
A Typing System for Privacy

Dimitrios Kouzapas1(B) and Anna Philippou2

1 Department of Computing, Imperial College London, London, UK
dk208@doc.ic.ac.uk

2 Department of Computer Science, University of Cyprus, Nicosia, Cyprus
annap@cs.ucy.ac.cy

Abstract. In this paper we report on work-in-progress towards defining
a formal framework for studying privacy. Our framework is based on the
π-calculus with groups [1] accompanied by a type system for capturing
privacy-related notions. The typing system we propose combines a num-
ber of concepts from the literature: it includes the use of groups to enable
reasoning about information collection, it builds on read/write capabili-
ties to control information processing, and it employs type linearity to
restrict information dissemination. We illustrate the use of our typing
system via simple examples.

1 Introduction

The notion of privacy does not have a single solid definition. It is generally viewed
as a collection of related rights as opposed to a single concept and attempts
towards its formalization have been intertwined with philosophy, legal systems,
and society in general. The ongoing advances of network and information tech-
nology introduce new concerns on the matter of privacy. The formation of large
databases that aggregate sensitive information of citizens, the exchange of infor-
mation through e-commerce as well as the rise of social networks, impose new
challenges for protecting individuals from violation of their right to privacy as
well as for providing solid foundations for understanding privacy a term.

A study of the diverse types of privacy, their interplay with technology, and
the need for formal methodologies for understanding and protecting privacy is
discussed in [7], where the authors base their arguments on the taxonomy of
privacy rights by Solove [6]. According to [6], the possible privacy violations
within a system can be categorized into four groups: invasions, information col-
lection, information processing, and information dissemination. These violations
are typically expressed within a model consisting of three entities: the data sub-
ject about whom a data holder has information and the environment, the data
holder being responsible to protect the information of the data subject against
unauthorized adversaries in the environment.

The motivation for this work stems from the need to provide a formal frame-
work (or a set of different formal frameworks) for reasoning about privacy-related
concepts, as discussed above. Such a framework would provide solid foundations

S. Counsell and M. Núñez (Eds.): SEFM 2013 Collocated Workshops, LNCS 8368, pp. 56–68, 2014.
DOI: 10.1007/978-3-319-05032-4 5, c© Springer International Publishing Switzerland 2014

A Typing System for Privacy 57

for understanding the notion privacy and it would allow to rigorously model
and study privacy-related situations. Our interest for formal privacy is primarily
focused on the processes of information collection, information processing, and
information dissemination and how these can be controlled in order to guarantee
the preservation of privacy within a system.

1.1 Privacy and the π-Calculus

The approach we follow in this paper attempts to give a correspondence between
the requirements of the last paragraph and the theory and meta-theory of the
π-calculus [4]. The π-calculus is a formal model of concurrent computation that
uses message-passing communication as the primitive computational function.
A rich theory of operational, behavioural and type system semantics of the π-
calculus is used as a tool for the specification and the study of concurrent sys-
tems. Our aim is to use the π-calculus machinery to describe notions of privacy.
Specifically, we are interested in the development of a meta-theory, via a typing
system, for the π-calculus that can enforce properties of privacy, as discussed
above.

The semantics for the Gπ-calculus, a π-calculus that disallows the leakage
of information (secrets) is presented in [1]. That work proposes the group type
along with a simple typing system that is used to restrict the scope of a name’s
existence, i.e., a name cannot exist outside its group scope. We find the semantics
of the Gπ-calculus convenient to achieve the privacy properties regarding the
information collection category. A data holder can use the group type to disallow
unauthorized adversaries from collecting information about a data subject.

Consider for example the processes:

DBadmin = a〈c〉.0
Nurse = a(x).b〈x〉.0
Doctor = b(x).x(y).x〈data〉.0

The database administrator process DBadmin sends a reference c to a patient’s
data to a doctor process Doctor using a nurse process Nurse as a delegate. Chan-
nel c is sent to the nurse via channel a and is then forwarded to the doctor
via channel b by the nurse. The doctor then uses c to read and write data on
the patient’s records. The composition of the above processes under the fresh
hospital group Hosp, and an appropriate typing of c, enforces that no external
adversary will be able to collect the information exchanged in the above sce-
nario, namely c: name c, belonging to group Hosp, is not possible to be leaked
outside the defined context because (1) groups are not values and cannot be
communicated and (2) the group Hosp is only known by the three processes (see
[1] for the details).

