
Imperial College of Science, Technology and Medicine
Department of Computing

A Study of Bisimulation Theory for Session Types

Dimitrios Kouzapas

Submitted in part fulfilment of the requirements for the degree of
Doctor of Philosophy in Computing of Imperial College, April 2013

Abstract

Bisimulation theory is a co-inductive tool used as a tractable method for studying equivalence

relations in process calculi. This dissertation studies bisimulation theory for session types. We

define the Asynchronous Session π-calculus (ASP for short), which is a session type calculus

with queue configurations acting as a communication medium at each session endpoint The

semantics for ASP offer fine-grained communication that enjoys the non-blocking property

of asynchrony and the order-preserving property of session types. The ASP typing system is

shown to be sound to guarantee type safety in the presence of subtyping. A typed labelled

transition system gives rise to a bisimilarity which is sound and complete with respect to typed

reduction-closed congruence. The bisimilarity theory of ASP highlights the determinacy and

confluence properties of session types.

Event-driven programming is one of the major paradigms that utilise the asynchronous nature

of distributed systems, where events are recognised as the presence of messages and their

typed information in the communication medium. To justify the design choices made, we

develop a superset of ASP, called the Eventful Session π-calculus (ESP for short), equipped

with the minimal session primitives for an expressive event-driven computational model. The

eventful session type system introduces the session set type, which is a collection of session

types used to type a set of possible events. The ESP typing system maintains its consistency

with respect to the ASP session typing system up-to a subtyping relation for session set types.

The straightforward extension from ASP to ESP offers behavioural transparency, making the

bisimilarity theory for the ASP a special case for the ESP theory – the bisimilarity relation

coincides with typed reduction-closed congruence and determinacy and confluence properties

are shown to hold for session transitions.

Many studies regarding event-driven computation have identified the selector or its equivalent,

the polling operator, as the key construct for describing an event-driven framework. The

selector is defined as a higher level construct in ESP and it is used to implement the core event

handling routine called the event loop. Following the empirical study by Lauer and Needham,

we define a session-based transformation from a multi-threaded server to an event loop server.

Confluence theory proves that the transformation is type- and semantics-preserving.

In the last part of the dissertation we extend the behavioural theory to multiparty session

types, both in the synchronous and the asynchronous cases. For each case, we examine two

different typed labelled transition systems. In the first case we examine a standard labelled

transition system with respect to the local session typing of processes. In the second case

a choreography specification governs the behaviour of a multiparty session process and its

observer. Each labelled transition system defines a bisimilarity relation, which coincides with

the corresponding reduction-closed congruence.

ii

To the memory of Kohei.

iv

Acknowledgments

The first person I would like to acknowledge is my supervisor Prof. Nobuko Yoshida. During

my years as a PhD student, I always had the strong feeling of her guidance and support. As a

token of my gratitude I would like to expose her virtues of patience, kindness and hard work.

This thesis is dedicated to the memory of Dr. Kohei Honda, who passed away a few weeks

before the thesis was completed. Kohei, who is regarded as the father of session types, was

not just a co-author and a friend; he was an on going source of motivation, excitement and

inspiration for me. With this acknowledgement also comes a promise that we will continue

his work.

Furthermore, I would like to thank my co-supervisor Dr. Iain Phillips for the time he spent

and the advices he gave me, especially in the last months of my PhD studies.

I also appreciate the valuable contribution of my co-author and friend Dr. Raymond Hu.

I am gratefull to the Department of Computing of Imperial College London for giving me

the opportunity to study at Imperial as a doctoral student and for granting me the Doctoral

Training Award, which supported my study fees.

