
On Asynchronous Session Semantics

Dimitrios Kouzapas∗, Nobuko Yoshida∗, and Kohei Honda†

∗Imperial College London †Queen Mary, University of London

Abstract. This paper studies a behavioural theory of the π-calculus with session
types under the fundamental principles of the practice of distributed computing
— asynchronous communication which is order-preserving inside each connec-
tion (session), augmented with asynchronous inspection of events (message ar-
rivals). A new theory of bisimulations is introduced, distinct from either standard
asynchronous or synchronous bisimilarity, accurately capturing the semantic na-
ture of session-based asynchronously communicating processes augmented with
event primitives. The bisimilarity coincides with the reduction-closed barbed con-
gruence. We examine its properties and compare them with existing semantics.
Using the behavioural theory, we verify that the program transformation of mul-
tithreaded into event-driven session based processes, using Lauer-Needham du-
ality, is type and semantic preserving.

1 Introduction

Modern transports such as TCP in distributed networks provide reliable, ordered de-
livery of messages from a program on one computer to another, once a connection is
established. In practical communications programming, two parties start a conversation
by establishing a connection over such a transport and exchange semantically mean-
ingful, formatted messages through this connection. The distinction between possibly
non order-preserving communications outside of connection and order-preserving ones
inside each connection is a key feature of this practice: order preservation allows proper
handling of a sequence of messages following an agreed-upon conversation structure,
while unordered deliveries across connections enhance asynchronous, efficient band-
width usage. Further, asynchronous event processing [18] using locally buffered mes-
sages enables the receiver to asynchronously inspect and consume events/messages.

This paper investigates semantic foundations of asynchronously communicating
processes, capturing these key elements of modern communications programming –
distinction between non order-preserving communications outside connections and the
order-preserving ones inside each connection, as well as the incorporation of asyn-
chronous inspection of message arrivals. We use the π-calculus augmented with ses-
sion primitives, buffers and a simple event inspection primitive. Typed sessions capture
structured conversations in connections with type safety; while a buffer represents an
intermediary between a process and its environment, capturing non-blocking nature of
communications, and enabling asynchronous event processing. The formalism is in-
tended to be an idealised but expressive core communications programming language,
offering a basis for a tractable semantic study. Our study shows that the combination

of these basic elements for modern communications programming leads to a rich be-
havioural theory which differs from both the standard synchronous communications
semantics and the fully asynchronous one [8], captured through novel equational laws
for asynchrony. These laws can then be used as a semantic justification of a well-known
program transformation based on Lauer and Needham’s duality principle [15], which
translates multithreaded programs to their equivalent single-threaded, asynchronous,
event-based programs. This transformation is regularly used in practice, albeit in an
ad-hoc manner, playing a key role in e.g. high-performance servers. Our translation is
given formally, is type-preserving and is backed up by a rigorous semantic justifica-
tion. While we do not detail in the main sections, the transform is implemented in the
session-extension of Java [13, 14], resulting in competitive performance in comparison
with more ad-hoc transformations.

Let us outline some of the key technical ideas of the present work informally. In the
present theory, the asynchronous order-preserving communications over a connection
are modelled as asynchronous session communication, extending the synchronous ses-
sion calculus [9, 24] with message queues [5, 6, 12]. A message queue, written s [i:~h,o:
~h′], encapsulates input buffer (i) with elements~h and output buffer (o) with~h′. Figure
below represents the two end points of a session. A message v is first enqueued by a
sender s!〈v〉;P at its output queue at s, which intuitively represents a communication
pipe extending from the sender’s locality to the receiver’s. The message will eventually
reach the receiver’s locality, formalised as its transfer from the sender’s output buffer
(at s) to the receiver’s input buffer (at s). For a receiver, only when this transfer takes
place, a visible (and asynchronous) message reception takes place, since only then the
receiver can inspect and consume the message (as shown in Remote below).Note that
dequeuing and enqueing actions inside a location are local to each process and is there-
fore invisible (τ-actions) (Local below).
Local (the dashed arrows)

s!〈v〉;Q | s [o :~h] τ−→ Q | s [o :~h·v]
s?(x).P | s [i :w·~h] τ−→ P{w/x} | s [i :~h]
Remote (the solid arrows)

s [i :~h]
s?〈v〉−→ s [i :~h·v] s [o :v·~h] s!〈v〉−→ s [o :~h]

The induced semantics captures the nature of asynchronous observables not studied
before. For example, in weak asynchronous bisimilarity in the asynchronous π-calculus
(≈a in [8, 10]), the message order is not observable (s!〈v1〉 | s!〈v2〉≈a s!〈v2〉 | s!〈v1〉) but
in our semantics, messages for the same destination do not commute (s!〈v1〉;s!〈v2〉 6≈
s!〈v2〉;s!〈v1〉) as in the synchronous semantics [20] (≈s in [8, 10]); whereas two inputs
for different targets commute (s1?(x);s2?(y);P ≈ s2?(x);s1?(y);P) since the dequeue
action is not observable, differing from the synchronous semantics, s1?(x);s2?(y);P 6≈s
s2?(x);s1?(y);P.

Asynchronous event-handling [13] introduces further subtleties in observational
laws. Asynchronous event-based programming is characterised by reactive flows driven
by the detection of events, that is message arrivals at local buffers. In our formalism, this
facility is distilled as an arrived predicate: e.g., Q = if arrived s then P1 else P2
reduces to P1 if the s input buffer contains one or more message; otherwise Q reduces
to P2. By arrived, we can observe the movement of messages between two locations.

2

For example, Q | s[i : /0] | s[o : v] is not equivalent with Q | s[i : v] | s[o : /0] because the
former can reduce to P2 (since v has not arrived at the local buffer at s yet) while the
latter cannot.

Online appendix [23] lists the full definition of Lauer-Needham transformation, the
detailed definitions, full proofs and the benchmark results in Session-based Java which
demonstrate the potential of the session-type based translation as semantically transpar-
ent optimisation techniques.

2 Asynchronous Network Communications in Sessions

2.1 Syntax and Operational Semantics

We use a sub-calculus of the eventful session π-calculus [13], defined below.

