Jolgow 1 Syntax

Informal vs formal specification
= Regular expressions

= Backus Naur Form (BNF)

= Extended Backus Naur Form (EBNF)

= Case study: Calc syntax

Programming Languages 3 © 2012 David A Watt, University of Glasgow

Universit :
QfGlasgowy What is syntax?

= The syntax of a PL is concerned with the form of
programs: how expressions, commands,
declarations, and other constructs are arranged
to make a well-formed program.

= When learning a new PL, we need to learn the
PL’s syntax.

= The PL’s syntax must be specified. Examples
alone do not show the PL'’s generality:

if n > 0 : write(in)!
What is allowed here? What is allowed here?
— a simple command? — a variable?

— a sequence of commands? — an arbitrary expression?

1-2

Universit e :
qulasgoxz Informal vs formal specification

= Aninformal specification is one expressed in
natural language (such as English).

= A formal specification is one expressed in a
precise notation.
= Pros and cons of formal specification:
+ more precise
+ usually more concise
+ less likely to be ambiguous, inconsistent, or incomplete

— accessible only to those familiar with the notation.

Universit :
QfGlang\z Example: informal vs formal syntax

= [nformal syntax of some commands in a C-like
language:

A while-command consists of ‘while’, followed by an

expression enclosed in parentheses, followed by a
command.

A sequential-command consists of a sequence of one
or more commands, enclosed by ‘{" and ‘}".

= Formal syntax (using EBNF notation):

J 1

while-command = ‘while’ (’ expression ‘)’
command

L

sequential-command = ‘{’ command* ‘}

éfa| University Notations for formal specification of PL
syntax

of Glasgow

= Regular expressions (RES)

— good for specifying syntax of lexical elements of
programs (such as identifiers, literals, comments).

= Backus Naur Form (BNF)

— good for specifying syntax of larger and nested
program constructs (such as expressions, commands,
declarations).

= Extended Backus Naur Form (EBNF)

— combination of BNF and REs, good for nearly
everything.

Universit :
QfGlang\z Running example: Calc

= Calc is a very simple calculator language, with:

— variables named ‘a’, ..., ‘z

— expressions consisting of variables, numerals, and
arithmetic operators

— assignment and output commands.

= Example Calc program:

set x = 13

set y = x*(x+1)
put x

put vy/2

Universit :
QfGlang\z Regular expressions

= Aregular expression (RE) is a kind of pattern.

= Each RE matches a set of strings

— possibly an infinite set of strings.

= We can use REs for a variety of applications:

— specifying a pattern of strings to be searched for in a
text

— specifying a pattern of filenames to be searched for in a
file system

— specifying the syntax of a PL'’s lexical elements.

Universit
of Glasgoxz Example: REs

= Examples:

M(‘r'|'rs’|'iss’) — means ‘M followed by either
‘r’or‘rs’or‘iss’
— matches ‘Mr’, ‘Mrs’, ‘Miss’.

o'(‘fan’)*a’ — means ‘b’ followed by zero or more
occurrences of ‘an’ followed by ‘a’
— matches ‘ba’, ‘bana’, ‘banana’, etc.

(‘x’|'abc’)* — means zero or more occurrences of
‘'x’ or ‘abc’
— matches “, 'x’, ‘abc’,
‘xx’, ‘xabc’, ‘abex’, ‘abcabc’,
‘xxx’, ‘xxabc’, ‘xabex’, ‘abexx’, etc.

Universit :
qulasrgoxz RE notation (1)

= Basic RE notation:

1)

— 'Xyz matches the string ‘xyz’

— RE, | RE, matches any string matched by either RE,
or RE,

— RE; RE, matches any string matched by RE;
concatenated with any string matched by RE,

— RE* matches the concatenation of zero or more
strings, each of which is matched by RE

— (RE) matches any string matched by RE
(parentheses used for grouping)

Universit :
qulasrgoxz RE notation (2)

= Additional RE notation:

— RE”? matches either the empty string or any string
matched by RE

— RE"™ matches the concatenation of one or more
strings, each of which is matched by RE

= These additional forms are useful but not
essential. They can be expanded into basic RE
notation:

RE’ = RE|"
RE* = RE RE*

Universit :
QfGlang\z Example: Calc lexicon (1)

= A Calc identifier consists of a single lower-case
letter.

