
5-1

5 Compilation

 Overview

 Compilation phases

– syntactic analysis

– contextual analysis

– code generation

 Abstract syntax trees

 Case study: Fun language and compiler

Programming Languages 3 © 2012 David A Watt, University of Glasgow

5-2

Overview

 Recall: A compiler translates a source program

to object code, provided that it conforms to the

source language’s syntax and scope/type rules.

 This suggests a decomposition of the compiler

into three phases:

– syntactic analysis

– contextual analysis

– code generation.

5-3

Compilation phases (1)

 Syntactic analysis: Parse the source program

to check whether it is well-formed, and to

determine its phrase structure, in accordance

with the source language’s syntax.

 Contextual analysis: Analyze the parsed

program to check whether it conforms to the

source language’s scope rules and type rules.

 Code generation: Translate the parsed program

to object code, in accordance with the source

language’s semantics.

5-4

Compilation phases (2)

 Data flow between phases:

code
generation object

program
source

program

syntactic
analysis AST

syntactic
errors

contextual
analysis AST

scope/type
errors

 An AST (abstract syntax tree) is a convenient

way to represent a source program after

syntactic analysis (see later for details).

5-5

Case study: Fun language (1)

 Fun is a simple imperative language.

 A Fun program declares some global variables

and some procedures/functions, always including
a procedure named main().

 A Fun procedure/function may have a single

parameter. It may also declare local variables. A

function returns a result.

 Fun has two data types, bool and int.

 Fun commands include assignments, procedure

calls, if-commands, while-commands, and

sequential commands.

5-6

Case study: Fun language (2)

 Sample Fun program:

func int fac (int n): # returns n!

 int f = 1

 while n > 1:

 f = f*n n = n-1 .

 return f .

proc main ():

 int num = read()

 write(num)

 write(fac(num)) .

 Fun programs are free-format: spaces, tabs, and

EOLs (ends-of-lines) are not significant.

5-7

Case study: Fun language (3)

 Fun syntax (extracts):

 prog = var-decl * proc-decl + eof

 var-decl = type id ‘=’ expr

 type = ‘bool’

 | ‘int’

 com = id ‘=’ expr

 | ‘if’ expr ‘:’ seq-com ‘.’

 | …

 seq-com = com *

5-8

Case study: Fun language (4)

 Fun syntax (continued):

 expr = sec-expr …

 sec-expr = prim-expr
 ((‘+’ | ‘-’ | ‘*’ | ‘/’) prim-expr) *

 prim-expr = num

 | id
 | ‘(’ expr ‘)’

 | …

 For a full description, see Fun Specification

(available from the Moodle page).

primary-

expression

secondary-

expression

expression

5-9

Case study: Fun compiler (1)

 The Fun compiler generates SVM code. It is

expressed in Java:

Java

Fun → SVM

 This contains the following classes:

– syntactic analyser (FunLexer, FunParser)

– contextual analyser (FunChecker)

– code generator (FunEncoder).

5-10

Case study: Fun compiler (2)

 The compiler calls each of these in turn:

– The syntactic analyser lexes and parses the source

program, printing any error messages, and generates

an AST. Then the AST is printed.

– The contextual analyser performs scope/type checking,

printing any error messages.

– The code generator emits object code into the SVM

code store. Then the object code is printed.

 Compilation is terminated after syntactic or

contextual analysis if any errors are detected.

5-11

Case study: Fun driver

 The driver FunRun does the following:

– It compiles the source program into an SVM object

program.

– If no errors are detected, it calls the SVM interpreter to

run the object program.

 Of course, a real compiler would save the object

program in a file.

5-12

Abstract syntax trees

 An abstract syntax tree (AST) is a convenient

way to represent a source program’s phrase

structure.

 Structure of an AST:

– Each leaf node represents an identifier or literal.

– Each internal node corresponds to a source language

construct (e.g., a variable declaration or while-

command). The internal node’s subtrees represent the

parts of that construct.