(ν Hosp)(((νc : Hosp[])DBadmin) | Nurse | Doctor)
Let us now move on to the concept of information processing and re-consider

the example above with the additional requirement that the nurse should not

58 D. Kouzapas and A. Philippou

be able to read or write on the patient’s record in contrast to the doctor who is
allowed both of these capabilities. To address this issue we turn to the input/out-
put typing system for the π-calculus of Pierce and Sangiorgi, [5]. Therein, the
input/output subtyping is used to control the input and output capabilities on
names and it is a prime candidate for achieving privacy with respect to the
requirement in question: A type system that controls read and write capabili-
ties1 can be used by a data holder to control how the information about a data
subject can be processed. Thus, in the case of our example, the requirements
may be fulfilled by extending the specification with a read/write typing system
as follows:

Tdata = Hosp[MedicalData]−

Tc = Hosp[Tdata]rw

Ta = Hosp[Hosp[Tdata]−]rw

Tb = Hosp[Hosp[Tdata]rw]rw

where names a, b and c are of types Ta, Tb and Tc, respectively. The medical data
are a basic type with no capability of read and write. Channel c can be used for
reading and writing medical data. Channel a is used to pass information to the
nurse without giving permission to the nurse to process the received information,
while channel b provides read and write capabilities to the doctor. Nonetheless,
the above system suffers from the following problem. Although the nurse acquires
restricted capabilities for channel c via channel a, it is still possible for a nurse
process to exercise its read capability on b and, thus, acquire read and write
capability on the c channel. To avoid this problem, the system may be redefined
as follows:

DBadmin = (νb : Tb) tonurse〈b〉.todoc〈b〉.a〈c〉.0
Nurse = tonurse(z).a(x).z〈x〉.0
Doctor = todoc(z).z(x).x(y).x〈data〉.0

where channel todoc has typeHosp[Tb]rw but channel tonurse has typeHosp[T ′
b]

rw,
where T ′

b = Hosp[Hosp[Tdata]rw]w. In other words, the nurse is not assigned read
capabilities on channel b.

Note that the above typing is not completely sound: for instance the nurse
process is expected to pass on to the doctor process more capabilities than those
it acquires via channel a. Nevertheless in our theory we use a more complex type
structure able to solve this problem.

Regarding the information dissemination category of privacy violations, we
propose to handle information as a linear resource. Linear resources are resources
that can be used for some specific number of times. A typing system for linearity
was originally proposed in [3]. A linear typing system can be used by the data
holder to control the number of times an information can be disseminated. In our
1 The terminology for read and write capabilities is equivalent with input and output
terminology.

A Typing System for Privacy 59

example, we require from the nurse the capability of sending the reference of the
patient only once, while we require from the doctor not to share the information
with anyone else:

Tdata = Hosp[MedicalData]−∗

Tc = Hosp[Tdata]rw∗

Ta = Hosp[Hosp[Tdata]−1]rw0

Tb = Hosp[Hosp[Tdata]rw0]rw0

T ′
b = Hosp[Hosp[Tdata]rw0]w0

The ∗ annotation on the types above defines a shared (or unlimited) resource.
Such resources are the patient’s data and the reference to the patient’s data.
Channels a and b communicate values that can be disseminated one and zero
times respectively. (Again there is a soundness problem solved by a more complex
typing structure.) Furthermore channels a and b cannot be sent to other entities.

A central aspect of our theory is the distinction between the basic enti-
ties. The operational semantics of the π-calculus focuses on the communication
between processes that are composed in parallel. Although a process can be
thought of as a computational entity, it is difficult to distinguish at the opera-
tional level which processes constitute a logical entity. In our approach, we do
not require any operational distinction between entities, since this would com-
promise the above basic intuition for the π-calculus, but we do require the logical
distinction between the different entities that compose a system.

Finally, we note that our typing system employs a combination of i/o types
and linear types, which are low-level π-calculus types, to express restrictions on
system behavior. We point out that the expressivity of such ordinary π-calculus
types has been studied in the literature and, for instance, in [2] the authors in
fact prove that linear and variant types can be used to encode session types.