Last but not least, I am forever in debt to my family. Whithout their support, the completion

of this thesis would never be possible.

v

vi

Declaration

This thesis was composed by myself and the material used is my own unless otherwise refer-

enced.

vii

viii

Contents

Table of Contents ix

List of Figures xvii

1 Introduction 1

1.1 Introductory Notions . 1

1.2 Aim and Motivation . 4

1.3 Contribution . 6

1.4 Publications and Detailed Contribution . 9

1.5 Chapter Outline . 11

2 Background 13

2.1 Session Types . 13

2.1.1 Session Types Semantics . 15

2.2 Bisimulation Theory for the π-calculus . 25

2.2.1 The π-calculus . 26

ix

x CONTENTS

2.2.2 The Asynchronous π-calculus . 31

2.2.3 Type Systems and Advanced Behavioural Theory for the π-Calculus . 34

2.3 Event Driven Programming . 36

I 43

3 Asynchronous Session Types Behavioural Theory 45

3.1 A Core Process Model for Asynchronous Sessions 47

3.1.1 Syntax of the Asynchronous Session π-Calculus 47

3.1.2 Operational Semantics of the Asynchronous Session π-Calculus . . . 51

3.2 Types for Asynchronous Session Processes 54

3.2.1 Type Syntax . 54

3.2.2 Session Subtyping . 55

3.2.3 Type System for Programs . 57

3.2.4 Type System for Run-time Syntax 59

3.2.5 Subject Reduction . 64

3.3 Asynchronous Session Bisimulation and its Properties 67

3.3.1 Labelled Transition Semantics . 67

3.3.2 Bisimulation . 73

3.3.3 Properties of Asynchronous Session Bisimilarity 75

CONTENTS xi

4 Eventful Session Types Behavioural Theory 83

4.1 A Calculus for Eventful Sessions . 85

4.1.1 Syntax of the Eventful Session π-Calculus 85

4.1.2 Structural Congruence . 87

4.1.3 Operational Semantics of the Eventful Session π Calculus 87

4.2 Types for Eventful Session Processes . 92

4.2.1 Syntax . 93

4.2.2 Session Subtyping . 94

4.2.3 Type System for Programs . 96

4.2.4 Type System for Run-time Syntax 98

4.2.5 Subject Reduction . 100

4.3 Eventful Session Bisimulation and its Properties 102

4.3.1 Labelled Transition Semantics . 102

4.3.2 Bisimulation . 104

4.3.3 Properties of Asynchronous Session Bisimilarity 106

5 Applications of the Eventful Behavioural Theory 109

5.1 Properties of the ESP Behavioural Theory 110

5.2 Comparisons with Asynchronous and Synchronous π-calculi 113

5.2.1 Synchronous and Asynchronous π-calculi in the presence of arrive . 116

xii CONTENTS

5.3 Representing High-level Event Constructs in ESP 123

5.3.1 A Basic Event Loop . 124

5.3.2 Selector semantics . 126

5.3.3 From ESP + to ESP . 127

5.3.4 Typing Event Selectors . 128

5.4 Behavioural Properties of the Selector . 129

5.5 Lauer-Needham Transform . 132

5.5.1 Multithreaded Server Process . 134

5.5.2 The Transform . 134

II 143

6 Multiparty Session Types Behavioural Theory 145

6.1 Intuition for the Multiparty Behavioural Theory 146

6.2 Synchronous Multiparty Session π-Calculus as a Core Calculus 148

6.2.1 Syntax and Operational Semantics 148

6.2.2 Session Types for Synchronous Multiparty Session π-calculus 152

6.2.3 Typing System and its Properties . 157

6.2.4 Type soundness . 160

6.2.5 Labelled Transition System . 161

CONTENTS xiii

6.3 Asynchronous Multiparty Session Calculus 165

6.3.1 Syntax and Operational Semantics 167

6.3.2 Typing for Asynchronous Multiparty Session π-calculus 172

6.3.3 Runtime Typing for Asynchronous Multiparty Session π-calculus . . 173

6.3.4 Type Soundness . 178

6.3.5 Labelled Transition System . 181

6.4 Global Environment Semantics . 190

6.4.1 Global Environments . 190

6.4.2 Global Configurations . 192

6.5 Multiparty Session π-calculus Behavioural Theory 197

6.5.1 Local Multiparty Behavioural Theory 197

6.5.2 Globally Governed Multiparty Behavioural Theory 203

6.6 A Service Oriented Usecase . 211

6.6.1 Usecase Scenario 1 . 212

6.6.2 Usecase scenario 2 . 214

6.6.3 Usecase scenario 3 . 215

6.6.4 Behavioural Equivalence . 216

xiv CONTENTS

III 219

7 Conclusion 221

7.1 Related Work . 221