(Identifier) u ::= a,b | x,y k ::= s,s | x,y n ::= a,b | s,s (Value) v ::= tt,ff | a,b | s,s
(Expression) e ::= v | x,y,z | arrived u | arrived k | arrived k h

(Process) P,Q ::= u(x).P | u(x);P | k!〈e〉;P | k?(x).P | k / l;P | k .{li :Pi}i∈I

| if e then P else Q | (ν a)P | P | Q | 0 | µX .P | X
| a [~s] | a〈s〉 | (ν s)P | s [i :~h,o :~h′] (Message) h ::= v | l

Values v,v′, ... include constants (tt,ff), shared channels a,b,c and session channels
s,s′. A session channel denotes one endpoint of a session: s and s denote two ends
of a single session, with s = s. Labels for branching and selection range over l, l′, ...,
variables over x,y,z, and process variables over X ,Y,Z. Shared channel identifiers u,u′

denote shared channels/variables; session identifiers k,k′ are session endpoints and vari-
ables. n denotes either a or s. Expressions e are values, variables and the message arrival
predicates (arrived u, arrived k and arrived k h: the last one checks for the arrival
of the specific message h at k). ~s and~h stand for vectors of session channels and mes-
sages respectively. ε denotes the empty vector.

We distinguish two kinds of asynchronous communications, asynchronous session
initiation and asynchronous session communication (over an established session). The
former involves the unordered delivery of a session request message a〈s〉, where a〈s〉
represents an asynchronous message in transit towards an acceptor at a, carrying a fresh
session channel s. As in actual network, a request message will first move through the
network and eventually get buffered at a receiver’s end. Only then a message arrival
can be detected. This aspect is formalised by the introduction of a shared channel input
queue a [~s], often called shared input queue for brevity, which denotes an acceptor’s
local buffer at a with pending session requests for~s. The intuitive meaning of the end-
point configuration s [i :~h,o :~h′] is explained in Introduction.

Requester u(x);P requests a session initiation, while acceptor u(x).P accepts one.
Through an established session, output k!〈e〉;P sends e through channel k asynchronously,
input k?(x).P receives through k, selection k / l;P chooses the branch with label l, and
branching k . {li : Pi}i∈I offers branches. The (ν a)P binds a channel a, while (ν s)P
binds the two endpoints, s and s, making them private within P. The conditional, par-
allel composition, recursions and inaction are standard. 0 is often omitted. For brevity,
one or more components may be omitted from a configuration when they are irrelevant,

3

writing e.g. s [i :~h] which denotes the input part of s [i :~h,o :~h′]. The notions of free
variables and channels are standard [21]; fn(P) denotes the set of free channels in P.
a〈s〉, (ν s)P and s [i :~h,o :~h′] only appear at runtime. A process without free variables
is called closed and a closed process without runtime syntax is called program.

[Request1]

[Request2]

[Accept]

[Send,Recv]

[Sel,Bra]

[Comm]

[Areq]

[Ases]

[Amsg]

a(x);P −→ (ν s)(P{s/x} | s [i :ε,o :ε] | a〈s〉) (s /∈ fn(P))
a [~s] | a〈s〉 −→ a [~s·s]

a(x).P | a [s·~s] −→ P{s/x} | s [i :ε,o :ε] | a [~s]
s!〈v〉;P | s [o :~h] −→ P | s [o :~h·v] s?(x).P | s [i :v·~h] −→ P{v/x} | s [i :~h]
s/ li;P | s [o :~h] −→ P | s [o :~h·li] s.{l j :Pj} j∈J | s [i : li ·~h] −→ Pi | s [i :~h] (i ∈ J)

s [o :v·~h] | s [i :~h′] −→ s [o :~h] | s [i :~h′·v]
E[arrived a] | a [~s] −→ E[b] | a [~s] (|~s| ≥ 1)↘ b

E[arrived s] | s [i :~h] −→ E[b] | s [i :~h] (|~h| ≥ 1)↘ b

E[arrived s h] | s [i :~h] −→ E[b] | s [i :~h] (~h = h·~h′)↘ b

The above table defines the reduction relation over closed terms. The key rules are
given in Figure above. We use the standard evaluation contexts E[] defined as E ::=
− | s!〈E〉;P | if E then P else Q. The structural congruence ≡ and the rest of the
reduction rules are standard. We set→→ = (−→∪≡)∗.

The first three rules define the initialisation. In [Request1], a client requests a server
for a fresh session via shared channel a. A fresh session channel, with two ends s
(server-side) and s (client-side) as well as the empty configuration at the client side,
are generated and the session request message a〈s〉 is dispatched. Rule [Request2] en-
queues the request in the shared input queue at a. A server accepts a session request
from the queue using [Accept], instantiating its variable with s in the request message;
the new session is now established. Asynchronous order-preserving session communi-
cations are modelled by the next four rules. Rule [Send] enqueues a value in the o-buffer
at the local configuration; rule [Receive] dequeues the first value from the i-buffer at the
local configuration; rules [Sel] and [Bra] similarly enqueue and dequeue a label. The
arrival of a message at a remote site is embodied by [Comm], which removes the first
message from the o-buffer of the sender configuration and enqueues it in the i-buffer at
the receiving configuration.

Output actions are always non-blocking. An input action can block if no message
is available at the corresponding local input buffer. The use of the message arrivals can
avoid this blocking: [Areq] evaluates arrived a to tt iff the queue is non-empty (e↘ b

means e evaluates to the boolean b); similarly for arrived k in [Areq]. [Amsg] evaluates
arrived s h to tt iff the buffer is nonempty and its next message matches h.

2.2 Types and Typing

The type syntax follows the standard session types from [9].
(Shared) U ::= bool | i〈S〉 | o〈S〉 | X | µ X.U (Value) T ::= U | S
(Session) S ::= !(T);S | ?(T);S | ⊕{li : Si}i∈I | &{li : Si}i∈I | µ X.S | X | end

The shared types U include booleans bool (and, in examples, naturals nat); shared chan-
nel types i〈S〉 (input) and o〈S〉 (output) for shared channels through which a session

4

of type S is established; type variables (X,Y,Z, ..); and recursive types. The IO-types
(often called server/client types) ensure a unique server and many clients [11]. In the
present work they are used for controlling locality (queues are placed only at the server
sides) and associated typed transitions, playing a central role in our behavioural the-
ory. In session types, output type !(T);S represents outputting values of type T , then
performing as S. Dually for input type ?(T);S. Selection type ⊕{li : Si}i∈I describes a
selection of one of the labels say li then behaves as Ti. Branching type &{li : Si}i∈I waits
with I options, and behaves as type Ti if i-th label is chosen. End type end represents
the session completion and is often omitted. In recursive type µ X.S, type variables are
guarded in the standard sense.

