U t : :
& yelseoy 5 Compilation

Overview

= Compilation phases
— syntactic analysis
— contextual analysis

— code generation

Abstract syntax trees

= Case study: Fun language and compiler

Programming Languages 3 © 2012 David A Watt, University of Glasgow

Umver31ty _
of Glasgow Overview

= Recall: A compiler translates a source program
to object code, provided that it conforms to the
source language’s syntax and scope/type rules.

= This suggests a decomposition of the compiler
Into three phases:

— syntactic analysis
— contextual analysis

— code generation.

! Umver51ty

of Glasgow Compilation phases (1)

= Syntactic analysis: Parse the source program
to check whether it is well-formed, and to
determine its phrase structure, in accordance
with the source language’s syntax.

= Contextual analysis: Analyze the parsed
program to check whether it conforms to the
source language’s scope rules and type rules.

= Code generation: Translate the parsed program
to object code, in accordance with the source
language’s semantics.

Umver31ty .
of Glasgow Compilation phases (2)

= Data flow between phases:

syntactic\ contextual) code | >
source | analysis | AgT analysis | AgT " (generation] gpiact
program program
syntactic scopel/type

errors errors
v v

= An AST (abstract syntax tree) is a convenient
way to represent a source program after
syntactic analysis (see later for details).

! Umver51ty

of Glasgow Case study: Fun language (1)

Fun is a simple imperative language.

= A Fun program declares some global variables
and some procedures/functions, always including
a procedure named main ().

= A Fun procedure/function may have a single
parameter. It may also declare local variables. A
function returns a result.

= Fun has two data types, bool and int.

= Fun commands include assignments, procedure
calls, if-commands, while-commands, and
cqyent OMMmMang

! Umver31ty

of Glasgow Case study: Fun language (2)

= Sample Fun program:

func int fac (int n): # returns n!
int £ =1
while n > 1:
f = f*n n = n-1

return f

proc main () :
int num = read/()
write (num)
write (fac (num))

Ll
= Fun programs are free-format: spaces, tabs, and

EOLs (ends-of-lines) are not significant.

o1a| Universit
Qf&l\gssrgoxz Case study: Fun language (3)

= Fun syntax (extracts):

prog = var-decl* proc-decl* eof
var-decl = type id = expr
type = ‘bool’
| ‘int’
com id =" expr

1) 1)

| ‘if’ expr ‘:’ seqg-com
|

seg-com = com?*

Universit
of%ﬁif;é% Case study: Fun language (4)

= Fun syntax (continued):

expression-—----—--. expr = sec-expr ...

secondary-___.. sec-expr = prim-expr
expression ((+ | =" % | /) prim-expr)*
pmary- ... prim-expr = num
expression | id
| “(C expr ‘)’
|

= For a full description, see Fun Specification
(available from the Moodle page).

Universit :
qf%f;srgoxz Case study: Fun compiler (1)

= The Fun compiler generates SVM code. It is
expressed in Java:

Fun — SVM

Java

= This contains the following classes:

— syntactic analyser (FunLexer, FunParser)
— contextual analyser (FunChecker)

— code generator (FunEncoder).

! Umver31ty

of Glasgow Case study: Fun compiler (2)

= The compiler calls each of these in turn:

— The syntactic analyser lexes and parses the source
program, printing any error messages, and generates
an AST. Then the AST is printed.

— The contextual analyser performs scope/type checking,
printing any error messages.

— The code generator emits object code into the SVM
code store. Then the object code is printed.

= Compilation is terminated after syntactic or
contextual analysis If any errors are detected.

Universit :
qulasgoxz Case study: Fun driver

= The driver runrun does the following:

— It compiles the source program into an SVM object
program.

— If no errors are detected, it calls the SVM interpreter to
run the object program.

= Of course, a real compiler would save the object
program in a file.

Universit
QfGlasgowy Abstract syntax trees

= An abstract syntax tree (AST) Is a convenient
way to represent a source program'’s phrase
structure.