2 The Calculus

Our study of privacy is based on the π-calculus with groups proposed by Cardelli
et al. [1]. In this section we briefly overview the syntax and reduction semantics
of the calculus.

Beginning with the syntax, this is standard π-calculus syntax with the addi-
tion of the group restriction construct, (ν G)P , and the requirement for typing
on bound names (the definition of types is in Sect. 3).

P ::= x(y:T).P | x〈z〉.P | (ν G)P | (ν a:T)P | P1 | P2 | !P | 0

Free names fn(P), bound names bn(P), free variables fv(P), and bound
variables bv(P) are defined in the standard way for π-calculus processes. We
extend this notion to the sets of free groups in a process P and a type T which
we denote as fg(P) and fg(T), respectively.

60 D. Kouzapas and A. Philippou

We now turn to defining the reduction semantics of the calculus. This employs
the notion of structural congruence which allows the structural rearrangement
of a process so that the reduction rules can be performed. Structural congruence
is the least congruence relation, written ≡, that satisfies the rules:

P |0 ≡ P (ν a:T)P1 | P2 ≡ (ν a : T)(P1 | P2) if a /∈ fn(P2)
P1 | P2 ≡ P2 | P1 (ν a:T1)(ν b:T2)P ≡ (ν b:T2)(ν a:T1)P
(P1 | P2) | P3 ≡ P1 | (P2 | P3) (ν G)P1 | P2 ≡ (ν G)(P1 | P2) if G /∈ fg(P2)
!P ≡ P | !P (ν G1)(ν G2)P ≡ (ν G2)(ν G1)P

(ν G1)(ν a:T)P ≡ (ν a:T)(ν G1)P if G /∈ fg(T)

We may now present the reduction relation P −→ Q which consists of the stan-
dard π-calculus reduction relation extended with a new rule for group creation.

a〈b〉.P1 | a(x : T).P2 −→ P1 | P2{b/x}
P1 −→ P2 implies P1 | P3 −→ P2 | P3

P1 −→ P2 implies (ν G)P1 −→ (ν G)P2

P1 −→ P2 implies (ν a : T)P1 −→ (ν a : T)P2

P1 ≡ P ′
1, P

′
1 −→ P ′

2, P
′
2 ≡ P2 implies P1 −→ P2

3 Types and Typing System

In this section we define a typing system for the calculus which builds upon the
typing of [1]. The typing system includes: (i) the notion of groups of [1], (ii)
the read/write capabilities of [5] extended with the empty capability, and (iii) a
notion of linearity on the dissemination of names. The type structure is used for
static control over the permissions and the disseminations on names in a process.

For each channel, its type specifies (1) the group it belongs to, (2) the type of
values that can be exchanged on the channel, (3) the ways in which the channel
may be used in input/output positions (permissions p below) and (4) the number
of times it may be disseminated (linearity λ below):

T ::= G[]pλ | G[T]pλ

p ::= − | r | w | rw

λ ::= ∗ | i where i ≥ 0

For example, a channel of type T = G[]r 2 is a channel belonging to group G
that does not communicate any names, can be used in input position and twice

A Typing System for Privacy 61

in object position. Similarly, a name of type G′[T]rw∗ is a channel of group G′

that can be used in input and output position for exchanging names of type T
and can be sent as the object of a communication for an arbitrary number of
times.

Subtyping. Our typing system makes use of a subtyping relation which, in turn
is, based on two pre-orders, one for permissions p, denoted as �p, and one for
linearities λ, denoted as �λ:

�p: rw �p w rw �p r rw, r, w �p −
�λ: ∗ �λ i for all i i �λ j if i ≥ j

The preorder for permissions is as expected with the empty capability being
the greatest element. For linearities, fewer permissions are included in larger
permissions and ∗ is the least element.