The judgements of processes and expressions are Γ ` P .∆ and Γ ,∆ ` e : T , with
Γ ::= /0 |Γ ·u :U |Γ ·X :∆ and ∆ ::= /0 | ∆ ·a | ∆ ·k :T | ∆ ·s where session type is extended
to T ::= M;S | M with M ::= /0 | ⊕ l | &l | !(T) | ?(T) | M;M which represents types
for values stored in queues (note /0;S = S). Γ is called shared environment, which maps
shared channels and process variables to, respectively, constant types and value types;
∆ is called linear environment maps session channels to session types and recording
shared channels for acceptor’s input queues and session channels for end-point queues.
The judgement is read: program P is typed under shared environment Γ , uses channels
as linear environment ∆ . In the expression judgement, expression e has type T under
Γ , and uses channels as linear environment ∆ . We often omit ∆ if it is clear from the
context. The typing system is similar with [2, 13], and can be found in online Appendix
[23]. We say that ∆ well configured if s :S ∈ ∆ , then s :S ∈ ∆ . We define: {s :!(T);S · s :
?(T);S′} −→ {s : S · s : S′}, {s :⊕{li : Si}i∈I · s : &{li : S′i}i∈I} −→ {s : Sk · s : S′k} (k ∈ I),
and ∆ ∪∆ ′′ −→ ∆ ′∪∆ ′′ if ∆ −→ ∆ ′.1

Proposition 2.1 (Subject Reduction). if Γ `P.∆ and P→→Q and ∆ is well-configured,
then we have Γ ` Q.∆ ′ such that ∆ −→∗ ∆ ′ and ∆ ′ is well-configured.

3 Asynchronous Session Bisimulations and its Properties

3.1 Labelled Transitions and Bisimilarity

Untyped and Typed LTS. This section studies the basic properties of behavioural
equivalences. We use the following labels (`,`′, ...):

` ::= a〈s〉 | a〈s〉 | a(s) | s?〈v〉 | s!〈v〉 | s!(a) | s&l | s⊕ l | τ

where the labels denote the session accept, request, bound request, input, output, bound
output, branching, selection and the τ-action. sbj(`) denotes the set of free subjects
in `; and fn(`) (resp. bn(`)) denotes the set of free (resp. bound) names in `. The
symmetric operator ` � `′ on labels that denotes that ` is a dual of `′, is defined as:
a〈s〉 � a〈s〉, a〈s〉 � a(s), s?〈v〉 � s!〈v〉, s?〈a〉 � s!(a), and s&l � s⊕ l.

1 In the following sections, we study semantic properties of typed processes: however these de-
velopments can be understood without knowing the details of the typing rules. This is because
the properties of the typing system are captured by the typed LTS defined in section 3.1 later.

5

〈Acc〉 a[~s]
a〈s〉−→ a[~s·s] 〈Req〉 a〈s〉 a〈s〉−→ 0 〈In〉 s [i :~h]

s?〈v〉−→ s [i :~h·v]

〈Out〉 s [o :v·~h] s!〈v〉−→ s [o :~h] 〈Bra〉 s [i :~h] s&l−→ s [i :~h·l] 〈Sel〉 s [o : l·~h] s⊕l−→ s [o :h]

〈Local〉P −→ Q

P τ−→ Q
〈Par〉P

`−→ P′ bn(`)∩ fn(Q) = /0

P|Q `−→ P′|Q
〈Tau〉 P `−→ P′ Q `′−→ Q′ `� `′

P|Q τ−→ (ν bn(`,`′))(P′|Q′)

〈Res〉 P `−→ P′ n 6∈ fn(`)

(ν n)P `−→ (ν n)P′
〈OpS〉 P

a〈s〉−→ P′

(ν s)P
a(s)−→ P′

〈OpN〉 P
s!〈a〉−→ P′

(ν a)P
s!(a)−→ P′

〈Alpha〉P≡α P′ P′ `−→ Q

P `−→ Q

Rule 〈Local〉 is defined from the reductions by [Request1, Accept, Send, Recv, Bra, Sel, Areq, Ases, Amsg]

as well as [Comm] when the communication object is a session (delegation).

In the untyped labelled transition system (LTS) defined above, 〈Acc〉/〈Req〉 are for the
session initialisation. The next four rules 〈In〉/〈Out〉/〈Bra〉/〈Sel〉 say the action is observ-
able when it moves from its local queue to its remote queue. When the process accesses
its local queue, the action is invisible from the outside, as formalised by 〈Local〉. In con-
trast, 〈Com〉 expresses an interaction between two local configutations. This distinction
is useful in our later proofs. Other compositional rules are standard. Based on the LTS,

we use the standard notations [19] such as P `
=⇒ Q, P

~̀
=⇒ Q and P

ˆ̀
=⇒ Q.

We define the typed LTS on the basis of the untyped one, using the type information
to control the enabling of actions. This is realised by introducing the environment transi-
tion, defined below. A transition (Γ ,∆)

`−→ (Γ ′,∆ ′) means that an environment (Γ ,∆)
allows an action ` to take place, and the resulting environment is (Γ ′,∆ ′), constraining
process transitions through the linear and shared environments. This constraint is at the
heart of our typed LTS, accurately capturing interactions in the presence of sessions and
local buffers. We write Γ1 `P1.∆1

`−→Γ2 `P2.∆2 if P1
`−→P2 and (Γ1,∆1)

`−→ (Γ2,∆2)
with Γi ` Pi .∆i. Similarly for other transition relations.

Γ (a) = i〈S〉,a ∈ ∆ ,s fresh ⇒ (Γ ,∆)
a〈s〉−→ (Γ ,∆ · s :S)

Γ (a) = o〈S〉,a 6∈ ∆ ⇒ (Γ ,∆)
a〈s〉−→ (Γ ,∆)

Γ (a) = o〈S〉,a 6∈ ∆ ,s fresh ⇒ (Γ ,∆)
a(s)−→ (Γ ,∆ · s :S)

Γ ` v :U and U 6= i〈S′〉 and s /∈ dom(∆) ⇒ (Γ ,∆ · s :!(U);S)
s!〈v〉−→ (Γ ,∆ · s :S)

s /∈ dom(∆) ⇒ (Γ ,∆ · s :!(o〈S′〉);S)
s!(a)−→ (Γ ·a :o〈S′〉,∆ · s :S)