7.2 Conclusion . 227

Bibliography 232

A Appendix for the Eventful Session π-calculus 243

A.1 Properties of Subtyping . 243

A.2 Subject Reduction and Communication and Event Handling Safety 245

A.2.1 Weakening and Strengthening . 245

A.2.2 Subject Reduction . 249

A.2.3 Communication Safety . 252

A.3 Bisimulation Properties . 254

A.3.1 Proof for Theorem 4.3.1 . 254

A.4 Determinacy and Confluence . 261

A.4.1 Proof for Lemma 3.3.1 . 261

A.4.2 Proof for Lemma 4.3.2 . 262

A.4.3 Proof for Lemma 4.3.3 . 263

A.4.4 Proof for Lemma 4.3.4 . 263

A.4.5 Proof for Lemma 4.3.5 . 263

CONTENTS xv

B Appendix for the Applications of the ESP 265

B.1 Comparison with Asynchronous/Synchronous Calculi 265

B.1.1 Proofs for Section 5.2 . 265

B.2 Selector Properties . 267

B.2.1 Proof for Proposition 5.3.1 (1) . 267

B.2.2 Selector Properties . 268

B.2.3 Proof of Lemma 5.4.1 . 271

B.2.4 Proof of Lemma 5.4.2 . 271

B.3 Thread Elimination Transform Properties 272

C Apendix for the MSP 277

C.1 Global Types . 277

C.1.1 Proof for Lemma 6.2.1 . 277

C.2 Subject Reduction . 278

C.2.1 Proof for Theorem 6.2.1 . 278

C.2.2 Proof for Theorem 6.3.1 . 279

C.3 Proofs for Bisimulation Properties . 282

C.3.1 Parallel Observer Property . 282

C.3.2 Proof for Lemma 6.5.1 . 282

C.3.3 Configuration Transition Properties 286

xvi CONTENTS

C.3.4 Proof for Lemma A.3.1 . 292

C.3.5 Proof for Lemma 6.5.5 . 296

C.3.6 Proof for Theorem 6.5.2 . 299

C.3.7 Proof for Lemma 6.5.4 . 302

C.3.8 Proof for theorem 6.5.5 . 303

List of Figures

2.1 Typing system for binary Session Types . 21

3.1 The syntax of ASP processes. 48

3.2 Structural congruence for ASP. 50

3.3 Reduction rules for ASP. 52

3.4 Schematic represantation of the ASP reduction semantics 53

3.5 The generating function for the session subtyping relation. 55

3.6 Session type duality. 56

3.7 Typing rules for programs. 58

3.8 Extended typing rules for the ASP run-time processes. 63

3.9 Labelled transition system. 69

3.10 Labelled transition rules for environments. 72

4.1 The syntax of ESP processes. 86

4.2 Structural congruence. 88

xvii

xviii LIST OF FIGURES

4.3 Reduction rules for Eventful Session π-calculus. 89

4.4 The generating function for the eventful session subtyping relation. 94

4.5 Session type duality. 95

4.6 Typing rules for programs. 97

4.7 Extended typing rules for the ESP run-time processes. 99

4.8 Labelled transition system. 103

5.1 Labelled Transition for Session Type System with Two Buffer Endpoint With-

out IO . 114

5.2 Comparisons between bisimulations in the asynchronous and the synchronous

π-calculi. 117

5.3 Comparison between the synchronous and the asynchronous π-calculi for

Lemma 4.3.1 . 118

5.4 Arrived message detection behaviour in asynchronous and synchronous calculi.122

5.5 Translation Function for Lauer-Needham Transform 137

6.1 Resource Managment Example: (a) before optimisation; (b) after optimisa-

tion . 147

6.2 Syntax for synchronous multiparty session calculus 149

6.3 Structural Congruence for Synchronous Multiparty Session Calculus 150

6.4 Operational semantics for synchronous multiparty session calculus 151

6.5 Global types . 152

LIST OF FIGURES xix

6.6 Local types . 153

6.7 Multiparty Session Duality . 157

6.8 Typing System for Synchronous Multiparty Session Calculus 159

6.9 Labelled transition system for processes . 163

6.10 Labelled Transition Relation for Environments 164

6.11 Three asynchronous semantics . 166

6.12 Labelled Transition System for the Asynchrnous MSP calculi. 184

6.13 Labelled Reduction Relation for Global Environments 191

6.14 The LTS for Environment Configuations 194

6.15 Three usecases from UC.R2.13 “Acquire Data From Instrument” in [OOI] . . 213

xx

Chapter 1

Introduction

This dissertation is concerned with the study of bisimulation equivalences in the context of

Session type theory. A session type system defines a class of π-calculus terms that have a