= Structure of an AST:

— Each leaf node represents an identifier or literal.

— Each internal node corresponds to a source language
construct (e.g., a variable declaration or while-
command). The internal node’s subtrees represent the
parts of that construct.

= ASTs are much more compact than syntax trees

(81).

Universit :
Glasgoxz Example: AST for Fun expression

= AST for expression ‘ (x+13) * (y-z)

This subtree T"\TES . This subtree
s the left . g by 7 is the right
operand. o operand.
NUM
x’ 13’ y

= Note: The AST makes no distinction between
exprs, sec-exprs, etc.: they are all just
expressions.

! Umver31ty

of Glasgow Example: AST for Fun command

= AST for ‘if n>0: n = n-1 write(n) . .

| . This subtree
SE|Q s the if-
. | | body.
This subtree ASSN PROCCALL
e ift- | |
condition. - GT MINUS
ID NUM ID ID NUM ID ID
n’ {0} n’ n’ 1’ ‘write’ n’

= Note: The AST makes no distinction between
coms and seq-coms: they are all just commands.

Umver31ty
! of Glasgow Case study: summary of Fun ASTs (1)

= ASTs for Fun commands (com):

ASSN PROCCALL SEQ

1D expr 1D expr com
IF IFELSE WHILE
|
| |
expr com expr com; com, expr com

Key:

subtree

! Umver31ty

of Glasgow Case study: summary of Fun ASTs (2)

= ASTSs for Fun expressions (expr):

FALSE TRUE NUM ID FUNCCALL

-

‘lD, expr

PLUS MINUS TIMES DIV

—— =

expr, Eexpr, expr; expr, Eexpr, expr, expr; expr,

E|Q L|T G|T NOT
]]] ‘

expr; expr, expr; expr, expr, expr, expr

S
qul\ggé\z Case study: summary of Fun ASTs (3)

= AST for Fun programs:

PROG

Uni 1t
of%ﬁif;é% Case study: summary of Fun ASTs (4)

= ASTs for Fun variable declarations (var-decl):

VAR

|
| | |
type 1D expr

= ASTs for Fun types (type):

BOOL INT

! Umver31ty

of Glasgow Case study: summary of Fun ASTs (5)

= ASTSs for Fun procedure declarations (proc-decl):

PROC
|

l | | | |

D formal Ve ... com

. decl

FUNC
|
| | | | | | |

type ID formal var- .. com expr
yp ‘L) decl P

= ASTs for Fun formal parameters (formal):

FORMAL NOFORMAL

|
]

type P,

o1a Universit —
qf%f;ssrgoxz Example: Fun compilation (1)

= Source program:

int n = 15
pointless program
proc main () :
while n > 1:
n =n/2

o1a Universit —
qf%f;ssrgoxz Example: Fun compilation (2)

= AST after syntactic analysis (slightly simplified):

PROG
— |
| |
VAR PROC

|
| |
NOFORMAL

o1a Universit —
qf%f;ssrgoxz Example: Fun compilation (3)

= AST after contextual analysis: Type table
‘n’ INT
PROS ‘main’ | VOID — VOID
main —
— | |
VAR PR|OC
| |
NOFORMAL WH||LE
:BOOL |
AS|SN
INT
GT DIV
ANT ANT ANT ANT ANT ANT

INT ID NUM ID ID NUM ID ID NUM
‘int’ n’ 15’ ‘main’ n’ 1’ n’ n’ 2’

University
of Glasgow

—

0:
3.
6:
7
10:
13:
14:
17:
20:
23:
24
27:
30:

Example: Fun compilation (3)

LOADLIT 15
CALL 7/
HALT
LOADG O
LOADLIT 1
COMPGT
JUMPFEF 30
LOADG O
LOADLIT 2
DIV
STOREG O
JUMP 7/
RETURN O

= SVM object code after code generation:

Address table

n

0 (global)

‘main’

7 (code)