Γ ` v :U and U 6= i〈S′〉 and s /∈ dom(∆) ⇒ (Γ ,∆ · s :?(U);S)
s?〈v〉−→ (Γ ,∆ · s :S)

s /∈ dom(∆) ⇒ (Γ ,∆ · s :⊕{li : Si}i∈I)
s⊕lk−→ (Γ ,∆ · s :Sk)

s /∈ dom(∆) ⇒ (Γ ,∆ · s :&{li : Si}i∈I)
s&lk−→ (Γ ,∆ · s :Sk)

∆ −→ ∆ ′ ⇒ (Γ ,∆)
τ−→ (Γ ,∆ ′)

The first rule says that reception of a message via a is possible only when a is input-
typed (i-mode) and its queue is present (a ∈ ∆). The second is dual, saying that an
output at a is possible only when a has o-mode and no queue exists. Similarly for a
bound output action. The two session output rules (`= s!〈v〉 and s!(a)) are the standard
value output and a scope opening rule. The next is for value input. Label input and
output are defined similarly. Note that we send and receive only a shared channel which

6

has o-mode. This is because a new accept should not be created without its queue in
the same location. The final rule (` = τ) follows the reduction rules defined before
Proposition 2.1. The LTS omits delegations since it is not necessary in the bisimulation
we consider (due to the notion of localisation, see the next paragraph).

Write ./ for the symmetric and transitive closure of −→ over linear environments.
We say a relation on typed processes is a typed relation if, whenever it relates two
typed processes, we have Γ ` P1 .∆1 and Γ ` P2 .∆2 such that ∆1 ./ ∆2. We write
Γ ` P1 .∆1RP2 .∆2 if (Γ ` P1 .∆1,Γ ` P2 .∆2) are in a typed relation R. Further we
often leave the environments implicit, writing simply P1RP2.
Localisation and Bisimulation. Our bisimulation is a typed relation over those pro-
cesses which are localised, in the sense that they are equipped with all necessary local
queues. We say an environment ∆ is delegation-free if it contains types which are gen-
erated by deleting S from value type T in the syntax of types defined in § 2.2 (i.e.
either !(S);S′ or ?(S);S′ does not appear in ∆). Similarly for Γ . Now let P be closed
and Γ ` P.∆ where Γ and ∆ are delegation-free (note that P can perform delegations
at hidden channels by 〈Local〉). Then we say P is localised w.r.t. Γ ,∆ if (1) For each
s : S ∈ dom(∆), s ∈ ∆ ; and (2) if Γ (a) = i〈S〉, then a ∈ ∆ . We say P is localised if it is
so for a suitable pair of environments. For example, s?(x);s!〈x+ 1〉;0 is not localised,
but s?(x);s!〈x+1〉;0 | s [i:~h1,o:~h2] is. Similarly, a(x).P is not localised, but a(x).P | a [~s]
is. By composing buffers at appropriate channels, any typable closed process can be-
come localised. If P is localised w.r.t. (Γ ,∆) then Γ ` P.∆

l−→ Γ ′ ` P′ .∆ ′ implies P′

is localised w.r.t. (Γ ′,∆ ′) (in the case of τ-transition, note queues always stay). We can
now introduce the reduction congruence and the asynchronous bisimilarity.

Definition 3.1 (Reduction Congruence). We write P ↓ a if P ≡ (ν~n)(a〈s〉 | R) with
a 6∈ ~n. Similarly we write P ↓ s if P ≡ (ν~n)(s [o : h·~h] | R) with s 6∈ ~n. P ⇓ n means
∃P′.P→→ P′ ↓ n. A typed relation R is reduction congruence if it is a congruence and
satisfies the following conditions for each P1RP2 whenever they are localised w.r.t. their
given environments.

1. P1 ⇓ n iff P2 ⇓ n.
2. Whenever Γ ` P1 .∆1RP2 .∆2 holds, P1 →→ P′1 implies P2 →→ P′2 such that Γ `

P′1 .∆ ′1RP′2 .∆ ′2 holds with ∆ ′1 ./ ∆ ′2 and the symmetric case.

The maximum reduction congruence which is not a universal relation exists [10] which
we call reduction congruency, denoted by ∼=.

Definition 3.2 (Asynchronous Session Bisimulation). A typed relation R over lo-
calised processes is a weak asynchronous session bisimulation or often a bisimula-
tion for brevity, if, whenever Γ ` P1 .∆1RP2 .∆2, the following two conditions holds:

(1) Γ ` P1 .∆1
`−→ Γ ′ ` P′1 .∆ ′1 implies Γ ` P2 .∆2

ˆ̀
=⇒ Γ ′ ` P′2 .∆ ′2 such that Γ ′ `

P′1 .∆ ′1RP′2 .∆ ′2 with ∆ ′1 ./ ∆ ′2 holds and (2) the symmetric case of (1). The maximum
bisimulation exists which we call bisimilarity, denoted by ≈. We sometimes leave en-
vironments implicit, writing e.g. P≈ Q.

We extend ≈ to possibly non-localised closed terms by relating them when their mini-
mal localisations are related by≈ (given Γ ` P.∆ , its minimal localisation adds empty

7

queues to P for the input shared channels in Γ and session channels in ∆ that are miss-
ing their queues). Further ≈ is extended to open terms in the standard way [10].

3.2 Properties of Asynchronous Session Bisimilarity

Characterisation of Reduction Congruence. This subsection studies central proper-
ties of asynchronous session semantics. We first show that the bisimilarity coincides
with the naturally defined reduction-closed congruence [10], given below.

Theorem 3.3 (Soundness and Completeness). ≈ = ∼=.

The soundness (≈⊂∼=) is by showing ≈ is congruent. The most difficult case is a clo-
sure under parallel composition, which requires to check the side condition ∆ ′1 ./ ∆ ′2
for each case. The completeness (∼=⊂≈) follows [7, § 2.6] where we prove that every
external action is definable by a testing process, see [23].
Asynchrony and Session Determinacy. Let us call ` an output action if ` is one of
a〈s〉,a(s),s!〈v〉,s!(a),s⊕ l; and an input action if ` is one of a〈s〉,s?〈v〉,s&l. In the fol-
lowing, the first property says that we can delay an output arbitrarily, while the second
says that we can always immediately perform a (well-typed) input.

Lemma 3.4 (Input and Output Asynchrony). Suppose Γ ` P.∆
`

=⇒ P′ .∆ ′.

– (output delay) If ` is an output action, then Γ ` P.∆ =⇒ `−→ P′ .∆ ′.
– (input advance) If ` is an input action, then Γ ` P.∆

`−→=⇒ P′ .∆ ′.