well-defined communication behaviour. Bisimulation equivalences in session types present

interest as an object of study, due to the fundamental notions of communication imposed by

session types and the programming design principles that derive out of these foundations.

1.1 Introductory Notions

Distributed systems were evolved from the need of coordinating into efficient use the many

concurrent resources in a computing system. Many individuals see a distributed system as

a set of computations with communication as the meta-function that coordinates the entire

system. On another perspective, distribution should be understood as a unit of computation,

in the sense that there is only one computation taking place in the entire system and that com-

munication is part of the computation. A step towards this latter direction is to semantically

define communication. Communication as an operation, affects more than one computation

entity and can be considered as the connector holding a distributed system together. The

1

2 Chapter 1. Introduction

duality of interactions between distributed entities lies at the core of communication seman-

tics. When duality is clarified via the send/receive of computing entities, called messages, the

communication is characterised as message passing.

Semantics for message passing communication are identified into two major classes: syn-

chronous message passing and asynchronous message passing. In synchronous message

passing the send/receive operators have a temporal meet to achieve message exchange, i.e.

both send and receive operations happen at the same time. Asynchronous communication, on

the other hand, does not rely on the exact temporal send/receive interaction, introducing the

notion of the communication medium as an intermediate stage for message passing. A sender

is always free to interact with the medium to store a message, while the receiver consumes

the message from the medium at a later time.

In practice, distributed systems use forms of communication, where the send and receive op-

erators do not require synchronisation. Asynchrony in concurrent systems uses intermediate

memory buffers for storing data. Message presence in a memory buffer can be checked ahead

of its reception, adding flexibility to asynchronous communication programming. The event-

driven paradigm is one of the major frameworks for utilising asynchrony in distributed sys-

tems. The basic notion of event-driven programming is the event. An event can be recognised

as the presence of a message in the communication medium. The event-driven framework has

the facilities to detect and react on the presence of an event i.e. the event-driven mechanism

can recognise the type of a message upon its reception and proceed with processing.

The semantics for message passing communication were described as mathematical objects

in the context of process calculi. One such calculus is the π-calculus that was originally pro-

posed in [MPW92]. The fundamental building block of the π-calculus processes is called

name. A name models a communication link and exists as a process building block, in either

the send or the receive mode. Communication semantics derive from the send/receive inter-

action on a name. The messages passed on send/receive interactions are also names giving

rise to the notion of link mobility. The π-calculus uses names and message passing com-

1.1. Introductory Notions 3

munication as the only primitives to describe a mathematical framework for concurrency. A

fragment of the π-calculus, called the asynchronous π-calculus was proposed in [HT91b].

The asynchronous π-calculus abstracts asynchronous communication semantics, using a sim-

ple restriction on the sequencing of the message send prefix on processes. An important result

is the encoding of the synchronous π-calculus in terms of the asynchronous π-calculus.