 ASTs are much more compact than syntax trees

(§1).

5-13

Example: AST for Fun expression

 AST for expression ‘(x+13)*(y-z)’:

 Note: The AST makes no distinction between

exprs, sec-exprs, etc.: they are all just

expressions.

This subtree

is the right

operand.

This subtree

is the left

operand.

ID
‘y’

MINUS

TIMES

ID
‘z’

ID
‘x’

PLUS

NUM
‘13’

5-14

Example: AST for Fun command

 AST for ‘if n>0: n = n-1 write(n).’:

This subtree

is the if-

body.
This subtree

is the if-

condition.

 Note: The AST makes no distinction between

coms and seq-coms: they are all just commands.

ID
‘n’

MINUS

ASSN

IF

SEQ

ID
‘n’

GT

NUM
‘0’

NUM
‘1’

ID
‘write’

ID
‘n’

PROCCALL

ID
‘n’

5-15

Case study: summary of Fun ASTs (1)

 ASTs for Fun commands (com):

…

SEQ

com

IF

expr com

IFELSE

expr com1 com2

WHILE

expr com

ASSN

expr
ID

‘…’

PROCCALL

expr
ID

‘…’

subtree

Key:

5-16

Case study: summary of Fun ASTs (2)

 ASTs for Fun expressions (expr):

FALSE TRUE NUM
‘…’

ID
‘…’

EQ

expr1 expr2

LT

expr1 expr2

GT

expr1 expr2

NOT

expr

PLUS

expr1 expr2

MINUS

expr1 expr2

TIMES

expr1 expr2

DIV

expr1 expr2

FUNCCALL

ID

‘…’
expr

5-17

Case study: summary of Fun ASTs (3)

 AST for Fun programs:

PROG

var-
decl

… proc-
decl

…

5-18

Case study: summary of Fun ASTs (4)

 ASTs for Fun variable declarations (var-decl):

 ASTs for Fun types (type):

BOOL INT

VAR

type
ID

‘…’
expr

5-19

Case study: summary of Fun ASTs (5)

 ASTs for Fun procedure declarations (proc-decl):

FORMAL

type
ID

‘…’

 ASTs for Fun formal parameters (formal):
NOFORMAL

PROC

ID

‘…’
formal

var-
decl

… com

FUNC

type
ID

‘…’
formal

var-
decl

… com expr

5-20

Example: Fun compilation (1)

 Source program:

int n = 15

pointless program

proc main ():

 while n > 1:

 n = n/2 .

.

5-21

Example: Fun compilation (2)

 AST after syntactic analysis (slightly simplified):

PROG

NOFORMAL

DIV

ASSN

PROC

WHILE

GT

VAR

ID
‘n’

INT
‘int’

ID
‘n’

NUM
‘1’

NUM
‘2’

ID
‘n’

NUM
‘15’

ID
‘n’

ID
‘main’

5-22

Example: Fun compilation (3)

 AST after contextual analysis: Type table

‘n’ INT

‘main’ VOID → VOID

:BOOL

:INT :INT :INT :INT :INT :INT

:INT

PROG

DIV

ASSN

PROC

WHILE

GT

VAR

ID
‘n’

INT
‘int’

ID
‘n’

NUM
‘1’

NUM
‘2’

ID
‘n’

NUM
‘15’

ID
‘n’

ID
‘main’

NOFORMAL

5-23

Example: Fun compilation (3)

 SVM object code after code generation:

Address table

‘n’ 0 (global)

‘main’ 7 (code)

0:

3:

6:

7:

10:

13:

14:

17:

20:

23:

24:

27:

30:

LOADLIT 15

CALL 7

HALT

LOADG 0

LOADLIT 1

COMPGT

JUMPF 30

LOADG 0

LOADLIT 2

DIV

STOREG 0

JUMP 7

RETURN 0