The asynchronous interaction on the session buffers enables inputs to happen before
multi-internal steps and outputs to happen after multi-internal steps.

Following [22], we define determinacy and confluence. Below and henceforth we
often omit the environments in typed transitions.

Definition 3.5 (Determinacy). We say Γ ′ ` Q .∆ ′ is derivative of Γ ` P .∆ if there

exists ~̀ such that Γ ` P.∆
~̀

=⇒Γ ′ `Q.∆ ′. We say Γ ` P.∆ is determinate if for each

derivative Q of P and action `, if Q `−→ Q′ and Q
ˆ̀

=⇒ Q′′ then Q′ ≈ Q′′.

We then extend the above notions to session communications.

Definition 3.6 (Session Determinacy). Let us write P `−→s Q if P `−→ Q where if
`= τ then it is generated without using [Request1], [Request2], [Accept], [Areq] nor [Amsg] from
reduction rules (i.e. a communication is performed without arrival predicates or accept

actions). We extend the definition to
~̀

=⇒s and
ˆ̀

=⇒s etc. We say P is session determinate

if P is typable, is localised and if Γ ` P.∆
~̀

=⇒ Q.∆ ′ then Γ ` P.∆
~̀

=⇒s Q.∆ ′. We
call such Q a session derivative of P.

We define `1b`2 (“residual of `1 after `2”) as (1) a〈s〉 if `1 = a(s′) and s′ ∈ bn(`2); (2)
s!〈s′〉 if `1 = s!(s′) and s′ ∈ bn(`2); (3) s!〈a〉 if `1 = s!(a) and a∈ bn(`2); and otherwise
`1. We write l1 ./ l2 when l1 6= l2 and if l1, l2 are input actions, sbj(l1) 6= sbj(l2).

8

Definition 3.7 (Confluence). Γ ` P .∆ is confluent if for each derivative Q of P and
`1, `2 such that `1 ./ `2, (i) if Q `−→Q1 and Q `

=⇒Q2, then Q1 =⇒Q′1 and Q2 =⇒Q′2 ≈

Q′1; and (ii) if Q
`1−→ Q1 and Q

`2=⇒ Q2, then Q1
`̂2b`1
=⇒ Q′1 and Q2

`̂1b`2
=⇒ Q′2 ≈ Q′1.

Lemma 3.8. Let P be session determinate and Γ ` P =⇒ Q.∆ . Then P≈ Q.

Theorem 3.9 (Session Determinacy). Let P be session determinate. Then P is deter-
minate and confluent.

The following relation is used to prove the event-based optimisation. The proof of the
following lemma is by showing =⇒R⇐= with =⇒ determinate is a bisimulation.

Definition 3.10 (Determinate Upto-expansion Relation). Let R be a symmetric, typed
relation such that if Γ ` P.∆ R Q.∆ and (1) P,Q are determinate; (2) If Γ ` P.∆

l−→
Γ ′ ` P′′ .∆ ′′ then Γ ` Q .∆

l
=⇒ Γ ′ ` Q′ .∆ ′ and Γ ′ ` P′′ .∆ ′′ =⇒ Γ ′ ` P′ .∆ ′ with

Γ ′ ` P′ .∆ ′R Q′ .∆ ′; and (3) the symmetric case. Then we call R a determinate upto-
expansion relation, or often simply upto-expansion relation.

Lemma 3.11. Let R be an upto-expansion relation. Then R ⊂≈.

4 Lauer-Needham Transform

In an early work [15], Lauer and Needham observed that a concurrent program may
be written equivalently either in a thread-based programming style (with shared mem-
ory primitives) or in an event-based style (with a single-threaded event loop processing
messages sequentially with non-blocking handlers). Following this framework and us-
ing high-level asynchronous event primitives such as selectors [18] for the event-based
style, many studies compare these two programming styles, often focusing on perfor-
mance of server architectures (see [13, § 6] for recent studies on event programming).
These implementations implicitly or explicitly assume a transformation from a program
written in the thread-based style, especially those which generate a new thread for each
service request (as in thread-based web servers), to its equivalent event-based program,
which treats concurrent services using a single threaded event-loop (as in event-based
web servers). However the precise semantic effects of such a transformation nor the
exact meaning of the associated “equivalence” has not been clarified.

We study the semantic effects of such a transformation using the asynchronous ses-
sion bisimulation. We first specify both event and thread based programming models
and introduce a formal mapping from a thread-based process to their event-based one,
following [15]. As a threaded system we assume a server process whose code creates
fresh threads at each service invocation. The key idea is to decompose this whole code
into distinct smaller code segments, each handling the part of the original code starting
from a blocking action. Such a blocking action is represented as reception of a message
(input or branching). Then a single global event-loop can treat each message arrival by
processing the corresponding code segment combined with an environment, returning
to inspect the content of event/message buffers. We first stipulate a class of processes
which we consider for our translation. Below ∗a(x);P denotes an input replication ab-
breviating µX .a(x).(P|X).

9

Definition 4.1 (Server). A simple server at a is a closed process ∗a(x).P with a typing
of form a :i〈S〉,b1 :o〈S1〉, ..,bn :o〈Sn〉 where P is sequential (i.e. contains no parallel
composition |) and is determinate and under any localisation. A simple server is often
considered with its localisation with an empty queue a[ε].

A server spawns an unbounded number of threads as it receives session requests re-
peatedly. Each thread may initiate other sessions with outside, and its interactions may
involve delegations and name passing. Definition 4.1 assumes two conditions: (1) de-
terminacy and (2) sequential processing of each event. A practical example of (1) is a
web server which only serves static web pages. As will be discussed later, determinacy
plays an essential role in our proofs while sequentiality is for simplicity of the mapping.
Given a server ∗a(w : S);P | a[ε], its translation, which we call Lauer-Needham trans-
form or LN-transform for short, is written LN [[∗a(w : S);P | a[ε]]](the full mapping is
non-trivial and given in [23]). The key elements of LN [[∗a(w : S);P]] follow:

1. A selector handles events on message arrival. Its function includes a selector queue
q〈ε〉 that stores sessions whose arrival is continuously inspected. Its initial element
is 〈a,c0〉. This data says: “if a message comes at a, jump to the code block (CPS
procedure) whose subject is c0”.

2. A collection of code blocks CodeBlocks〈a,o,q,~c〉, CPS procedures handling in-
coming messages. A code block originates from a threaded server blocking sub-
term, i.e. a subterm starting from an input or a branching.

