
12-1

12 Data abstraction

 Packages and encapsulation

 Classes, subclasses, and inheritance

Programming Languages 3 © 2012 David A Watt, University of Glasgow

12-2

Packages

 A package (or module) is a named group of

components declared for a common purpose.

 These components may be types, constants,

variables, procedures, inner packages, etc.

(depending on the PL).

 The meaning of a package is the set of bindings

exported by the package

– often called the package’s application program

interface (API).

12-3

Example: simple Python module

 Outline of a module (dictionary.py)

 words = […]

 def contains (word):

 global words

 return (word in words)

 def add (word):

 global words

 if word not in words:

 words += [word]

 This module’s API:
{ words  a list of words,
 contains a function that tests whether a word is in the list,
 add  a procedure that adds a word to the list }

12-4

Encapsulation (1)

 Some of the components of a program-unit

(package/class) may be private. This is called

encapsulation.

 Levels of privacy:

– A component is private if it is visible only inside the

program-unit.

– A component is protected if it is visible only inside the

program-unit and certain “friendly” program-units.

– A component is public if it is visible to application code

outside the program-unit.

 A program-unit’s API consists of its public

bindings only.

12-5

Encapsulation (2)

 Most PLs (such as Ada, Java, Haskell) allow

individual components of a program-unit to be

specified as private/protected/public.

 Python has a convention that components whose

names start with “_” are private, whilst those

whose names start with letters are public.

– This convention is not enforced by the Python compiler.

12-6

Example: Python module with

encapsulation

 Outline of a module (dictionary.py)

 _words = […]

 def contains (word):

 global _words

 return (word in _words)

 def add (word):

 global _words

 if word not in _words:

 _words += [word]

 This module’s API:
{ contains a function that tests whether a word is in the list,
 add  a procedure that adds a word to the list }

12-7

Example: Java packages

 In Java, the components of a package are

classes and inner packages.

 Package components are added incrementally.

 Outline of a class declaration within a package:

 package sprockets;

 import widgets.*;

 public class C {

 …

}

declares that class C is a
component of package
sprockets

declares that class C uses
public components of
package widgets

12-8

Classes (1)

 An object is a tagged tuple of variable
components (instance variables), equipped with
operations that access these instance variables.

 A constructor is an operation that initializes a
newly created object.

 An instance method is an operation that
inspects and/or updates an existing object of
class C. That object (known as the receiver
object) is determined by the method call.

 A class is a set of similar objects. All objects of a
given class C have similar instance variables,
and are equipped with the same operations.

12-9

Classes (2)

 A Java class declaration:

– declares its instance variables

– defines its constructors and instance methods

– specifies whether each of these is private, protected, or
public.

 A Java instance method call has the form
“O.M(…)”:

– The expression O yields the receiver object.

– M is the name of the instance method to be called.

– The call executes the method body, with this bound to
the receiver object.

12-10

Example: Java class (1)

 Class declaration:

 class Dict {

 private int size;

 private String[] words;

 public Dict (int capacity)

 { … }

 public void add (String w)

 { if (! this.contains(w))

 this.words[this.size++] = w; }

 public boolean contains (String w)

 { … }

 }

12-11

Example: Java class (2)

 Possible application code:

 Dict mainDict = new Dict (10000);

Dict userDict = new Dict (1000);

…

if (! mainDict.contains (currentWord)

 && ! userDict.contains (currentWord))

 userDict.add (currentWord);

 Illegal application code:

 userDict.size = 0;

out.print (userDict.words[0]);

illegal

12-12

Subclasses

 If C' is a subclass of C (or C is a superclass of

C'), then C' is a set of objects that are similar to

one another but richer than the objects of class

C:

– An object of class C' has all the instance variables of an

object of class C, but may have extra instance

variables.

– An object of class C' is equipped with all the instance

methods of class C, but may override some of them,

and may be equipped with extra instance methods.

12-13

Inheritance

 By default, a subclass inherits (shares) its

superclass’s instance methods.