= The syntax of such identifiers is specified by the
RE:

‘a,|£b,|‘C’|‘d’|‘e!|‘f!|‘g’|‘h’|‘,
SR B R I B hN BRI I ol B
st [R Y e

i
)
r |
[2 T A T O O R I A R A R T

Universit :
QfGlang\z Example: Calc lexicon (2)

= A Calc numeral consists of one or more decimal
digits. E.g.:

5 13 2000000000

= The syntax of such numbers is specified by the
RE:

(‘O, | ‘1, | ‘2, | ‘3, | ‘4, | ‘5, | ‘6, | 177 | ‘8! | ‘9!)+

Universit .. e
qulasgoxz Example: alphanumeric identifiers

= Consider a PL in which an identifier consists of a
sequence of one or more upper-case letters and
digits, starting with a letter. E.g.:

X Al P2P SOS

= The syntax of such identifiers is specified by RE:

(‘A, | ‘B, | ‘C, | ‘D, | ‘E, | ‘F, | ‘G, | ‘H, | ‘I, |

TR M|IN| O] PO R }one letter
ST UV W XY] '20) ’

LI R e L R R R Ezeroor more
SE Lot e o R letters and
ST U VW X Y 2 =
023 a e | T

Univers: : : :
Qf%ﬁirg%% Application of REs: Unix shell (1)

= The Unix shell scripting language uses an ad hoc
pattern-matching notation in which:

- [...] matches any one of the enclosed characters

- ? (on its own) matches any single character
— % (on its own) matches any string of O or more
characters.

= This a restricted variant of RE notation.
(It lacks “RE,|RE," and "RE *".)

Universit : . :
of&ﬁ?g%% Application of REs: Unix shell (2)

= Example commands:

print bat. [chp]

prints files whose names are
‘bat.c’, ‘bat.h’, or ' bat.p’

print bat.?

prints all files whose names are
‘bat.’ followed by any single

character
print *.c

prints all files whose names end
with “. ¢’

Univers: : :
qul\z’grgsé% Application of REs: egrep (1)

= The Unix utility egrep uses the full pattern-

matching notation, in which the following have
their usual meanings:

— RE; IRE,
— RE~*
— RE+
— RE>

= |t also provides extensions such as:
- [...] matches any one of the enclosed characters

- . matches any single character.

Universi : .
quﬁirgséiz Application of RES: egrep (2)

= Example commands:

egrep "blaeilt" file
finds all lines in file containing ‘bat’,
‘bet’, or ‘bit’

egrep "b.t" file
finds all lines in file containing ‘b’
followed by any character followed by ‘t’.

egrep "b (an)*a" file
finds all lines in file containing ‘b’

followed by 0 or more occurrences of ‘an
followed by ‘a’.

!Umver31ty Application of REs: Java pattern
matching

of Glasgow

Some Java classes also use the full pattern-
matching notation, with the same extensions as

egrep.
- [...] matches any one of the enclosed characters

- . matches any single character.

= Example code:

String s = ...;

i1f (s.matches("b.t"))

i1f (s.matches("b[aeiou]t"))
if (s.matches("M(r|rs|iss)"))
i1f (s.matches("b(an)*a"))

Universit C .
qf%f;srgoxz Limitations of REs

= REs are not powerful enough to express the
syntax of nested (embedded) phrases.

= |n every PL, expressions can be nested:

N
1

! Umver31ty

fGlasgow Grammars

= To specify the syntax of nested phrases such as
expressions and commands, we need a (context-
free) grammar.

= The grammar of a language is a set of rules
specifying how the phrases of that language are
formed.

= Each rule specifies how each phrase may be
formed from symbols (such as words and
punctuation) and simpler phrases.

Universit . :
qf&l\;srgoxz Example: mini-English grammar (1)

Mini-English consists of simple sentences like:
I smell arat .

the cat seesme .

= The following symbols occur in mini-English
sentences:

1) 1

a cat
‘see’ ‘sees’ ‘smell’ ‘smells’

.- terminal
I' mat’ me’ ‘rat’ - symbols
(the’ G.!

= The grammar uses the following symbols to

denote mini-English phrases: .- nonterminal

sentence subject object noun verb symbols

Universit . :
qf%f;ssrgoxz Example: mini-English grammar (2)

= Production rules of the mini-English grammatr:

. sentence = subject verb object ‘.’
subject = ‘I' | ‘a2’ noun | ‘the’ noun
i object = ‘me’ | ‘2 noun | ‘the’ noun

noun = ‘cat’ | mat’ | ‘rat’
L_ verb = f‘see' | ‘sees’ | 'smell’ | ‘smells’
ead as Tead as
A sentence consists of “A subject consists of the word ‘I’ alone,
1 Subject followed by or the word ‘a’ followed by a noun,
A verb followed by or the word ‘the’ followed by a noun.”

