
1-1

1 Syntax

 Informal vs formal specification

 Regular expressions

 Backus Naur Form (BNF)

 Extended Backus Naur Form (EBNF)

 Case study: Calc syntax

Programming Languages 3 © 2012 David A Watt, University of Glasgow

1-2

What is syntax?

 The syntax of a PL is concerned with the form of
programs: how expressions, commands,
declarations, and other constructs are arranged
to make a well-formed program.

 When learning a new PL, we need to learn the
PL’s syntax.

 The PL’s syntax must be specified. Examples
alone do not show the PL’s generality:

 if n > 0 : write(n)

What is allowed here?
– a variable?
– an arbitrary expression?

What is allowed here?
– a simple command?
– a sequence of commands?

1-3

Informal vs formal specification

 An informal specification is one expressed in

natural language (such as English).

 A formal specification is one expressed in a

precise notation.

 Pros and cons of formal specification:

+ more precise

+ usually more concise

+ less likely to be ambiguous, inconsistent, or incomplete

– accessible only to those familiar with the notation.

1-4

Example: informal vs formal syntax

 Informal syntax of some commands in a C-like

language:

 A while-command consists of ‘while’, followed by an

expression enclosed in parentheses, followed by a

command.

 A sequential-command consists of a sequence of one
or more commands, enclosed by ‘{’ and ‘}’.

 Formal syntax (using EBNF notation):

 while-command = ‘while’ ‘(’ expression ‘)’

 command

 sequential-command = ‘{’ command + ‘}’

1-5

Notations for formal specification of PL

syntax

 Regular expressions (REs)

– good for specifying syntax of lexical elements of

programs (such as identifiers, literals, comments).

 Backus Naur Form (BNF)

– good for specifying syntax of larger and nested

program constructs (such as expressions, commands,

declarations).

 Extended Backus Naur Form (EBNF)

– combination of BNF and REs, good for nearly

everything.

1-6

Running example: Calc

 Calc is a very simple calculator language, with:

– variables named ‘a’, …, ‘z’

– expressions consisting of variables, numerals, and
arithmetic operators

– assignment and output commands.

 Example Calc program:

set x = 13
set y = x*(x+1)
put x
put y/2

1-7

Regular expressions

 A regular expression (RE) is a kind of pattern.

 Each RE matches a set of strings

– possibly an infinite set of strings.

 We can use REs for a variety of applications:

– specifying a pattern of strings to be searched for in a

text

– specifying a pattern of filenames to be searched for in a

file system

– specifying the syntax of a PL’s lexical elements.

1-8

Example: REs

 Examples:

 ‘M’(‘r’|‘rs’|‘iss’) – means ‘M’ followed by either

 ‘r’ or ‘rs’ or ‘iss’

 – matches ‘Mr’, ‘Mrs’, ‘Miss’.

 ‘b’(‘an’)*‘a’ – means ‘b’ followed by zero or more

 occurrences of ‘an’ followed by ‘a’

 – matches ‘ba’, ‘bana’, ‘banana’, etc.

 (‘x’|‘abc’)* – means zero or more occurrences of

 ‘x’ or ‘abc’

 – matches ‘’, ‘x’, ‘abc’,

 ‘xx’, ‘xabc’, ‘abcx’, ‘abcabc’,

 ‘xxx’, ‘xxabc’, ‘xabcx’, ‘abcxx’, etc.

1-9

RE notation (1)

 Basic RE notation:

– ‘xyz’ matches the string ‘xyz’

– RE1 | RE2 matches any string matched by either RE1

 or RE2

– RE1 RE2 matches any string matched by RE1

 concatenated with any string matched by RE2

– RE * matches the concatenation of zero or more

 strings, each of which is matched by RE

– (RE) matches any string matched by RE

 (parentheses used for grouping)

1-10

RE notation (2)

 Additional RE notation:

– RE ? matches either the empty string or any string

 matched by RE

– RE + matches the concatenation of one or more

 strings, each of which is matched by RE

 These additional forms are useful but not

essential. They can be expanded into basic RE

notation:

RE ? = RE | ‘’

RE + = RE RE*

1-11

Example: Calc lexicon (1)

 A Calc identifier consists of a single lower-case

letter.