3. Loop〈o,q〉 implements the event-loop. It passes execution from the selector to a
code block in CPS style, after a successful arrive inspection from the selector.

We use the standard “select” primitive represented as a process, called selector [13]. It
stores a collection of session channels, with each channel associated with an environ-
ment, binding variables to values. It then picks up one of them at which a message ar-
rives, receives that message via that channel and has it be processed by the correspond-
ing code block. Finally it stores the session and the associated environment back in the
collection, and moves to the next iteration. Since a selector should handle channels of
different types, it uses the typecase construct from [13]. typecase k of {(xi :Ti)Pi}i∈I
takes a session endpoint k and a list of cases (xi :Ti), each binding the free variable xi of
type pattern Ti in Pi. Its reduction is defined as:

typecase s of {(xi :Ti)Pi}i∈I | s [S,i :~h,o :~h′] −→ Pj{s/x j} | s [S,i :~h,o :~h′]

where j ∈ I such that (∀i< j.Ti 6≤ S∧Tj ≤ S) where≤ denotes a subtyping relation. The
typecase construct finds a match of the session type of the tested channel among the
session types in its list, and proceeds with the corresponding process. For the matching
to take place, session endpoint configuration syntax is extended with the runtime session
typing [13]. The selectors are defined by the following reduction relations:

new selector r in P−→ (ν r)(P | sel〈r, ε〉) register〈s′,r〉;P | sel〈r,~s〉 −→ P | sel〈r,~s · s′〉
let x = select(r) in typecase x of {(xi :Ti) : Pi}i∈I | sel〈r, s′ ·~s〉 | s′ [S,i :~h]

−→ Pi{s′/xi} | sel〈r,~s〉 | s′ [S,i :~h] (~h 6= ε)
let x = select(r) in typecase x of {(xi :Ti) : Pi}i∈I | sel〈r, s′ ·~s〉 | s′ [i :ε]

−→ let x = select(r) in typecase x of {(xi :Ti) : Pi}i∈I | sel〈r,~s · s′〉 | s′ [i :ε]

10

where in the third line S and Ti satisfy the condition for typecase in the reduction rule.
The last two rules integrate reductions for typecase to highlight their combined usage
(which is in effect the only way the selection is meaningfully performed). Operator
new selector r in P (binding r in P) creates a new selector sel〈r, ε〉, named r and
with the empty queue ε . Operator register〈s′,r〉;P registers a session channel s to r,
adding s′ to the original queue~s. The next let retrieves a registered session and checks
the availability to test if an event has been triggered. If so, find the match of the type
of s′ among {Ti} and select Pi; if not, the next session is tested. As proved in [13],
these primitives are encodable in the original calculus augmented with typecase. The
bisimulations and their properties (such as congruency of ≈) remain unchanged.

Example 4.1 (Lauer-Needham Transform). As an example of a server, consider:

P = ∗a(x);x?(y).x!〈y+1〉;x?(z).x!〈y+ z〉;0 | a[ε]

This process has the session type ?(nat); !(nat)?(nat); !(nat) at a, and can be read: a
process should first expect to receive (?) a message of type nat and send (!) it, then
to receive (? again) a nat, and finish by sending (!) a result. We extract the blocking
subterms from this process as follows.

Blocking Process Type at Blocking Prefix

a(x).x?(y).x!〈y+1〉x?(z).x!〈y+ z〉;0 i〈?(nat); !(nat); ?(nat); !(nat)〉
x?(y).x!〈y+1〉x?(z).x!〈y+ z〉;0 ?(nat); !(nat); ?(nat); !(nat)
x?(z).x!〈y+ z〉;0 ?(nat); !(nat)

These blocking processes are translated into code blocks (CodeBlocks) given as:

∗c0(y);a(x).update(y,x,x); register 〈sel,x,y,c1〉;o |
∗c1(x,y);x?(z);update(y,z,z); x!〈[[z]]y +1〉;register 〈sel,x,y,c2〉;o |
∗c2(x,y);x?(z′);update(y,z′,z′);x!〈[[z]]y +[[z′]]y〉;o

which processes each message, using environments to record threads’ states. The op-
eration update(y,x,x); updates an environment, while register stores the blocking
session channel, the associated continuation ci and the current environment y in the
selector queue sel.

Finally, using these code blocks, the main event-loop denoted Loop, is given as:

Loop = ∗o.let (x,y,z) = select from sel in typecase x of {
i〈?(nat); !(nat); ?(nat); !(nat)〉 : new y : env in z(y)
?(nat); !(nat); ?(nat); !(nat) : z(x,y)
?(nat); !(nat) : z(x,y)}

Above select from sel in selects a message from the selector queue sel, and treats
it in P. The new construct creates a new environment y. The typecase construct then
branches into different processes depending on the session of the received message, and
dispatch the task to each code block.

The determinate property allows us to conclude that:

Lemma 4.2. ∗a(w : S);R | a [ε] is confluent.

11

We can now establish the correctness of the transform. The proofs of the following
results are found in [23], which use a determinate upto-expansion relation (Definition
3.10) through Lemmas 3.11. First we give a basic equation for the standard event loop,
handling events by non-blocking handlers. We use recursive equations of agents for
legibility, which can be easily encoded into recursions.
P1 = if arrived s1 then (s1?(x).R1);P2 elseif arrived s2 then (s2?(x).R2);P1 else P1

P2 = if arrived s2 then (s2?(x).R2);P1 elseif arrived s1 then (s1?(x).R1);P2 else P2

where we assume well-typedness and each of R1,2, under any closing substitution and
localisation, is determinate and reaches 0 after a series of outputs and τ-actions. The
sequencing (s1?(x).R1);P2 denotes the process obtained by replacing each 0 in R1 with
P2. We can then show P1 ≈ P2 by using the up-to-expansion relation. The following
lemma proves its generalisation, elucidating the selectors behaviour in the stateless en-
vironment. It says that we can permute the session channels in a selector queue while
keeping the same behaviour because of the determinacy of the server’s code.

Lemma 4.3. Let P
def
= µX .let x = select(r) in typecase x of {(xi :Ti) : Ri;X}i∈I

where each Ri is determinate and reaches 0 after a sequence of non-blocking actions
(outputs and τ-actions as well as a single input/branching action at xi). The sequencing
Ri;X is defined as above. Then, assuming typability, we have P | sel〈r,~s1 · s′1 · s′2 ·~s2〉 ≈
P | sel〈r,~s1 · s′2 · s′1 ·~s2〉.

