o1a Universit : :
& 7ohgow 15 Native code generation

Characteristics of real machines

= Register allocation

Intermediate representation

= Code selection

Programming Languages 3 © 2012 David A Watt, University of Glasgow

! Umver31ty

of Glasgow Characteristics of real machines

= Code selection is difficult because:

— CISC machines have very complicated instructions,
with multiple addressing modes.

— even RISC machines have some fairly complicated
instructions.

= Register allocation is an issue:
— Registers should be used as much as possible.

— RISC machines typically have only general-purpose
registers.

— CISC machines typically have a variety of special-
purpose registers (e.g., int registers, float registers,
address registers).

Universit _ _
QfGlasgowy Register allocation

Aim to use registers as much as possible for
local variables and intermediate results of
expressions.

= Problem: The number of registers is limited

— especially when some are dedicated (e.g., fp, sp).

= Opportunity: Different variables can be allocated
to the same regqister if they are live at different
times.

= Here, a variable is deemed to be live only if it
might be inspected later.

Universit . : :
QfGlasgowy Register allocation: basic-blocks

= A basic-block (BB) is a straight-line sequence of
Instructions:

— Nno jumps except at the end of a BB
— no jumps to anywhere except the start of a BB.

= Within a BB, break up complicated expressions
using temporary variables, such that each
assignment instruction contains at most one
operator. E.g.:

t1<—Db+c
a = (b+c)*(d-e); =—Pp t2 —d-e
a«—t1xt2

= Note: Basic-blocks are unrelated to block
structure.

Universit |
of%ﬁif;é% Example: basic-block (1)

= Consider the C function:

int tri (int a, int b, int c) {
int s = (a+b+c)/2;
return s*(s-a) *(s-b) * (s—-c) ;

}

= This function’s body is a single BB: |t1«<a+Db
t2 —t1+c

S—1t2/2
t3«—s—a
t4 «— s xt3
t«<—s-Db
t6 «— t4 x t5
tf —s—-c
t8 «— t6 x t7
return t8

o1a Universit _
Qf&l\gssrgoxz Example: basic-block (2)

= \Within the BB, determine where each variable iIs

live, then allocate registers:
a b c

t1<—a+b t1

2 —t1+c l o
S«—12/2 S

t3«<—s—a t3
t4 s x 13 | u
tb«<—s—-Db lt5
t6 — t4 x tb

tf —s—-c lt7
{8 « 16 x 17 | s
return t8
Allocated:

rlr2r3rdrdrdrlrlr2rl r2rl

Universit : :
qulasgoxz Register allocation: control-flow graphs

= A control-flow graph is a directed graph in
which:

— each vertex is a BB

— each edge is a jump from the end of one BB to the start
of another BB

— one vertex Is designated as the entry point
one vertex is designated as the exit point.

University
<7 of Glasgow Example: control-flow graph (1)

= Consider the C function:

int pow (int b, int n) {
int p =1, g =Db, m = n;
while (m > 0) {
if (m & 1) p = p*qg;
m = m/2;
q = g*q;
}

return p;

Universit
qf%ﬁ?g%\% Example: control-flow graph (2)

BB1

. . p—1
= This function’s body q—b
IS a control-flow graph: m <« n
R
L . . — M>
?_Nhgre IS each variable jump if t1
Ve :
BBB\\
— b and n are live only in t2 — m&1
BB1 jump if t2
— pis live everywhere AN
_ P < pPxq
— mand g are live /
: BBS
everywhere except in BB6 m < m/2
— tlislive only in BB2 q <— (X
— t2is live only in BB3. BB6 ¥ |

return p

Universit : . :
QfGlasgowy Liveness analysis: data flow equations

= Define the following sets for each BB b in a
control-flow graph:

— in[b] is the set of variables live at the start of b
— out[b] is the set of variables live at the end of b

— use[b] is the set of variables v such that b inspects v
(before any update to v)

— def[b] is the set of variables v such that b updates v
(before any inspection of v)

= Data flow equations for liveness analysis:
in[b] = use[b] U (out[b] — def[b])

out[b] = in[b]T U in[b"]U ...
(where b', b", ... are the successors of b in the flow graph)

15-10

Universit : : :
QfGlang\z Liveness analysis: algorithm

= The liveness analysis algorithm follows directly
from the data flow equations:

To compute in[b] and out[b] for all BBs in a control-flow
graph:

1. For each b:
1.1. Setin[b] =out[b] ={}.
2. Repeat until the sets in[b] and out[b] stop changing:
2.1. For eachb:
2.1.1. Setin[b] = use[b] U (out[b] — def[b]).
2.1.2. Setout[b]=in[b]Uin[b"]U ...
(where b', b", ... are the successors of b).

Universit . :
qulasgoxz Intermediate representation

= Native code generation is simplified by using a
low-level intermediate representation (IR) of
the source program.

