
Programming Languages 3 

2013–14 

David Watt  (Glasgow) 

Steven Wong  (Singapore) 

Moodle : Computing Science → Level 3 → Programming Languages 3 

© 2012 David A Watt, University of Glasgow 



0-2 

Aims 

 Syntax: To show you how the syntax of a 
programming language can be formalized. 

 Concepts: To provide a conceptual framework 
that will enable you to understand familiar 
programming languages more deeply and learn 
new languages more efficiently. 

 Implementation: To explain the functions of 
compilers and interpreters, how they interact, 
how they work, and how they can be constructed 
using suitable tools. 



0-3 

Prerequisites 

 Knowledge and experience of Java 

– essential. 

 Knowledge and experience of other 
programming languages such as Python and C 

– highly desirable. 

 Understanding of elementary discrete 
mathematics, particularly sets and functions 

– highly desirable. 



0-4 

Contents (1) 

1. Syntax (wk1) 

2. Values and types (wk2) 

3. Compilers and interpreters (wk3) 

4. Interpretation (wk4) 

5. Compilation (wk4) 

6. Syntactic analysis (wk5) 

7. Contextual analysis (wk6) 

8. VM code generation (wk7) 

 

Concepts 

Syntax 

Implementation 



0-5 

Contents (2) 

9. Variables and lifetime (wk8) 

10. Bindings and scope (wk8) 

11. Procedural abstraction (wk9) 

12. Data abstraction (wk9) 

13. Generic abstraction (wk9) 

14. Run-time organization (wk10) 

15. Native code generation (wk10) 

Concepts 

(continued) 

Implementation 

(continued) 



0-6 

Coursework and assessment 

 Tutorial exercises (self-assessed) 

 Coursework assignment (summative, 20%) 

– extensions to a small compiler,  

using a compiler generation tool 

 Examination (summative, 80%) 

– syntax (10 marks) 

– concepts (20 marks) 

– implementation (30 marks) 



0-7 

Programming languages 

 In this course we study 

programming languages 

(PLs). 

 Each PL has its own syntax 

and semantics. 

 PLs must be expressive 

enough to express all 

computations. 

 Computing scientists can 

design, specify, and 

implement new PLs. 

in much the same 
way as linguists 
study natural 
languages (NLs) 

like an NL 

but much less 
expressive than 
NLs 

whereas linguists 
are limited to 
studying existing 
NLs 



0-8 

What is a programming language? (1) 

 A PL must be universal – capable of expressing 

any computation. 

– A language without iteration or recursion would not be 

universal. 

– The lambda calculus – a language of recursive 

functions and nothing else – is universal. 

 A PL should be reasonably natural for 

expressing computations in its intended area. 

– C is natural for systems programming. 

– Java is natural for applications. 

– Python is natural for scripting. 



0-9 

What is a programming language? (2) 

 A PL must be implementable: 

– it must be possible to run every program in that PL on a 

computer 

– as long as the computer has enough memory. 

 A PL should be capable of reasonably efficient 

implementation. 

– Running a program should not require an unreasonable 

amount of time or memory. 

– What is reasonable depends on the context. E.g., 

Python is slow, but acceptable for scripting 

applications; it would not be acceptable for systems. 



0-10 

Syntax and semantics 

 The syntax of a PL is concerned with the form of 

programs: how expressions, commands, 

declarations, and other constructs must be 

arranged to make a well-formed program. 

 The semantics of a PL is concerned with the 

meaning of well-formed programs: how a 

program may be expected to behave when run 

on a machine. 

 Semantics underlies all programming, and 

language implementation. Syntax provides a 

structure on which semantics can be defined. 



0-11 

Design concepts (1) 

 Design concepts are the building blocks of PLs: 

– values and types 

– variables and storage 

– bindings and scope 

– procedural abstraction 

– data abstraction 

– generic abstraction 

– processes and communication (not covered here). 



0-12 

Design concepts (2) 

 A paradigm is a style of programming, 

characterized by a selection of key concepts. 

– Functional programming focuses on values, 

expressions, and functions. 

– Imperative programming focuses on variables, 

commands (“statements”), and procedures. 

– Object-oriented (OO) programming focuses on 

objects, methods, and classes. 

– Concurrent programming focuses on processes and 

communication. 

 Understanding of design concepts and 

paradigms enables us to select PLs for a project. 



0-13 

Implementation 

 A program expressed in a PL cannot be run 

directly by a machine. Instead it must be 

processed by an interpreter or compiler. 

 An interpreter runs the given program by 

fetching, analysing, and executing its 

‘instructions’, one at a time. 

 A compiler translates the given program from 

the PL to lower-level code 

 Understanding of how PLs are implemented 

enables us to be more skilful programmers. 



0-14 

Reading (1) 

 David Watt  

Programming Language  

   Design Concepts  

Wiley 2004 

ISBN 0-470-853204 

– recommended reading for the 

Concepts part of this course 

(particularly Chapters 2–7). 



0-15 

Reading (2) 

 David Watt and Deryck Brown  

Programming Language Processors in Java  

Prentice Hall 2000 ISBN 0-130-25786-9 

– background reading for the Implementation part of this 

course. 

 Andrew Appel 

Modern Compiler Implementation in Java  

Cambridge 1998 ISBN 0-521-58388-8 

– additional reading 

– covers all aspects of compilation in detail, including 

native code generation and optimization. 



0-16 

1955 

1960 

1965 

1970 

1975 

1980 

1985 

OO imperative concurrent functional scripting 

History of programming languages (1) 

Fortran 

Lisp 

Simula 

Smalltalk 

ML 

PL/I 

Algol68 

C++ 
Ada83 

C 

Cobol 

Modula 

Pascal 

Algol60 

Perl 

Unix 



0-17 

1980 

1985 

1990 

1995 

2000 

2005 

OO imperative concurrent functional 

C# 

Java5 

Java 
Ada95 

Haskell 

History of programming languages (2) 

scripting 

C++ 

Ada83 

Perl 

Python 

2010 