 The syntax of such identifiers is specified by the

RE:

 ‘a’ | ‘b’ | ‘c’ | ‘d’ | ‘e’ | ‘f’ | ‘g’ | ‘h’ | ‘i’ |

‘j’ | ‘k’ | ‘l’ | ‘m’ | ‘n’ | ‘o’ | ‘p’ | ‘q’ | ‘r’ |

‘s’ | ‘t’ | ‘u’ | ‘v’ | ‘w’ | ‘x’ | ‘y’ | ‘z’

1-12

Example: Calc lexicon (2)

 A Calc numeral consists of one or more decimal

digits. E.g.:

 5 13 2000000000

 The syntax of such numbers is specified by the

RE:

 (‘0’ | ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘5’ | ‘6’ | ‘7’ | ‘8’ | ‘9’) +

1-13

Example: alphanumeric identifiers

 Consider a PL in which an identifier consists of a

sequence of one or more upper-case letters and

digits, starting with a letter. E.g.:

 X A1 P2P SOS

 The syntax of such identifiers is specified by RE:

 (‘A’ | ‘B’ | ‘C’ | ‘D’ | ‘E’ | ‘F’ | ‘G’ | ‘H’ | ‘I’ |

 ‘J’ | ‘K’ | ‘L’ | ‘M’ | ‘N’ | ‘O’ | ‘P’ | ‘Q’ | ‘R’ |

 ‘S’ | ‘T’ | ‘U’ | ‘V’ | ‘W’ | ‘X’ | ‘Y’ | ‘Z’)

(‘A’ | ‘B’ | ‘C’ | ‘D’ | ‘E’ | ‘F’ | ‘G’ | ‘H’ | ‘I’ |

 ‘J’ | ‘K’ | ‘L’ | ‘M’ | ‘N’ | ‘O’ | ‘P’ | ‘Q’ | ‘R’ |

 ‘S’ | ‘T’ | ‘U’ | ‘V’ | ‘W’ | ‘X’ | ‘Y’ | ‘Z’ |

 ‘0’ | ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘5’ | ‘6’ | ‘7’ | ‘8’ | ‘9’)*

one letter

zero or more

letters and

digits

1-14

Application of REs: Unix shell (1)

 The Unix shell scripting language uses an ad hoc

pattern-matching notation in which:

– […] matches any one of the enclosed characters

– ? (on its own) matches any single character

– * (on its own) matches any string of 0 or more

 characters.

 This a restricted variant of RE notation.

(It lacks “RE1|RE2” and “RE *”.)

1-15

Application of REs: Unix shell (2)

 Example commands:

print bat.[chp]

 prints files whose names are
 ‘bat.c’, ‘bat.h’, or ‘bat.p’

print bat.?

 prints all files whose names are
 ‘bat.’ followed by any single

 character

print *.c

 prints all files whose names end
 with ‘.c’

1-16

Application of REs: egrep (1)

 The Unix utility egrep uses the full pattern-

matching notation, in which the following have

their usual meanings:

– RE1|RE2

– RE*

– RE+

– RE?

 It also provides extensions such as:

– […] matches any one of the enclosed characters

– . matches any single character.

1-17

Application of REs: egrep (2)

 Example commands:

egrep "b[aei]t" file

 finds all lines in file containing ‘bat’,

 ‘bet’, or ‘bit’

egrep "b.t" file

 finds all lines in file containing ‘b’

 followed by any character followed by ‘t’.

egrep "b(an)*a" file

 finds all lines in file containing ‘b’

 followed by 0 or more occurrences of ‘an’

 followed by ‘a’.

1-18

Application of REs: Java pattern

matching

 Some Java classes also use the full pattern-

matching notation, with the same extensions as
egrep:

– […] matches any one of the enclosed characters

– . matches any single character.

 Example code:

 String s = …;

if (s.matches("b.t")) …

if (s.matches("b[aeiou]t")) …

if (s.matches("M(r|rs|iss)")) …

if (s.matches("b(an)*a")) …

1-19

Limitations of REs

 REs are not powerful enough to express the

syntax of nested (embedded) phrases.

 In every PL, expressions can be nested:

 n * (n + 1)

 In nearly every PL, commands can be nested:

 while (r>0)

 { m = n; n = r;

 r = m-(n*(m/n)); }

1-20

Grammars

 To specify the syntax of nested phrases such as

expressions and commands, we need a (context-

free) grammar.

 The grammar of a language is a set of rules

specifying how the phrases of that language are

formed.

 Each rule specifies how each phrase may be

formed from symbols (such as words and

punctuation) and simpler phrases.

1-21

Example: mini-English grammar (1)

 Mini-English consists of simple sentences like:

 I smell a rat .

 the cat sees me .

 The following symbols occur in mini-English

sentences:

 ‘a’ ‘cat’ ‘I’ ‘mat’ ‘me’ ‘rat’

‘see’ ‘sees’ ‘smell ’ ‘smells’ ‘the’ ‘.’