 Alternatively, a subclass may override some of

its superclass’s instance methods, by providing

more specialized versions of these methods.

12-14

Example: Java class and subclasses (1)

 Class declaration:

 class Shape {

 protected float x, y;

 public Shape ()

 { x = 0.0; y = 0.0; }

 public final void move (

 float dx, float dy)

 { x += dx; y += dy; }

 public void draw ()

 { … } // draws a point at (x, y)

 }

abbreviations for
this.x and this.y

12-15

Example: Java class and subclasses (2)

 Subclass declaration:

 class Circle extends Shape {

 private float r;

 public Circle (float radius)

 { x = 0.0; y = 0.0; r = radius; }

 public void draw ()

 { … } // draws a circle centred at (x, y)

 public float diameter ()

 { return 2.0*r; }

 }

12-16

Example: Java class and subclasses (3)

 Subclass declaration:

 class Box extends Shape {

 private float w, h;

 public Box (…)

 { … }

 public void draw ()

 { … } // draws a box centred at (x, y)

 public float width ()

 { return w; }

 public float height ()

 { return h; }

 }

12-17

Example: Java class and subclasses (4)

 Possible application code:

 Shape s = new Shape();

Circle c = new Circle(10.0);

s.move(12.0, 5.0);

c.move(3.0, 4.0);

… c.diameter() …

 s.draw();

c.draw();

 s = c;

s.draw();

draws a point at (12, 5)

draws a circle centred at (3, 4)

ditto! (dynamic dispatch)

12-18

Overriding

 Each instance method of a class C is inherited by

the subclass C', unless it is overridden by C'.

 The overriding method in class C' has the same

name and type as the original method in class C.

 Most OO PLs allow the programmer to specify

whether an instance method is virtual (may be

overridden) or not:

– In C++, an instance method specified as virtual may

be overridden.

– In Java, an instance method specified as final may

not be overridden.

12-19

Dynamic dispatch

 In every OO PL, a variable of type C may refer to
an object of any subclass of C.

 If method M is virtual, then the method call
“O.M(…)” entails dynamic dispatch:

– The compiler infers the type of O, say class C. It then
checks that class C is equipped with an instance
method named M, of the appropriate type.

– At run-time, however, it might turn out that the receiver
object is of class C', a subclass of C. The receiver
object’s tag is used to determine its actual class, and
hence determine which of the methods named M is to
be called.

12-20

Single inheritance

 An OO PL supports single inheritance if each

class has at most one superclass.

 Single inheritance gives rise to a hierarchy of

classes.

 Single inheritance is supported by most OO PLs,

including Java.

12-21

Example: Java single inheritance

 Declared classes:

– Date (subclass of Object)

– Shape (subclass of Object)

– Circle, Box

(both subclasses of Shape).

 Hierarchy of classes:

clone
equals
…

Object

…

Date

y, m, d

draw
width
height

Box

w, h

draw
diameter

Circle

r

move
draw

Shape

x, y

12-22

Multiple inheritance

 Multiple inheritance allows each class to have

any number of superclasses.

 Multiple inheritance is supported by C++.

 Nevertheless, multiple inheritance gives rise to

both conceptual and implementation problems.

12-23

Example: C++ multiple inheritance (1)

 Declared classes:
– Animal

– Mammal, Flier, Bird

(subclasses of Animal)

– Cat (subclass of Mammal)

– Bat (subclass of

Mammal, Flier)

– etc.

 Class

relationships:

…

Mammal

gestation

…

Flier

span

…

Bird

egg-size

…

Cat

…

…

Bat

sonar

…

Animal

weight
speed

…

Eagle

…

…

Penguin

…

12-24

Example: C++ multiple inheritance (2)

 Suppose:

– the Animal class defines a method named move

– the Mammal and Flier classes both override that

method.

 Which method does the Bat class inherit?

 Bat b = …; b.move(…);

 Possible answers:

– Make it call the Mammal method.

– Force the programmer to choose.

– Make this method call illegal.