Type theory and type systems for models of computation were developed to statically enforce

well-defined properties to the computation and to study the dynamics of programs through

typing abstractions. Session types is a typing system for the π-calculus proposed by Honda et

al. in [HVK98], developed to abstract the fundamentals of message passing communication

as a type theory. The basic type for session types is the session or session channel. The

typing system for sessions is based on three basic principles: i) the send/receive duality of

the communication sequence in a session; ii) the linearity of session names1; and iii) the type

match between the messages carried by a send/receive interaction.

Session types gained attention by the concurrency research community, over the last years,

due to the good properties they enforce on a distributed program: i) well type session pro-

grams do not suffer from communication deadlocks; ii) communication is handled as a linear

resource iii) type soundness is a cornerstone property of type theories.

Session types were originally limited to the interactions of a binary set of session channels

and presented limitations when applied to more than two processes. The idea of communica-

tion choreography influenced session type theory, for the development of multiparty session

types, [HYC08, B+08]. Choreography in communication requires the knowledge of the com-

munication scenario for all computing participants to be specified in advance. Multiparty

session types’ main notion, is the global multiparty session type, that describes a global com-

munication interaction between a set of computational participants. The projection of a global

type to a local session type for each participant, allows for the local type checking of each

1 The term linear is used to characterised a resource as finite, i.e. it is used a finite number of times, or it is
used by a finite number of computation points at any given time

4 Chapter 1. Introduction

participant implementation.

A central point of study for process calculi is the behavioural equivalence theory for pro-

cesses. Behavioural theory attempts to answer questions on how processes interact with, or

better yet are observed by, their environment and how processes are related with respect to

their behaviour. A labelled transition system on processes abstracts process transitions as a

labelled graph. The bisimulation relation (developed originally for CCS [Mil80] following

the intuitions from [Par81]) is a relation between labelled transition graphs and was emerged

from the need of a fine-tuned equivalence between processes. Bisimulation has the property

to be defined in the co-inductive framework. The application of the co-inductive method over

co-directed process sets has lead to the definition of a universal closure called bisimilarity.

A co-inductive subset of bisimilarity over a pair of processes is called a bisimulation. The

existence of a bisimulation between processes is evidence of their equivalence.

1.2 Aim and Motivation

The aim of this dissertation is to study bisimulation relations for the π-calculus in the context

of session types. Bisimulation was broadly studied in the setting of the untyped π-calculi,

but less work has been done for equivalence relations in typed process calculi. A session

type system is an excellent typing setting for studying typed bisimulations, since it offers a

well-defined and desirable set of properties for message passing communication. The first

motivation of this work is to exhibit a core theory for the session typed bisimulation. We

further take care to include in the bisimulation theory an applied aspect of session typed

behaviour.

A first applied aspect focuses on the development of a session type theory for the asyn-

chronous π-calculus, using intermediate buffers as processes. Network transport protocols

such as TCP use intermediate memory buffers to provide reliable and ordered delivery of

1.2. Aim and Motivation 5

meaningful formatted messages, once a connection is established. The distinction between a

possibly unordered communication outside a connection and an order-preserving connection

inside an established connection is a key point of interest when handling communication. A

session type system exhibits a natural fit towards order-preserving communication, since it

allows a structured sequence of communication.

A message presence in an intermediate buffer, allows for the receiver to asynchronously in-

spect and consume messages. This fact gives rise to an event-driven discipline for session

types. Event-driven programming is characterised by a reactive flow of control, driven by

the occurrences of computation events. Primary motivations for event-driven programming

include performance and scalability, particularly for highly concurrent web applications. Un-

fortunately, the flexibility and performance of traditional event-driven programming comes at

the cost of more complex programs with obfuscated flow of control.