 The grammar uses the following symbols to

denote mini-English phrases:

 sentence subject object noun verb

terminal
symbols

nonterminal
symbols

1-22

Example: mini-English grammar (2)

 Production rules of the mini-English grammar:

 sentence = subject verb object ‘.’

 subject = ‘I’ | ‘a’ noun | ‘the’ noun

 object = ‘me’ | ‘a’ noun | ‘the’ noun

 noun = ‘cat’ | ‘mat’ | ‘rat’

 verb = ‘see’ | ‘sees’ | ‘smell’ | ‘smells’

read as
“A sentence consists of
a subject followed by
a verb followed by
an object followed by ‘.’.”

read as
“A subject consists of the word ‘I’ alone,
or the word ‘a’ followed by a noun,
or the word ‘the’ followed by a noun.”

1-23

Example: mini-English grammar (3)

 How sentences are structured:

rat a smell I .

sentence

subject

verb noun

object

cat the sees me .

sentence

object

verb noun

subject

 The structure of a sentence can be shown by a

syntax tree (see later).

1-24

Grammars, symbols, production rules

 A context-free grammar (or just grammar)

consists of:

– a set of terminal symbols

– a set of nonterminal symbols

– a sentence symbol

– a set of production rules.

Each terminal symbol
is a symbol that may
occur in a sentence.

Each nonterminal
symbol stands for a
phrase that may form
part of a sentence.

The sentence symbol
is the nonterminal
symbol that stands for
a complete sentence.

Each production rule
specifies how phrases
are composed from
terminal symbols and
sub-phrases.

1-25

BNF notation (1)

 Backus Naur Form (BNF) is a notation for

expressing a grammar.

 A simple production rule in BNF looks like this:

 N = α

N is a
nonterminal
symbol

α is a sequence of terminal and
nonterminal symbols

“=” is read as “consists of”

 Example (mini-English):

 sentence = subject verb object ‘.’

1-26

BNF notation (2)

 More generally, a production rule in BNF may

have several alternatives on its right-hand side:

 N = α | β | γ each of α, β, γ is a
sequence of terminal and
nonterminal symbols

“|” is read as “or”.

 Example (mini-English):

 subject = ‘I’ | ‘a’ noun | ‘the’ noun

1-27

Example: Calc grammar in BNF (1)

 Terminal symbols:

 ‘put’ ‘set’

‘=’ ‘+’ ‘-’ ‘*’ ‘(’ ‘)’

‘\n’

‘a’ ‘b’ ‘c’ … ‘z’ ‘0’ ‘1’ … ‘9’

 Nonterminal symbols:

 prog com

expr prim

num id

 Sentence symbol:

 prog

1-28

Example: Calc grammar in BNF (2)

 Production rules:

 prog = eof
 | com prog

 com = ‘put’ expr eol

 | ‘set’ id ‘=’ expr eol

 expr = prim
 | expr ‘+’ prim
 | expr ‘-’ prim
 | expr ‘*’ prim

 prim = num
 | id
 | ‘(’ expr ‘)’

A prog consists of just an eof,
or alternatively a com followed
by a prog.

In other words, a prog consists
of a sequence of zero or more
coms followed by an eof.

1-29

Example: Calc grammar in BNF (3)

 Production rules (continued):

 num = digit | num digit

 id = letter

 letter = ‘a’ | ‘b’ | ‘c’ | … | ‘z’

 digit = ‘0’ | ‘1’ | … | ‘9’

 eol = ‘\n’

1-30

Phrase structure

 A grammar defines how phrases may be formed

from sub-phrases in the language. This is called

phrase structure.

 Every phrase in the language has a syntax tree

that explicitly represents its phrase structure.

1-31

Example: mini-English syntax trees

 Syntax trees of mini-English sentences:

. I smell a rat

sentence

subject object verb

noun

the cat sees me .

sentence

subject object verb

noun

1-32

Example: Calc syntax trees (1)

 Syntax trees of Calc expressions:

prim

prim

id num

n + 1

expr

op expr

prim

* x

id

prim

prim

expr

id num

y - 22) (

prim

expr

op

op expr

expr

1-33

Example: Calc syntax trees (2)

 Syntax trees of Calc commands:

put n

id

expr

\n

prim

com

= 42 \n

num

expr

prim

set n

id

com

1-34

Syntax trees

 Consider a grammar G.

 A syntax tree of G is a tree with the following

properties:

– Every terminal node is labeled by a terminal symbol of

G.

– Every nonterminal node is labeled by a nonterminal

symbol of G.