Let Type be the set of all types T . The subtyping relation, written ≤ as an
infix notation, may be defined coinductively as the largest fixed point (Fω(Type×
Type)) of the monotone function:

F : (Type × Type) −→ (Type × Type)

where

F (R) = {(G[]−0, G[]−0)}
∪ {(G[T1]pλ1 , G[T2]−λ2)) | (T1, T2) ∈ R, (T2, T1) ∈ R, λ1 �λ λ2}
∪ {(G[T1]pλ1 , G[T2]rλ2) | (T1, T2) ∈ R, p �p r, λ1 �λ λ2}
∪ {(G[T1]pλ1 , G[T2]wλ2) | (T2, T1) ∈ R, p �p w, λ1 �λ λ2}
∪ {(G[T1]rwλ1 , G[T2]rwλ2) | (T1, T2), (T2, T1) ∈ R, λ1 �λ λ2}

The first pair in the construction of F says that the least base type is
reflexive. The next four cases define subtyping based on the preorders defined
for permissions and linearities. According to the second case, the empty per-
mission is associated with an invariant subtyping relation because the empty
permission disallows for a name to be used for reading and/or writing. The read
permission follows covariant subtyping, the write permission follows
contravariant subtyping, while the read/write permission follows invariant sub-
typing. Note that linearities are required to respect the relation λ1 � λ2 for
subtyping in all cases. For example, according to the subtyping relation, the
following hold: G1[G2[]rw5]rw∗ ≤ G1[G2[]w3]r3, G1[G2[]−3]rw∗ ≤ G1[G2[]w3]w0, and
G1[G2[]w5]rw∗ ≤ G1[G2[]w5]−1.

62 D. Kouzapas and A. Philippou

Typing Judgements. We now turn to the typing system of our calculus. This
assigns an extended notion of a type on names which is constructed as follows:

T = (T1, T2)

In a pair T we record the current capabilities of a name, captured by T1, and its
future capabilities after its dissemination, captured by T2.

Based on these extended types, the environment on which type checking is
carried out in our calculus consists of the components Π and Γ. These declare the
names (free and bound) and groups in scope during type checking. We define
Γ-environments by Γ ::= ∅ | Γ · x : T | Γ · G. The domain of an environment
Γ, dom(Γ), is considered to contain all names and groups recorded in Γ. We
assume that any name and group in dom(Γ) occurs exactly once in Γ. Then, a Π-
environment is defined by Π ::= ∅ | Π ·x : T, where dom(Π) contains all variables
in Π, each of which must exist in Π exactly once.

We define three typing judgements: Γ
 x � T , Π
 x � T , and Π,Γ
 P . The
first two typing judgement say that under the typing environment Γ, respectively
Π, variable x has type T . The third typing judgement stipulates that process
P is well typed under the environments Π,Γ, where Γ records the groups and
the types of the free names of P and Π the types of all bound names x that are
created via a (νx) construct within P . We require that these bound names are
uniquely named within P and, if needed, we employ α conversion to achieve this.
In essence, this restriction requires for all freshly-created names to be recorded a-
priori within the typing environment. If an unrecorded name is encountered, then
the typing system will lead to failure as is implemented by the typing system.
It turns out that recording this information on bound names of a process is
necessary in order to control the internal processing of names that carry sensitive
data.

Typing System. We now move on to the rules of our typing system. First, we
present two auxiliary functions. To begin with we define the linearity addition
operator ⊕ where λ1 ⊕ λ2 = ∗, if λ1 = ∗ or λ2 = ∗, and λ1 ⊕ λ2 = λ1 + λ2,
otherwise. We may now lift this notion to the level of typing environments via
operator � which composes its arguments by concatenating their declarations
with the exception of the common domain where linearities are added up via ⊕:

Γ1 � Γ2 = Γ1\Γ2 · Γ2\Γ1

· {x : G[T]pλ1⊕λ2 | x : G[T]pλ1 ∈ Γ1, x : G[T]pλ2 ∈ Γ2}

At this point we make the implicit assumption that Γ1 and Γ2 are compatible
in the sense that the declared types of common names may differ only in the
linearity component.