We use session types to type an asynchronous version of the π-calculus that uses: i) asyn-

chrony to establish session connections; and ii) intermediate buffers to achieve asynchronous

and order-preserving delivery of messages inside connections. Note that we assume perfect

intermediate buffers, that have no message losses and have an unbounded capacity. Static

session typing is adjusted to the dynamic nature of event-driven programming with the in-

troduction of a message arrival expression and a statically checked type matching process

construct. Session types provide a static and communication-centred perspective for event-

driven programming, making reactive event-driven programs easier to write and understand.

We define session typed asynchronous bisimulation and show that it is the maximal reduction-

closed congruence relation that preserves observation [HY95]. The motivation for reasoning

about event-driven systems has led to the study of the properties of confluence [Mil89, PW97]

on session transitions, which is defined using the session typed bisimulation. We show that

session transitions preserve the confluence property, due to the linear and structured usage of

session channels.

6 Chapter 1. Introduction

The event-driven session type framework can be used to abstract as processes and study the

properties of event-driven programming primitives and routines. In this work we abstract

as typed processes and study the behaviour of the selector primitive [Lea03, NIO] and the

basic event-driven routine, the event-loop. Based on [LN79], the event-loop is used to de-

fine a typed transformation from a thread-based server and an event-based server. We then

use confluence theory on session transitions to reason that the transformation results in a

behaviourally indistinguishable process.

This work is completed with a study of bisimulation theory in the multiparty session type

[HYC08, B+08] setting. We use the principles developed previously in this dissertation to

define a behavioural theory for both the synchronous and the asynchronous multiparty session

calculi. The fact that all distributed processes follow a global multiparty protocol motivated

a novel contribution of this part, which is to control the behaviour of a system based on the

global multiparty session type.

1.3 Contribution

We develop a core process calculus called the Asynchronous Session π-calculus – ASP for

short. Asynchrony for session channels in the ASP is achieved with the use of first-in first-out

input and output queues, called session configurations, for each session endpoint, that define

a fine-grained communication with the non-blocking property of asynchrony and the order-

preserving property of session types. Similarly we use a first-in first-out queue as a shared

name endpoint configuration to model asynchrony in shared names [Kou09].

We extend the standard session type theory (cf. [YV07]) in the presence of subtyping (cf.

[GH05]) to develop a session type system with novel typing rules to type session endpoint

configurations (cf. [MY09]). The soundness and safety of the typing system are proved via

standard subject reduction and progress theorems.

1.3. Contribution 7

A behavioural theory over session type processes should take into account the session typing.

We develop a labelled transition system over the session type environment, which we use to-

gether with the standard labelled transition system for processes, to define a transition relation

over typed processes. The typed transition is used as the monotone function to co-inductively

define a weak bisimilarity relation, which is the largest reduction-closed congruence that pre-

serves observation. We follow the intuition that session channels are linear resources to prove

that session transitions (i.e. actions on session channels) enjoy the properties of confluence

and determinacy.

Asynchronous communication is clarified with the definition of a superset of the ASP called

the Eventful Session π-calculus (ESP) with the operational facilities to model the event-driven

paradigm. More specifically we define the arrive construct used to check shared and session

configuration endpoints for the arrival of messages and the typecase construct, that uses type

matching on session names to decide process continuation. To type the typecase construct,

the type system is extended with the definition of session set types. A subtyping theory over

session set types makes the ESP typing system transparent up-to subtyping with respect to the

ASP typing system. The behavioural theory for ESP shows the validity for all major results

studied in ASP.

We demonstrate the properties of the ESP following simple examples. Specifically the equiva-

lences, up-to session channel permutation, show the non-blocking and order-preserving prop-

erties of ESP communication. We demonstrate the counter-example that proves the lack of

confluence of an arrive-guarded process. This result is useful when reasoning about event-

driven ESP systems. A final example on the equivalence between the permutations of se-

quential arrive-inspections inside a recursive loop, gives a first and strong intuition about

the behavioural nature of event-driven programming. The bisimulation equivalences for the

ESP are distinguished by classic synchronous and asynchronous bisimulation theory. We

demonstrate this distinction through a comparison of standard equivalence relations in differ-

ent calculi.