= The IR should be capable of:
— representing the semantics of the source code

— representing the semantics of target-machine
Instructions.

= The IR should ideally be independent of the
target machine.

Universit
qf%l\z’lsrgoxz Example: IR tree (1)

7

= Consider the C assignment “a[1i] =v;".

= Assume that:
— a hastype int* and v has type int
— each int occupies 4 bytes

— variable a is located at offset a within the topmost

activation frame (that location contains the base
address of a)

— variable i is located in register r9

— variable v is located at offset v within the topmost
activation frame.

= Addressofal[i] IS:
of a

hase addre + 4% (content of i).

o1a Universit
qf&l\gssrgmz Example: IR tree (2)

7

= Possible IRtreefor“a[i] =v;”;

mC|)V€
| |
a1k S—
reg const

-l_ ,_i_‘ fp Vv

re const

im il 5 | 5%
reg const

fp a

Umver31ty
of Glasgow Summary of IR trees

= |R trees:

const reg
C r

+

-

1
f

mem move

Key:

subtree

15-15

Universit . : :
qf%f;srgoxz Modelling target instructions

= Model the semantics of each target machine
Instruction using an IR tree pattern.

= Note: We use the same IR to model both source
code and target instructions.

Universit
qf%f;srgoxz Example: Jouette (1)

= Jouette Is a hypothetical RISC machine

— invented by Andrew Appel for his Modern Compiler
Implementation books.

= Jouette architecture:
— general-purpose registers r0, r1, r2, ..., r31

— 10 always contains zero.

e
of Glasgow

Example: Jouette (2)

Jouette instruction set:

Mnemonic Behaviour
ADD r,r',r" Fre—r+r"
SUB r,1', 1" Fe—r —r"
MUL r,r,r" F—rxr"
ADDI r,1',C r<—r+c
SUBI r,r',cC r<—r-—c

LOAD r,c(r)

r — mem[r' + cj

STORE r,c(r")

mem[r' + c] «r

COPY (r), (r")

mem|r' | < memr]

r,r,rare
registers;
cisa
constant

University Example: modelling Jouette instructions

(1)

of Glasgow

= Jouette arithmetic instructions:

ADD f,1',1" +
(r—r+r") [—‘—\
SUB r,1',r" -
(rer-—-r") [—k—\
] 1] X
MUL r,r',r
(r—rxr) [
ADDI r1,I',C + + constc
(r—r'+c) —— (r'=r0)
const c const c
SUBI r,r',cC —
(r—r-c) —— It's possible for >1

const c patterns to model 1
Instruction.

15-19

!UmverSIty Example: modelling Jouette instructions

(2)

of Glasgow

= Jouette load/store instructions:

LOAD T,c (I') mem mem mem mem
(r — mem[r' + c]) * * const c
— 1 (r=r0) (c=0)

const c constc

STORE r,C(I") move move move
'+
(mem|[r' + c] <) meﬁ%m me%m me!—k—\m
' |
+ + const c
!—‘—\ !—‘—\ (I’l _ rO)
constc! |constc -

COPY (1), (r') move
(mem[r'] < —

mem | | mem
mem|r]) | |

Universit :
qulasgoxz Code selection: method

Translate the source code or AST into an IR tree.
= “Cover” the tree with IR instruction patterns.

= Emit code corresponding to these instruction
patterns

— performing register allocation as you go.

Universit :
QfGlasgov}\; Example: code selection (1)

”

= One way to coverthe IRfor“a[i] = v;":

mc|)ve
mém mém
+ |
m(|9m >|< reg const
l reg P P ! LOAD rl1,a(fp)

—— r9 4 ADDI r2, 10,4

reg const MUL r2,r9,r2
fp a ADD rl,rl,r2
LOAD r2,v(fp)
STORE r2,0(rl)

15-22

! Umver31ty

of Glasgow Example: code selection (2)

= Different way to cover the IR for “a [1]

”,

Vi, .

rn?ve
| |
me me
+ +
|
| |
mem X reg const
‘ P ! LOAD
L) reg const
—— r9 4 ADDT
reg const MUL

fp a ADD

rl,a(fp)
r2,r0,4

r2,r9,r2
rl,rl,r?2

!Umvers1ty Code selection: maximal-munch

g Gliseow algorithm

= Maximal-munch code selection algorithm:
To cover the IR tree t using instruction patterns ps:

1. Find the largest pattern p in ps that covers the top of t.
2. For each uncovered subtree s of t (from left to right):
2.1. Cover s using ps.
2.2. Emit the instruction corresponding to p.

= The time complexity is O(size of t).
= The emitted code is optimal in the sense that:

— no two adjacent patterns could be replaced by a single
pattern

— the number of instructions is minimal.