1 I n

AN object followed by ‘.".

Universit . :
qf%f;ssrgoxz Example: mini-English grammar (3)

= How sentences are structured:
se@e\nce

<~ N

subject object

verb noun
K_H /_H

T smell a rat

sentence
A

"~ subject object
__ Subject]

noun verb
4 A A\ 4 A N\

the cat sees me

= The structure of a sentence can be shown by a
syntax tree (see later).

e
of Glasgow

Grammars, symbols, production rules

= A context-free grammar (or just grammar)
consists of:

_.-- Each terminal symbol

a set of terminal symbols =

a set of nonterminal symbols
a sentence symbol .

a set of production rules.

Is a symbol that may
occur in a sentence.

Each nonterminal
symbol stands for a
phrase that may form
part of a sentence.

- The sentence symbol

IS the nonterminal
symbol that stands for
a complete sentence.

“ Each production rule

specifies how phrases
are composed from
terminal symbols and
sub-phrases.

Universit |
quﬁirgsé\z BNF notation (1)

= Backus Naur Form (BNF) is a notation for
expressing a grammat.

= A simple production rule in BNF looks like this:

N = 0 s a is a sequence of terminal and
" nonterminal symbols

“__"

“Nis a _ - “=" s read as “consists of”
nonterminal
symbol

= Example (mini-English):

sentence = subject verb object ‘.’

Universit |
quﬁirgsé\z BNF notation (2)

= More generally, a production rule in BNF may
have several alternatives on its right-hand side:

N=a|B |y e eachofa, B,yisa
sequence of terminal and
nonterminal symbols

N
~
<
S “l”

is read as “or’.

= Example (mini-English):

1 J

subject = ‘T’ | ‘a’ noun | ‘the’noun

 Universic |
qf%ﬁigé\z Example: Calc grammar in BNF (1)

= Terminal symbols:

‘put’ ‘set’

ST T

o

=N o M o L A O M R O 4

= Nonterminal symbols:

prog com
expr prim
num id

= Sentence symbol:
prog

Universit |
of&ﬁ?g%% Example: Calc grammar in BNF (2)

. A prog consists of just an eof,

: -~ or alternatively a com followed
= Production rules: by a prog.

orog = eof In other words, a prog consists
| com prog of a sequence of zero or more
coms followed by an eof.
com = ‘put' expr eol
| ‘set’ id =" expr eol
expr = prim
| expr ‘+° prim
| expr =’ prim

expr ‘*' prim
= num
| id

| £(7 expr c)’

prim

 Universic |
qf%ﬁigé\z Example: Calc grammar in BNF (3)

= Production rules (continued):

num = digit | num digit
id = letter

letter = ‘&' |0 |c|...|"Z

digit = 0|1’]...]"9

eol = ‘\n’

Universit
QfGlang\z Phrase structure

= A grammar defines how phrases may be formed
from sub-phrases in the language. This is called
phrase structure.

= Every phrase in the language has a syntax tree
that explicitly represents its phrase structure.

Universit . :
QfGlang\z Example: mini-English syntax trees

= Syntax trees of mini-English sentences:

sentlence sentlence
| |
subject verb object subject verb object
noun noun

I smell a rat . the cat sees me

Universit
QfGlang\z Example: Calc syntax trees (1)

= Syntax trees of Calc expressions:

expr
|

o1a| Universit
of Glasgmz

Example: Calc syntax trees (2)

com

BT

expr

pr

Im

d

n

\n

= Syntax trees of Calc commands:

com

set

expr
prim
num

42

\n

Universit
of Glasgoxz Syntax trees

= Consider a grammar G.

= A syntax tree of G is a tree with the following
properties:

— Every terminal node is labeled by a terminal symbol of
G.

— Every nonterminal node is labeled by a nonterminal
symbol of G.

— A nonterminal node labeled N
may have children labeled N
X, Y, Z (from left to right) >'(\'(|Z
only if G has a production rule

N=XYZor N=...|XYZ]|...

Universit
of Glasgoxz Phrases

= |[f N is a nonterminal symbol of G, a phrase of
class N Is a string of terminal symbols labeling
the terminal nodes of a syntax tree whose root
node is labeled N.