Thus the selector’s behaviour can be matched with the original threaded behaviour step
by step in the sense that there is no difference between which event (resp. thread) is
selected to be executed first. We conclude:

Theorem 4.4 (Semantic Preservation). Let ∗a(w : S);R | a [ε] be a simple server. Then
∗a(w : S);P | a [ε]≈LN [[a(w : S);P | a [ε]]].

5 Discussions

Comparisons with Asynchronous/Synchronous Calculi. We give comprehensive
comparisons with other calculi, clarifying the relationship between (1) the session-
typed asynchronous π-calculus [8] without queues (≈a, the asynchronous version of
the labelled transition relation for the asynchronous π-calculus), (2) the session-typed
synchronous π-calculus [9, 24] without queues (≈s), (3) the asynchronous session π-
calculus with two end-point queues without IO queues [5, 6, 21] (≈2), and (4) the asyn-
chronous session π-calculus with two end-point IO-queues (≈), i.e. the one developed
in this paper. The semantics of (2) is called non-local since the output process directly
puts the value into the input queue. The transition relation for non-local semantics (2)
is defined by replacing the output and selection rules in the LTS relation to:

〈Outn〉 s!〈v〉;P
s!〈v〉−→ P 〈Seln〉 s⊕ l;P s⊕l−→ P

See [23] for the full definitions and proofs. The following figure summarises distin-
guishing examples. Non-Blocking Input/Output means inputs/outputs on different chan-
nels, while the Input/Output Order-Preserving means that the messages will be re-
ceived/delivered preserving the order. The final table explains whether Lemma 3.4 (1)

12

(input advance) or (2) (output delay) is satisfied or not. If not, we place a counterexam-
ple (in (4), Π1,2[si,i :ε,o :ε] means [s1,i :ε,o :ε] | [s2,i :ε,o :ε]).

Non-Blocking Input Non-Blocking Output
(1) s1?(x);s2?(y);P≈a s2?(y);s1?(x);P s1〈v〉 | s2〈w〉 | P≈a s1〈w〉 | s2〈v〉 | P
(2) s1?(x);s2?(y);P 6≈s s2?(y);s1?(x);P s1!〈v〉;s2!〈w〉;P 6≈s s2!〈w〉;s1!〈v〉;P
(3) s1?(x);s2?(y);P | s1 [ε] | s2 [ε]≈2 s1!〈v〉;s2!〈w〉;P | s1 [ε] | s2 [ε] 6≈2

s2?(y);s1?(x);P | s1 [ε] | s2 [ε] s2!〈w〉;s1!〈v〉;P | s1 [ε] | s2 [ε]

(4) s1?(x);s2?(y);P |Π1,2[si,i :ε,o :ε]≈ s1!〈v〉;s2!〈w〉;P |Π1,2[si,i :ε,o :ε]≈
s2?(y);s1?(x);P |Π1,2[si,i :ε,o :ε] s2!〈w〉;s1!〈v〉;P |Π1,2[si,i :ε,o :ε]

Input Order-Preserving Output Order-Preserving
(1) s?(x);s?(y);P≈a s?(y);s?(x);P s〈v〉 | s〈w〉 | P≈a s〈w〉 | s〈v〉 | P
(2) s?(x);s?(y);P 6≈s s?(y);s?(x);P s!〈v〉;s!〈w〉;P 6≈s s!〈w〉;s!〈v〉;P
(3) s?(x);s?(y);P | s [ε] 6≈2 s?(x);s?(y);P | s [ε] s!〈v〉;s!〈w〉;P | s [ε] 6≈2 s!〈w〉;s!〈v〉;P | s [ε]
(4) s?(x);s?(y);P |Π1,2[si,i :ε,o :ε] 6≈ s!〈v〉;s!〈w〉;P |Π1,2[si,i :ε,o :ε] 6≈

s?(x);s?(y);P |Π1,2[si,i :ε,o :ε] s!〈w〉;s!〈v〉;P |Π1,2[si,i :ε,o :ε]

Lemma 3.4 (1) Lemma 3.4 (2)
(1) yes yes
(2) (ν s)(s!〈v〉;s′?(x);0 | s?(x);0) (ν s)(s!〈v〉;s′!〈v′〉;0 | s′?(x);0)
(3) yes s!〈v〉; s′?(x);0 | s′[v′]
(4) yes yes

Another technical interest is the effects of the arrived predicate on these combi-
nations. We define the synchronous and asynchronous π-calculi augmented with the
arrived predicate and local buffers. For the asynchronous π-calculus, we add a[~h] and
arrived a in the syntax, and define the following rules for input and outputs.

a〈v〉 a〈v〉−→ 0 a[~h]
a〈h〉−→ a[~h ·h] if arrived a then P else Q|a[ε] τ−→ Q | a[ε]

a?(x).P | a[~h1 ·hi · ~h2]−→ P{hi/x} | a[~h1 · ~h2] if arrived a then P else Q|a[~h] τ−→ P | a[~h]

where, in the last rule, |~h| ≥ 1. The above definition precludes the order preservation
as the property of transport, but still keeps the non-blocking property as in the asyn-
chronous π-calculus. The synchronous version is similarly defined by setting the buffer
size to be one. The non-local version is defined just by adding arrived predicate.

Let Q = if e then P1 else P2 with P1 6≈ P2. If the syntax does not include arrival
predicates, we have Q | s[i : /0] | s[o : v] ≈ Q | s[i : v] | s[o : /0]. In the presence of the
arrival predicate, we have Q | s[i : /0] | s[o : v] 6≈Q | s[i : v] | s[o : /0] with e = arrived s.
Interestingly in all of the calculi (1–4), the same example as the above, which separate
semantics with/without the arrived, are effective.

The IO queues provide non-blocking inputs and outputs, while preserving the in-
put/output ordering, which distinguishes the present framework from other known se-
mantics. As a whole, we observe that the present semantic framework is closer to the
asynchronous bisimulation (1)≈a, augmented with order-preserving nature per session.
Its key properties arise from local, buffered session semantics and typing. We have also
seen the semantic significance of the arrived predicates, which enables processes to
observe the effects of fine-grained synchronisations.

13

Related Work. Some of the key proof methods of our work draw their ideas from
[22], which study an extension of the confluence theory on the π-calculus. Our work
differs in that we investigate the effect of asynchronous IO queues and its relationship
to confluence. The work [1] examines expressiveness of various messaging mediums by
adding message bags (no ordering), stacks (LIFO policy) and message queues (FIFO
policy) in the asynchronous π-calculus [8]. They show that the calculus with the mes-
sage bags is encodable into the asynchronous π-calculus, but it is impossible to encode
the message queues and stacks. Neither the effects of locality, queues, typed transitions,
and event-based programming are studied.

