;

 return remove(size-1);

}

 8J The java.util.LinkedList class uses a DLL representation because the

remove operation has O(1) time complexity, whereas an SLL representation

would result in O(n).