— Note: The terminal nodes must be visited from left to
right.

= E.g., phrases in Calc:
— ‘x* (22-vy)’ is a phrase of class expr
— ‘set n =42 \n’is a phrase of class com

— ‘set n=42 \nput x* (22-vy) \n’is a phrase of class
prog.

! Umver31ty

of Glasgow Sentences and languages

= |If Sis the sentence symbol of G, a sentence of
G Is a phrase of class S. E.q.:

— ‘set n=42 \nput x* (22-vy) \n’is a sentence of
Calc.

= The language generated by G is the set of all
sentences of G.

= Note: The language generated by G is typically
Infinite (although G itself is finite).

Universit :
QfGlasgowy Phrase structure and semantics

The above definition of a language is narrowly
syntactic: a set of sentences.

= We are also interested in the language’s
semantics (i.e., the meaning of each sentence).

= A grammar does more than generate a set of
sentences: it also imposes a phrase structure on
each sentence (embodied in the sentence’s
syntax tree).

= Once we know a sentence’s phrase structure,
we can use it to ascribe a meaning to that
sentence.

o1a Universit :
QfGlang\z Example: expression structure (1)

= Consider this grammar (similar to Calc):

expr = prim
| expr ‘+° prim
| expr =’ prim
| expr ‘+° prim
prim num

| id
| “C expr)’

Universit :
QfGlang\z Example: expression structure (2)

= |n this grammar, operators "+, -, and **’ all
have the same precedence . E.Q.:

expr
expr

expr

prim prim prim

ig ig num

A . <~y *2 will be

evaluated as
(x—-y) *2

Universit :
QfGlang\z Example: expression structure (3)

= But note that parentheses can always be used to
control the evaluation:

eﬁpr

Universit :
qulasgoxz Example: expression structure (4)

= Consider this different grammar:

term
expr ‘+ term

1)

expr - term

expr

term = prim
| term ‘*7 prim

= num
| id
| “C expr)’

= This grammar is typical of most PLs such as C
and Java. It leads to a different phrase structure.

Universit :
QfGlang\z Example: expression structure (5)

= |n this grammar, operator ‘*’ has higher
precedence than '+ and -'. E.g.:

eﬁpr
ex|pr te||'m
term te|rm
prim pr‘im prim
|d I‘d num
ST S S — x-y*2 Will be

evaluated as
x—(y*2)

Universit ..
qf%l\z’lsrgoxz Ambiguity

A phrase is ambiguous if it has more than one
syntax tree.

= A grammar is ambiguous if any of its phrases is
ambiguous.

= Ambiguity is common in natural languages such
as English:
— The peasants are revolting.

— Time flies like an arrow. Fruit flies like a banana.

= The grammar of a PL should be unambiguous,
otherwise the meaning of some programs would
be uncertain.

o Univers:
qf%ﬁigéi% Example: dangling “else” ambiguity (1)

= Part of the grammar of a fictional PL.:

com ‘put’ expr
‘1 f° expr ‘then’ com

|
| ‘if’ expr ‘then’ com ‘else’ com
|

= This makes some if-commands ambiguous, such
as:

1f b then 1f ¢ then put 1 else put 2

Univers;
of&lﬁigﬁ Example: dangling “else” ambiguity (2)

= The above if-command has two syntax trees:

cqm
|

COlm

|
expr

expr com com

il b then if c then p{Jt 1 else p{lt 2

ccl)m

colm

| | |
expr expr com com

if b then if ¢ then put 1 else put 2

Universit ,
QfGl\zllslg;{O\z ENBF notation

Extended Backus Naur Form (EBNF) is a
combination of BNF and RE notation.

= An EBNF production rule has the form:
N = RE

where RE is a regular expression, expressed in
terms of both terminal and nonterminal symbols.

= Example:

sequential-command = ‘{’ command * ‘}’

= EBNF is convenient for specifying all aspects of
syntax.

 Universic |
qf%ﬁigé\z Example: Calc syntax in EBNF (1)

= Production rules:

prog = com?™* eof
com = ‘put’ expr eol
| ‘set’ id =" expr eol
expr = prim (‘+ prim | ‘=" prim | ‘<" prim)*
prim num

| id
| “C expr)’

 Universic |
qf%ﬁigé\z Example: Calc syntax in EBNF (2)

= Production rules (continued):
id = 2 |D|c]...|2
num = (0 |‘U|..]9)"

eol = “\n’

