
Accelerated Programming 2 1 Python Tutorial Exercises – Solutions

Accelerated Programming 2

Python Tutorial Exercises – Solutions

Here are sample solutions to the tutorial exercises. For some of the exercises (especially
coding exercises), alternative correct solutions are possible. If in doubt, consult the
lecturer.

Attempt each exercise before consulting the sample solution.

Accelerated Programming 2 2 Python Tutorial Exercises – Solutions

Exercises for Week 1

 1A. (Names)

The following are valid names in Python:

a a1 A123 and second
day_time over_the_moon

The following are invalid names:

1a 2nd (start with digits)
income_£ income_$ (contain invalid characters)

 1B. (Arithmetic expressions)

(a) m-n yields –12

(b) m**3 yields 15625

(c) -m yields –25

(d) n//10 yields 3

(e) n%10 yields 7

(f) (x+y+z)/2 yields 0,6

 1C. (Assignment-statements)

 p q
p = 7 7
q = p+1 7 8
p = p+1 8 8
q = 2*q 8 16

 1D. (Built-in functions)

 (a) abs(x-y) yields 0.1

(b) min(x,y) yields 0.3

(c) round(6*y) yields 2

(d) round(7*y) yields 3

 1E. (Defining functions)

 (a) def double (n):
 return 2*n

(b) def close (x, y):
 return (abs(x-y) < 0.5)

(c) def leap (y):
 return (y%4 == 0)

(d) def leap (y):
 return (y%4 == 0) and (y%100 != 0 or y%400 == 0)

Accelerated Programming 2 3 Python Tutorial Exercises – Solutions

Exercises for Week 2

 2A. (If-statements)

 (a) if gender:
 print 'male'
else:
 print 'female'

(b) if x < y:
 x = y

(c) if season == 0:
 print 'Spring'
elif season == 1:
 print 'Summer'

elif season == 2:
 print 'Autumn'
elif season == 3:
 print 'Winter'
else:
 print 'invalid'

 2B. (Evaluating conditional and short-circuit expressions)

 (a) +1 if n > m else -1 yields –1 or –1, respectively

(b) +1 if n > m else (-1 if n < m else 0)
 yields –1 or 0, respectively

(c) n == 0 or m/n < 3 yields False or True, respectively

 2C. (Conditional and short-circuit expressions)

 (a) x if x < y else y

(b) x <= 0 or log(x, 10) < y

 2D. (Executing while-statements)

 (a) m n
m = 2 2
n = 0 2 0
n <= 10 True 2 0
print n prints 0 2 0
n = n+m 2 2
n <= 10 True 2 2
print n prints 2 2 2
n = n+m 2 4
n <= 10 True 2 4
print n prints 4 2 4
n = n+m 2 6
n <= 10 True 2 6
print n prints 6 2 6
n = n+m 2 8
n <= 10 True 2 8
print n prints 8 2 8
n = n+m 2 10
n <= 10 True 2 10
print n prints 10 2 10

Accelerated Programming 2 4 Python Tutorial Exercises – Solutions

n = n+m 2 12
n <= 10 False 2 12

 This code prints even integers from 0 up to 10.

 (b) m n
m = 37 37
n = 11 37 11
m > n True 37 11
m = m - n 26 11
m > n True 26 11
m = m - n 15 11
m > n True 15 11
m = m - n 4 11
m > n False 4 11

 This code computes the remainder on dividing m by n.

 2E. (While-statements)

(a) den = 1
term = 4/den
pi = term
while term >= 0.0001:
 pi = pi + term if (den-1)%4 == 0 else pi - term
 den += 2
 term = 4/den

(b) def power (x, n):
 p = 1
 m = 0
 while m < n:
 p *= x
 m += 1
 return p

(c) def replicate (s, m):
 rep = ''
 limit = m - len(s)
 while len(rep) < limit:
 rep += s
 return rep

Accelerated Programming 2 5 Python Tutorial Exercises – Solutions

Exercises for Week 3

 3A. (String expressions)

 (a) s+t yields ‘bana’

(b) t+s yields ‘naba’

(c) 2*s yields ‘baba’

(d) s*2 yields ‘baba’

(e) s+(2*t) == u yields True

(f) s in t yields False

(g) t in u yields True

(h) 'Student %s has %d grade points and a GPA of %f.' \
% (id, c, g/c) yields ‘Student 01234567 has 120 grade points
 and a GPA of 10.5.’