8 Chapter 1. Introduction

An empirical study on event-driven programming identifies the selector construct as the key

construct used to program event-driven asynchronous systems. The selector, also known

as the polling operator in the context of operating systems, checks a set of communication

channels for the arrival of messages. Upon a message arrival, the selector returns the cor-

responding communication channel for processing. The selector construct is used to build a

basic event-driven programming construct called the event-loop. The event-loop is a recursive

block of code that selects, identifies and processes events. We use the arrive construct to

encode a type-safe selector primitive as a high-level construct on ESP. We then use the selec-

tor together with the typecase construct to define a type-safe event-loop process. We show

that the behaviour of an event-loop that enjoys the confluence property, is not distinguished

by the order the event-loop selector checks session channels for message arrival.

Lauer and Needham in their early work [LN79] argued that a concurrent program can be

written equivalently in a thread-based programming style, or an event-based style. Following

their work we define an ESP transformation from a thread-based server to an event-loop based

server. We use the confluence theory to prove that both servers are semantically equivalent.

In the last part of the thesis we develop a multiparty session type behavioural theory on the

basis of the binary session type theory. The main objective is to develop a modular theory for

multiparty session types and explore its behavioural relations and properties. We develop the

semantics for Synchronous Multiparty Session π-calculus (or Synchronous MSP for short) to

use it as a core definition for the development of a set of Asynchronous Multiparty π-calculi

(Asynchronous MSP for short) (cf. [B+08]).

The Asynchronous MSP calculi are called: i) the output asynchronous MSP; ii) the input

asynchronous MSP; and iii) the input/output asynchronous MSP and are defined by extending

the synchronous MSP semantics with the session configuration construct. The distinction

between them is based on the way the session configuration semantics are defined, in order to

emulate asynchrony. Briefly output asynchrony respects asynchrony between the same sender

1.4. Publications and Detailed Contribution 9

and different receiver, input asynchrony respects asynchrony between the same receiver and

different senders and input/output asynchrony is inspired by the ASP definition.

We define the behavioural semantics on MSP calculus, based on the behavioural theory for

binary session types, where we use local session types to define a typed LTS. For each MSP

calculi, we prove that the proposed bisimulation is the maximal reduction-closed congruence

that preserves observation.

As a last contribution, we propose a novel definition for controlling the typed LTS with the

use of the multiparty global type. We use the typed LTS to define the globally governed

bisimilarity that coincides with the corresponding reduction-closed observation-preserving

congruence.

1.4 Publications and Detailed Contribution

The following papers were published as a result of the research done for the requirements

of this dissertation and are its primary contributing sources. The papers are presented in

chronological order. For each paper the author’s contribution is given. The relevance of each

work with this dissertation is given through the dissertation Chapter correspondence.

1. Raymond Hu, Dimitrios Kouzapas, Olivier Pernet, Nobuko Yoshida and Kohei Honda.

Type-Safe Eventful Sessions in Java. In ECOOP, volume 6183 of LNCS, pages 329-

353, 2010.

Author’s Contribution: Contribution on the development of the Eventful Session π-

calculus syntax and typing system. Proof of the main subject reduction and progress

safety theorem. Define and prove the properties of the selector construct.

Chapter Correspondence: Chapter 3, Chapter 4 and Chapter 5.

10 Chapter 1. Introduction

2. Dimitrios Kouzapas, Nobuko Yoshida and Kohei Honda. On Asynchronous Session

Semantics. In FMOODS/FORTE, volume 6722 of LNCS, pages 228-243, 2011.

Author’s Contribution: Development of the Eventful Session π-calculus, ESP, syntax

and typing system. Studied bisimulation and confluence theory for the ESP. Proof of

selector construct’s properties and main result for the Lauer-Needham transformation.

More specifically the definition of asynchronous session initiation, the runtime typing

system, the device of the selector construct and using confluence to analyse the Lauer-

Needham transformation were the author’s innovation.