A Typing System for Privacy 63

We are ready now define the typing system:

(Name)

x �∈ dom(Γ · Γ′)
fg(T) ⊆ dom(Γ · Γ′)

Γ · x : T · Γ′ � x � T
(SubN)

Γ � x � (T ′
1, T ′

2), T
′
1 ≤ T1, T ′

2 ≤ T2

Γ � x � (T1, T2)

(In)

Π, Γ · y : (T1, T2) � P

Γ � x � (G[T1]r0, G[T2]r0)

Π, Γ � x(y : T1).P
(Out)

Π, Γ · y : (Gy [T1]−λ, T2) � P

Γ � x � (Gx[T2]w0, Gx[T2]w0)

Π, Γ · y : (Gy [T1]
−(λ⊕1), T2) � x〈y〉.P

(ResG)
Π, Γ · G � P

Π, Γ � (ν G)P
(ResN)

Π, Γ · x : (T, T ′) � P

Π · x : (T, T ′), Γ � (ν x : T)P

(Par)
Π1, Γ1 � P1 Π2, Γ2 � P2

Π1 	 Π2, Γ1 	 Γ2 � P1 | P2

(Rep)

Π, Γ � P

∀x ∈ fn(P) if Γ � x � (G[T1]pλ1 , G[T2]pλ2)

then λ1 ∈ {0, ∗}
Π, Γ �!P

(Nil) Π, Γ � 0 (SubP)
Π, Γ · x : (T ′

1, T ′
2) � P T ′

1 ≤ T1, T ′
2 ≤ T2

Π, Γ · x : (T1, T2) � P

Rule (Name) is used to type names. Note that in name typing we require
that all group names of the type are present in the typing environment. Rule
(SubN) defines a subsumption based on subtyping for channels. Rule (In) types
the input prefixed process. We first require that the input subject has at least
permission for reading. Then, the type y is included in the type environment Γ
with a type that matches the type of the input channel x. This is to ensure that
the input object will be used as specified. The rule for the output prefix (Out)
checks that the output subject has write permissions. Furthermore, x should be
a channel that can communicate names up-to type T2, the maximum type by
which y can be disseminated. Then, the continuation of the process P , should
be typed according to the original type of y and with its linearity reduced by
one. Finally, the output object should have at least the empty permission.

In rule (ResG) we record a newly-created name in Γ. For name restriction
(ResN) specifies that a process type checks only if the restricted name is recorded
in environment Π. In this way is is possible to control the internal behavior of a
process, in order to avoid possible privacy violations. Parallel composition uses
the � operator to compose typing environments, since we want to add up the
linearity usage of each name. For the replication operator, axiom (Rep) we require
that free names of P have either linearity zero (i.e. they are not sent by P) or
infinite linearity (i.e. they can be sent as many times as needed). The inactive
process can be typed under any typing environment (axiom (Nil)). Finally we
have a subsumption rule, (SubP) that uses subtyping to control the permissions
on processes.

Type Soundness. We prove that the typing system is sound through a subject
reduction theorem. Before we proceed with the subject reduction theorem we
state the basic auxiliary lemmas.

64 D. Kouzapas and A. Philippou

Lemma 1 (Weakening).

1. If Γ
 x � T and y /∈ dom(Γ) then Γ · y : T′
 x � T.
2. If Π,Γ
 P and y /∈ dom(Γ) then Π,Γ · y : T
 P .

Lemma 2 (Strengthening).

1. If Γ · y : T′
 x � T, y �= x, then Γ
 x � T.
2. If Π,Γ · y : T
 P and y /∈ fn(P) then Π,Γ
 P .

Lemma 3 (Substitution). If Π,Γ·x : T
 P and Γ
 y�T then Π,Γ
 P{y/x}
Lemma 4 (Subject Congruence). If Π,Γ
 P1 and P1 ≡ P2 then Π,Γ
 P2.

We are now ready to state the Subject Reduction theorem.

Theorem 1 (Subject Reduction). Let Π,Γ
 P and P −→ P ′ then Π,Γ

P ′.

Proof. The proof is by induction on the reduction structure of P .
Basic Step:

P = a〈b〉.P1 | a(x).P2 −→ P1 | P2{b/x} and Π,Γ
 P . From the typing
system we get that

Γ = Γ1 � Γ2 (1)
Π1,Γ1
 a〈b〉.P1 (2)
Π2,Γ2
 a(x).P2 (3)

From the typing system we get that Π1,Γ1
 P1 for (2) and Π2,Γ2 · x : T
 P2

for (3). We apply the substitution lemma (Lemma 3) to get that Π2,Γ2 · b : T

P2{b/x}. We can now conclude that Π,Γ
 P1 | P2{b/x}.
Induction Step:

Case: Parallel Composition. Let P1 | P2 −→ P ′
1 | P2 with Π,Γ
 P1 | P2.