 3B. (String functions)

(a) def bracket (s):
 return '{' + s + '}'

(b) def trim_left (s):
 i = 0
 while i < len(s) and s[i] = ' ':
 i += 1
 return s[i:]

(c) def trim_right (s):
 i = len(s)
 while i > 0 and s[i-1] = ' ':
 i -= 1

 return s[:i]

 3C. (Tuples)

(a) e[0] yields 7404

(b) e[2] * 40 yields 26.00

(c) pay = 1.2 * e[2] stores 7.80 in pay

(d) e[2] = pay fails (tuples are immutable)

 3D. (Lists)

 (a) f[4] yields 5

(b) f[-1] yields 21

(c) f[4:7] yields [5, 8, 13]

(d) f[:2] yields [1, 1]

(e) [2,3,5] in f yields False

(f) f + [f[-2]+f[-1]] yields [1, 1, 2, 3, 5, 8, 13, 21, 34]

Accelerated Programming 2 6 Python Tutorial Exercises – Solutions

 3E. (List functions)

 (a) def sum (ns):
 tot = 0
 for n in ns:
 tot += n
 return tot

(b) def concat (ss):
 cat = ''
 for s in ss:
 cat += s
 return cat

 (c) def zip (xs, ys):
 zs = []
 zslen = min(len(xs), len(ys))
 for i in range(0, zslen)
 zs += [(xs[i], ys[i])]

 return zs

 (d) def tokens(s):
 toks = []
 i = 0
 while i < len(s):
 if s[i] == ' ':
 i += 1
 else:
 start = i
 i += 1
 while i < len(s) and s[i] != ' ':
 i += 1
 tok = s[start:i]
 toks += [tok]
 return toks

 3F. (For-statements)

(a) p = 1
print p
for i in range(0, n):
 p *= 2
 print p

(b) old = 1
new = 1
print old
print new
for i in range(2, n):
 (old, new) = (new, old + new)
 print new

(c) for pair in list:
 print pair[0], '\t', pair[1]

 3G. (List comprehensions)

 (a) [n + 1 for n in ns]

(b) [n < 0 for n in ns]

(c) [n for n in ns if n > 0]

(d) [(m, n) for m in ms for n in ns]

Accelerated Programming 2 7 Python Tutorial Exercises – Solutions

Exercises for Week 4

 4A. (Dictionaries)

 (a) bag['pear'] yields 3

(b) bag['kiwi'] fails

 (c) bag['plum'] += 1 replaces ‘plum’:3 by ‘plum’:4

(d) bag['kiwi'] = 1 adds ‘kiwi’:1 to the dictionary

 4B. (Recursive functions)

 (a) def fib (n):
 return 1 if n <= 2 else fib(n-1) + f(n-2)

 (b) def sum (ns):
 return 0 if ns = [] else ns[0] + sum(ns[1:])

The same things can easily be done by non-recursive functions. (E.g., see the
solution to exercise 3F(b).)

 4C. (Files)

 (a) lines = 0
chars = 0
line = f1.readline()
while len(lin) > 0:
 lines += 1
 chars += len(line)
 line = f1.readline()

(b) line1 = f1.readline()
while len(line1) > 0:
 f0.write(line1)

 line1 = f1.readline()

 (c) line1 = f1.readline()
while len(line1) > 0:
 line0 = line1[:-1:-1] + '\n'
 f0.write(line0)
 line1 = f1.readline()

 4D. (Modules)

(a) import trig
area = a**2 * trig.sin(theta) * trig.cos(theta)

(b) from trig import *
area = a**2 * sin(theta) * cos(theta)