Programming constructs that can test the presence of actions or events are studied in
the context of the Linda language [3] and CSP [16, 17]. The work [3] measures expres-
sive powers between three variants of asynchronous Linda-like calculi, with a construct
for inspecting the output in the tuple space, which is reminiscent of the inp predicate of
Linda. The first calculus (called instantaneous) corresponds to (1) [8], the second one
(called ordered) formalises emissions of messages to the tuple spaces, and the third one
(called unordered) models unordered outputs in the tuple space by decomposing one
messaging into two stages — emission from an output process and rendering from the
tuple space. It shows that the instantaneous and ordered calculi are Turing powerful,
while the unordered is not. The work [16] studies CSP with a construct that checks if
a parallel process is able to perform an output action on a given channel and a sub-
sequent work [17] investigates the expressiveness of its variants focusing on the full
abstraction theorem of the trace equivalence. Our calculi (1,2,3,4) are Turing powerful
and we aim to examine properties and applications of the typed bisimilarity charac-
terised by buffered sessions: on the other hand, the focus of [3] is a tuple space where
our input/output order preserving examples (which treat different objects with the same
session channel) cannot be naturally (and efficiently) defined. The same point applies to
[16, 17]. As another difference, the nature of localities has not been considered either in
[3, 16, 17] since no notion of a local or remote tuple or environment is defined. Further,
none of the above work [1, 3, 16, 17, 22] treats large applications which include these
constructs (§ 4) or the performance analysis of the proposed primitives.

Using eventful session types, we have demonstrated that our bisimulation theory is
applicable, through the verification of the correctness of the Lauer-Needham transform.
The asynchronous nature realised through IO message queues provides a precise analy-
sis of local and eventful behaviours, found in major distributed transports such as TCP.
The benchmark results from high-performance clusters in [23] show that the throughput
for the thread-eliminated Server implementations in Session Java [13] exhibits higher
throughput than the multithreaded Server implementations, justifying the effect of the
type and semantic preserving LN-transformation.

As the future work, we plan to investigate bisimulation theories under multiparty
session types [12] and a relationship with a linear logic interpretation of sessions, which
connects a behavioural theory and permutation laws under locality assumption [4].

Acknowledgements. We thank Raymond Hu for collaborations and the reviewers
for their useful comments. The work is partially supported by EP/F003757/1, EP/G015635/1,
EP/G015481/1 and EP/F002114/1.

14

References

1. R. Beauxis, C. Palamidessi, and F. D. Valencia. On the asynchronous nature of the asyn-
chronous pi-calculus. In Concurrency, Graphs and Models, volume 5065 of LNCS, pages
473–492. Springer, 2008.

2. L. Bettini et al. Global progress in dynamically interleaved multiparty sessions. In CONCUR,
volume 5201 of LNCS, pages 418–433. Springer, 2008.

3. N. Busi, R. Gorrieri, and G. Zavattaro. Comparing three semantics for Linda-like languages.
Theor. Comput. Sci., 240(1):49–90, 2000.

4. L. Caires and F. Pfenning. Session types as intuitionistic linear propositions. In CONCUR,
volume 6269 of LNCS, pages 222–236. Springer, 2010.

5. M. Coppo, M. Dezani-Ciancaglini, and N. Yoshida. Asynchronous Session Types and
Progress for Object-Oriented Languages. In FMOODS’07, volume 4468 of LNCS, pages
1–31, 2007.

6. S. Gay and V. T. Vasconcelos. Linear type theory for asynchronous session types. JFP, 2009.
7. M. Hennessy. A Distributed Pi-Calculus. CUP, 2007.
8. K. Honda and M. Tokoro. An object calculus for asynchronous communication. In

ECOOP’91, volume 512 of LNCS, pages 133–147, 1991.
9. K. Honda, V. T. Vasconcelos, and M. Kubo. Language primitives and type disciplines for

structured communication-based programming. In ESOP’98, volume 1381 of LNCS, pages
22–138. Springer, 1998.

10. K. Honda and N. Yoshida. On reduction-based process semantics. TCS, 151(2):437–486,
1995.

11. K. Honda and N. Yoshida. A uniform type structure for secure information flow. TOPLAS,
29(6), 2007.

12. K. Honda, N. Yoshida, and M. Carbone. Multiparty Asynchronous Session Types. In
POPL’08, pages 273–284. ACM, 2008.

13. R. Hu, D. Kouzapas, O. Pernet, N. Yoshida, and K. Honda. Type-safe eventful sessions in
Java. In ECOOP, volume 6183 of LNCS, pages 329–353. Springer-Verlag, 2010.

14. R. Hu, N. Yoshida, and K. Honda. Session-Based Distributed Programming in Java. In
ECOOP’08, volume 5142 of LNCS, pages 516–541. Springer, 2008.

15. H. C. Lauer and R. M. Needham. On the duality of operating system structures. SIGOPS
Oper. Syst. Rev., 13(2):3–19, 1979.

16. G. Lowe. Extending csp with tests for availability. Procedings of Communicating Process
Architectures (CPA 2009), 2009.

17. G. Lowe. Models for csp with availability information. In EXPRESS’10, volume 41 of
EPTCS, pages 91–105, 2010.

18. S. Microsystems Inc. New IO APIs. http://java.sun.com/j2se/1.4.2/docs/guide/
nio/index.html.

19. R. Milner. Communication and Concurrency. Prentice Hall, 1989.
20. R. Milner, J. Parrow, and D. Walker. A Calculus of Mobile Processes, Parts I and II. Info.&

Comp., 100(1), 1992.
21. D. Mostrous and N. Yoshida. Session-based communication optimisation for higher-order

mobile processes. In TLCA’09, volume 5608 of LNCS, pages 203–218. Springer, 2009.
22. A. Philippou and D. Walker. On confluence in the pi-calculus. In ICALP’97, volume 1256

of Lecture Notes in Computer Science, pages 314–324. Springer, 1997.
23. On-line Appendix of this paper. http://www.doc.ic.ac.uk/~dk208/semantics.html.
24. K. Takeuchi, K. Honda, and M. Kubo. An Interaction-based Language and its Typing Sys-

tem. In PARLE’94, volume 817 of LNCS, pages 398–413, 1994.

15