– A nonterminal node labeled N

may have children labeled

X, Y, Z (from left to right)

only if G has a production rule

N = X Y Z or N = … | X Y Z | …

N

X Z Y

1-35

Phrases

 If N is a nonterminal symbol of G, a phrase of
class N is a string of terminal symbols labeling
the terminal nodes of a syntax tree whose root
node is labeled N.

– Note: The terminal nodes must be visited from left to
right.

 E.g., phrases in Calc:

– ‘x*(22-y)’ is a phrase of class expr

– ‘set n = 42 \n’ is a phrase of class com

– ‘set n = 42 \n put x*(22-y) \n’ is a phrase of class
prog.

1-36

Sentences and languages

 If S is the sentence symbol of G, a sentence of
G is a phrase of class S. E.g.:

– ‘set n = 42 \n put x*(22-y) \n’ is a sentence of
Calc.

 The language generated by G is the set of all
sentences of G.

 Note: The language generated by G is typically
infinite (although G itself is finite).

1-37

Phrase structure and semantics

 The above definition of a language is narrowly
syntactic: a set of sentences.

 We are also interested in the language’s
semantics (i.e., the meaning of each sentence).

 A grammar does more than generate a set of
sentences: it also imposes a phrase structure on
each sentence (embodied in the sentence’s
syntax tree).

 Once we know a sentence’s phrase structure,
we can use it to ascribe a meaning to that
sentence.

1-38

Example: expression structure (1)

 Consider this grammar (similar to Calc):

 expr = prim
 | expr ‘+’ prim

 | expr ‘-’ prim

 | expr ‘+’ prim

 prim = num

 | id
 | ‘(’ expr ‘)’

1-39

Example: expression structure (2)

 In this grammar, operators ‘+’, ‘-’, and ‘*’ all

have the same precedence . E.g.:

x-y*2 will be
evaluated as
(x-y)*2

prim

expr

prim

id num

expr

y * 2 -

prim

id

x

expr

1-40

Example: expression structure (3)

 But note that parentheses can always be used to

control the evaluation:

prim prim

id num

prim

id

expr expr

prim

expr

expr

() y * 2 - x

1-41

Example: expression structure (4)

 Consider this different grammar:

 expr = term
 | expr ‘+’ term

 | expr ‘-’ term

 term = prim
 | term ‘*’ prim

 prim = num

 | id
 | ‘(’ expr ‘)’

 This grammar is typical of most PLs such as C

and Java. It leads to a different phrase structure.

1-42

Example: expression structure (5)

 In this grammar, operator ‘*’ has higher

precedence than ‘+’ and ‘-’. E.g.:

x-y*2 will be
evaluated as
x-(y*2)

prim

expr

prim

id num

term

y * 2 -

id

x

term

prim

term

expr

1-43

Ambiguity

 A phrase is ambiguous if it has more than one
syntax tree.

 A grammar is ambiguous if any of its phrases is
ambiguous.

 Ambiguity is common in natural languages such
as English:

– The peasants are revolting.

– Time flies like an arrow. Fruit flies like a banana.

 The grammar of a PL should be unambiguous,
otherwise the meaning of some programs would
be uncertain.

1-44

Example: dangling “else” ambiguity (1)

 Part of the grammar of a fictional PL:

 com = ‘put’ expr

 | ‘if’ expr ‘then’ com

 | ‘if’ expr ‘then’ com ‘else’ com

 | …

 This makes some if-commands ambiguous, such

as:

if b then if c then put 1 else put 2

1-45

Example: dangling “else” ambiguity (2)

 The above if-command has two syntax trees:

b if else c if then then

expr expr

com

com

put 1

com com

put 2

com

b if c if then then

expr expr

com

else put 1

com

put 2

com

1-46

ENBF notation

 Extended Backus Naur Form (EBNF) is a

combination of BNF and RE notation.

 An EBNF production rule has the form:

 N = RE

 where RE is a regular expression, expressed in

terms of both terminal and nonterminal symbols.

 Example:

 sequential-command = ‘{’ command + ‘}’

 EBNF is convenient for specifying all aspects of

syntax.

1-47

Example: Calc syntax in EBNF (1)

 Production rules:

 prog = com * eof

 com = ‘put’ expr eol

 | ‘set’ id ‘=’ expr eol

 expr = prim (‘+’ prim | ‘-’ prim | ‘*’ prim)*

 prim = num

 | id
 | ‘(’ expr ‘)’

1-48

Example: Calc syntax in EBNF (2)

 Production rules (continued):

 id = ‘a’ | ‘b’ | ‘c’ | … | ‘z’

 num = (‘0’ | ‘1’ | … | ‘9’)+

 eol = ‘\n’

