otal Universi .
e 12 Data abstraction

= Packages and encapsulation

= Classes, subclasses, and inheritance

Programming Languages 3 © 2012 David A Watt, University of Glasgow

Universit
of Glasgowy Packages

= A package (or module) is a named group of
components declared for a common purpose.

= These components may be types, constants,
variables, procedures, inner packages, etc.
(depending on the PL).

= The meaning of a package is the set of bindings
exported by the package

— often called the package’s application program
interface (API).

o1a| Universit _
QfGlang\z Example: simple Python module

= Qutline of a module (dictionary.py)

words = [..]

def contains (word):
global words
return (word in words)

def add (word):
global words
i1f word not in words:
words += [word]

= This module’s API:

{ words — a list of words,
contains— a function that tests whether a word is in the list,
add — a procedure that adds a word to the list }

12-3

Universit :
QfGlasgowy Encapsulation (1)

= Some of the components of a program-unit
(package/class) may be private. This is called
encapsulation.

= |evels of privacy:

— A component is private if it is visible only inside the
program-unit.

— A component is protected if it is visible only inside the
program-unit and certain “friendly” program-units.

— A component is public if it is visible to application code
outside the program-unit.

= A program-unit’s API consists of its public
bindings only.

Universit :
QfGlasgowy Encapsulation (2)

= Most PLs (such as Ada, Java, Haskell) allow
Individual components of a program-unit to be
specified as private/protected/public.

= Python has a convention that components whose
names start with “ " are private, whilst those
whose names start with letters are public.

— This convention is not enforced by the Python compiler.

University Example: Python module with
encapsulation

of Glasgow

= Qutline of a module (dictionary.py)

_words = [..]

def contains (word):
global words
return (word in words)

def add (word):
global words
if word not in words:
_words += [word]

= This module’s API:

{ contains— a function that tests whether a word is in the list,
add — a procedure that adds a word to the list }

Universit
qulasgoxz Example: Java packages

= |n Java, the components of a package are
classes and inner packages.

= Package components are added incrementally.

= Qutline of a class declaration within a package:

----------- declares that class C is a

package sprockets; component of package

import widgets.*; - sprockets
~~~~~ - declares that class C uses
public class C { public components of

package widgets
}




! Umver31ty

of Glasgow Classes (1)

An object is a tagged tuple of variable
components (instance variables), equipped with
operations that access these instance variables.

= A constructor is an operation that initializes a
newly created object.

= Aninstance method is an operation that
Inspects and/or updates an existing object of
class C. That object (known as the receiver
object) is determined by the method call.

= A class is a set of similar objects. All objects of a
given class C have similar instance variables,
and are equipped with the same operations.




Umver31t
! Gasgoxz Classes (2)

= A Java class declaration:
— declares its instance variables
— defines its constructors and instance methods

— specifies whether each of these is private, protected, or
public.

= A Java instance method call has the form
‘O.M(...)”

— The expression O yields the receiver object.
— M is the name of the instance method to be called.

— The call executes the method body, with this bound to
the receiver object.



University
< of Glasgow Example: Java class (1)

= Class declaration:
class Dict {

private int size;
private String[] words;

public Dict (int capacity)
{ ...}

public void add (String w)
{ if (! this.contains (w))
this.words[this.size++] = w; }

public boolean contains (String w)

{ }




o1a| Universit
QfGlang\z Example: Java class (2)

= Possible application code:

Dict mainDict = new Dict (10000) ;
Dict userDict = new Dict (1000);

if (! mainDict.contains (currentWord)
&& ! userDict.contains (currentWord))
userDict.add (currentWord):;

= |llegal application code: e illegal

userDict.size = 0; -
out.print (userDict.words[0]);



! Umver31ty

fGlasgow Subclasses

= |fC'Isasubclass of C (or Cis a superclass of
C'), then C' is a set of objects that are similar to
one another but richer than the objects of class
04
— An object of class C' has all the instance variables of an

object of class C, but may have extra instance
variables.

— An object of class C' is equipped with all the instance
methods of class C, but may override some of them,
and may be equipped with extra instance methods.



Universit :
QfGlang\z Inheritance

= By default, a subclass inherits (shares) its
superclass’s instance methods.

= Alternatively, a subclass may override some of
its superclass’s instance methods, by providing
more specialized versions of these methods.




University
< of Glasgow Example: Java class and subclasses (1)

= Class declaration:
class Shape {

protected float x, y;

public final wvoid move (
float dx, float dy)

{ X += dx; vy += dy; }

public void draw ()
{ ...} // draws a point at (x, y)



University
< of Glasgow Example: Java class and subclasses (2)

= Subclass declaration:
class Circle extends Shape {
private float r;

public Circle (float radius)
{ x=0.0;, v =20.0;, r = radius; }

public void draw ()
{ ...} // draws acircle centred at (x, v)

public float diameter ()
{ return 2.0*r; }




University
%7 of Glasgow Example: Java class and subclasses (3)

= Subclass declaration:
class Box extends Shape {
private float w, h;

public Box (...)
{ ...}

public void draw ()
{ ... } // draws a box centred at (x, y)

public float width ()
{ return w; }

public float height ()
{ return h; }



University
< of Glasgow Example: Java class and subclasses (4)

= Possible application code:

Shape s = new Shape () ;
Circle ¢ = new Circle(10.0);
s.move (12.0, 5.0);
c.move (3.0, 4.0);

. c.dlameter ()

s.draw (); draws a point at (12, 5)
c.draw (); e draws a circle centred at (3, 4)

() ; o ditto! (dynamic dispatch)



! Umver51ty

fGlasgow Overriding

= Each instance method of a class C is inherited by
the subclass C', unless it is overridden by C'.

= The overriding method in class C' has the same
name and type as the original method in class C.

= Most OO PLs allow the programmer to specify
whether an instance method is virtual (may be
overridden) or not:

— In C++, an instance method specified as virtual may
be overridden.

— In Java, an instance method specified as £inal may
not be overridden.




Universit , _
QfGl\z,isrgowy Dynamic dispatch

= |n every OO PL, a variable of type C may refer to
an object of any subclass of C.

= |f method M is virtual, then the method call
“O.M(...) " entails dynamic dispatch:

— The compiler infers the type of O, say class C. It then
checks that class C is equipped with an instance
method named M, of the appropriate type.

— At run-time, however, it might turn out that the receiver
object is of class C', a subclass of C. The receiver
object’s tag is used to determine its actual class, and

hence determine which of the methods named M is to

be called.



Universit . : :
QfGlang\z Single inheritance

= An OO PL supports single inheritance if each
class has at most one superclass.

= Single inheritance gives rise to a hierarchy of
classes.

= Single inheritance is supported by most OO PLs,
Including Java.



Universit : : :
qulasgoxz Example: Java single inheritance

Object

clone
— Date (subclass of Object) equals

= Declared classes:

— Shape (subclass of Object) 1} l}

| |
— Circle, Box Shape Date
(both subclasses of Shape). X,y y, m, d

. move
= Hierarchy of classes: draw

F

[
Circle Box
r w, h

draw draw
diameter width
height




Universit . : :
QfGlang\z Multiple inheritance

Multiple inheritance allows each class to have
any number of superclasses.

= Multiple inheritance is supported by C++.

= Nevertheless, multiple inheritance gives rise to
both conceptual and implementation problems.



Universit : : :
QfGl\zllslg;{O\z Example: C++ multiple inheritance (1)

= Declared classes:

— Animal
— Mammal, Flier, Bird Animal
(subclasses of Animal) weight

speed

— Cat (subclass of Mammal)

~ Bat (subclass of W
Mammal, Flier) | |

_ etc. Mammal Flier Bird
gestation| |span egg-size
= Class
relationships: | r e | ;A | Y] |
Cat Bat Eagle Penguin

sonar




Universit : : .
qf%ﬁ?g%\% Example: C++ multiple inheritance (2)

= Suppose:
— the Animal class defines a method named move

— the Mammal and Flier classes both override that
method.

= \Which method does the Rat class inherit?

Bat b = ...; b.move(...);

= Possible answers:

— Make it call the Mammal method.
— Force the programmer to choose.

— Make this method call illegal.