From the induction hypothesis we know that Π1,Γ1
 P1 and Π1,Γ1
 P ′
1.

From these two results and the parallel composition typing we can conclude
that Π1 � Π2,Γ1 � Γ2
 P1 | P2 and Π1 � Π2,Γ1 � Γ2
 P ′

1 | P2 as required.

Case: Group Restriction. Let (ν G)P −→ (ν G)P ′ with Π,Γ
 (ν G)P . From
the induction hypothesis we know that Π,Γ · G
 P and Π,Γ · G
 P ′. If we
apply the name restriction rule on the last result we get Π,Γ
 (ν G)P ′.

Case: Name Restriction. Let (ν a : T)P −→ (ν a : T)P ′ with Π · a : T,Γ
 P .
From the induction hypothesis we know that Π,Γ·a : T
 P and Π,Γ·a : T
 P ′.
If we apply the name restriction rule on the last result we get Π ·a : T,Γ
 (ν a :
T)P ′.

Case: Structural Congruence Closure. We use the subject congruence lemma
(Lemma 4).

Let P = P1, P1 −→ P2, P2
∼= P ′ with Π,Γ
 P . We apply subject congruence

on P to get Π,Γ
 P1. Then we apply the induction hypothesis and subject
congruence once more to get the required result. ��

A Typing System for Privacy 65

4 Examples

In this section we show simple use cases that apply the theory developed. We
also show how we tackle different problems that might arise.

4.1 Patient Privacy

Our first example revisits our example from the introduction and completes
the associated type system. Recall the scenario where a database administrator
(process DBadmin) sends a reference to the medical data of a patient to a doctor
(process Doctor) using a nurse (process Nurse) as a delegate.

DBadmin = (νb : Tb) tonurse〈b〉.todoc〈b〉.a〈c〉.0
Nurse = tonurse(z).a(x).z〈x〉.0
Doctor = todoc(z).z(x).x(y).x〈data〉.0

The processes are composed together inside the hospital (Hosp) group.

Hospital = (ν Hosp)(((νc : Tc)DBadmin) | Nurse | Doctor)
Our prime interest is to avoid leakage of the data during their dissemination to
the doctor. This means that the nurse should not have access to the patient’s
data. On the other hand the doctor should be able to read and update medical
data, but not be able to send the data to anyone else. We can control the above
permissions using the following typing.

We define the types

Tdata = Hosp[]−∗

Tc = Hosp[Tdata]rw∗

Ta = Hosp[Hosp[Tdata]−1]rw0

T′
a = Hosp[Tc]rw0

Tb = Hosp[Hosp[Tdata]rw0]rw2

Tn
b = Hosp[Hosp[Tdata]rw0]w0

Td
b = Hosp[Hosp[Tdata]rw0]r0

Ttd = Hosp[Tn
b]rw0

Ttn = Hosp[Td
b]

rw0

to construct:
D = (Tdata,Tdata)
C = (Tc,Tc)
A = (Ta,T′

a)
B = (Tb,Tb)

TD = (Ttd,Ttd)
TN = (Ttn,Ttn).

We can show that:

b : B · c : C, tonurse : TN · todoc : TD · a : A · data : D
 Hospital

66 D. Kouzapas and A. Philippou

Now, let us consider the case where the nurse sends channel c on a private
channel in an attempt to gain access on the patient’s medical data:

Nurse2 = tonurse(z).a(x).(ν e : Tb)(e〈x〉.0 | e(y).y(w).0)

In this case, in order for the resulting system to type-check, the type of name
e would be recorded in the environment Π, as in

e : B · b : B · c : C, tonurse : TN · todoc : TD · a : A · data : D

 (ν Hosp)(((νc : Tc)DBadmin) | Nurse2 | Doctor)

This implies that, if we allow the creation of e, there is possibility of violation
in a well-typed process. To avoid this, the administrator of the system should
observe all names created and included in Π and, in this specific case, disallow
the creation of e. In future work we intend to address this point by providing
typing policies that capture this type of problems and to refine our type system
to disallow such privacy violations, possibly by controlling the process of name
creation.

4.2 Social Network Privacy

Social networks allow users to share information within social groups. In the
example that follows we define a type system to control the privacy requirements
of participating users. In particular, we consider the problem where a user can
make a piece of information public (e.g. a picture), but require that only specific
people (his friends) can see it (and do nothing else with it).

The example considers a user who makes public the address, paddr, of a pri-
vate object, pic, and wishes only the friend Friend to be able to read pic through
the public address paddr. To achieve this the user makes available through the
typing of name public only the object capability for paddr. However, by sepa-
rately providing the friend with name a, it is possible to extend the capabilities
of paddr to the read capability. In this way, channel a acts as a key for Friend to
unlock this private information. Assuming that notAFriend does not gain access
to a name of type Ta, as in the process below, he will never be able to obtain
read capability on channel paddr.

User = (νa : Ta)(tofriend〈a〉.(νpaddr : Tpaddr)(!public〈paddr〉.0 | !paddr〈pic〉.0))
notAFriend = public(z).0

Friend = tofriend(x).public(y).(x〈y〉.0 | x(z).z(w).0)

The processes are composed together inside the SN group.

SocialNetwork = (ν SN)(User | notAFriend | Friend)

A Typing System for Privacy 67

To achieve this, we define the types

Tpic = SN[]−∗

Tpaddr = SN[Tpic]rw∗

T′
paddr = SN[Tpic]−1

Ta = SN[Tpaddr]rw∗

Ttofriend = SN[Ta]rw0

Tpublic = SN[Tpaddr]rw0

T′
public = SN[T′

paddr]
rw0

which are combined into the following tuples

PIC = (Tpic,Tpic)
A = (Ta,Ta)

PA = (Tpaddr,Tpaddr)
TF = (T′

tofriend,Ttofriend)
PB = (T′

public,Tpublic)

We can show that:

a : A · paddr : PA, tofriend : TF · public : PB · pic : PIC
 SocialNetwork

whereas for notAFriend′ = public(z).z(w).0 and

SocialNetwork′ = (ν SN)(User | notAFriend′ | Friend)

the following judgment fails.

a : A · paddr : PA, tofriend : TF · public : PB · pic : PIC
 SocialNetwork′

5 Conclusions

In this paper we have presented a formal framework based on the π-calculus with
groups for studying privacy. Our framework is accompanied by a type system for
capturing privacy-related notions: it includes the use of groups to enable reason-
ing about information collection, it builds on read/write capabilities to control
information processing, and it employs type linearity to restrict information dis-
semination. We illustrate the use of our typing system via simple examples.

In future work we would like to provide a safety criterion for our framework
by developing a policy language for defining privacy policies associated to process
calculus descriptions and subsequently to refine our type system so that it can
check the satisfaction/violation of these policies. Furthermore, we would like to
study the relation of our type system to other typing systems in the literature.

68 D. Kouzapas and A. Philippou

References

1. Cardelli, L., Ghelli, G., Gordon, A.D.: Secrecy and group creation. Inf. Comput.
196(2), 127–155 (2005)

2. Dardha, O., Giachino, E., Sangiorgi, D.: Session types revisited. In: Proceedings of
PPDP’12, pp. 139–150. ACM, New York (2012)

3. Kobayashi, N., Pierce, B.C., Turner, D.N.: Linearity and the pi-calculus. ACM
Trans. Program. Lang. Syst. 21(5), 914–947 (1999)

4. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, parts I and II.
Inf. Comput. 100(1), 1–77 (1992)

5. Pierce, B.C., Sangiorgi, D.: Typing and subtyping for mobile processes. Math.
Struct. Comput. Sci. 6(5), 409–453 (1996)

6. Solove, D.J.: A taxonomy of privacy. Univ. PA Law Rev. 154(3), 477–560 (2006)
7. Tschantz, M.C., Wing, J.M.: Formal methods for privacy. In: Cavalcanti, A., Dams,

D.R. (eds.) FM 2009. LNCS, vol. 5850, pp. 1–15. Springer, Heidelberg (2009)

	A Typing System for Privacy
	1 Introduction
	1.1 Privacy and the -Calculus

	2 The Calculus
	3 Types and Typing System
	4 Examples
	4.1 Patient Privacy
	4.2 Social Network Privacy

	5 Conclusions
	References