Chapter Correspondence: Chapter 3, Chapter 4 and Chapter 5.

3. Dimitrios Kouzapas, Nobuko Yoshida, Raymond Hu and Kohei Honda. On Asyn-

chronous Eventful Session Semantics. To appear in special issue: Behavioural Types

of the MSCS.

Author’s Contribution: Development of the Eventful Session π-calculus, ESP, syntax

and typing system. Studied bisimulation and confluence theory for the ESP. Proof of

selector construct’s properties and main result for the Lauer-Needham transformation.

More specifically the definition of asynchronous session initiation, the runtime typing

system, the device of the selector construct and using confluence to analyse the Lauer-

Needham transformation were the author’s innovation.

Chapter Correspondence: Chapter 3, Chapter 4 and Chapter 5.

4. Dimitrios Kouzapas and Nobuko Yoshida. Globally Governed Session Semantics. To

appear in CONCUR, 2013.

Author’s Contribution: Semantics for the Synchronous Multiparty Session π-calculus

(MSP). Development of the behavioural theory for locally controlled and globally gov-

erned bisimulation and proof of the coincidence of each bisimilarity relation with the

corresponding reduction-closed, barb-preserving congruences. Work on different use-

case scenarios for the Ocean Oservatory Initiative framework in order to apply the be-

1.5. Chapter Outline 11

havioural theory for the MSP.

Chapter Correspondence: Chapter 6

1.5 Chapter Outline

In Chapter 2 we present the basic background theory for session types and π-calculus bisimu-

lations. We also present a literature review for the event-driven programming paradigm. The

rest of the thesis is divided into three parts. The first part has three chapters for the study

of bisimulations for binary session types. Chapter 3 defines the theory for the Asynchronous

Session π-calculus - ASP. We define the calculus for asynchronous buffer communication and

a session type system for this calculus. The chapter concludes with the definition of the asyn-

chronous session bisimilarity that is the maximum reduction-closed congruence that preserves

observation. Based on the bisimulation we define a confluence theory for reasoning with ses-

sion type systems. Chapter 4 extends the ASP to define the Eventful Session π-calculus-ESP,

which is used to describe the event-driven programming framework. Together with the cal-

culus, we extend the session type system and we prove that the corresponding bisimilarity is

the maximum reduction-closed congruence that preserves observation. We also show that the

properties for the confluence theory continue to hold for the ESP. An extensive study of the

applications of the ESP is done in Chapter 5. We present the basic examples that characterise

the ESP and we do a comparison of the ESP with other well known π-calculi. In the second

part of the chapter we encode the selector construct and prove its basic properties. Based on

the selector construct we define a transform from a multi-threaded server to a single-thread

event-based server following the Lauer-Needham transform [LN79]. We show that the trans-

form is type and semantics preserving. The second part studies the bisimulation theory for

multiparty session types. In Chapter 6 we define a multiparty session type theory for both the

synchronous and the asynchronous cases. Based on the multiparty session type we define two

classes of bisimulations: i) the bisimulation that is controlled by the local session type; and ii)

12 Chapter 1. Introduction

the bisimulation that is controlled by the global session type. Each bisimilarity is shown to be

the corresponding maximal reduction-closed congruence that preserves observation. The last

part of the thesis (Chapter 7) compares the results of this dissertation with related literature

and concludes the thesis.

Chapter 2

Background

In this chapter we introduce the definitions and the background work around the main con-

cepts that concern this dissertation. In § 2.1 we present a basic theory for session types. We

proceed in § 2.2 with the introductory notions for the bisimulation theory in the π-calculus.

The last section of this chapter (§ 2.3) is concerned with a survey on the event-driven frame-

works that are used for the requirements of this dissertation.

2.1 Session Types

Session types were originally developed as a tractable typing system, to offer structured com-

munication with respect to communication duality and sort/type matching of the communi-

cating data. They ensure a number of good properties regarding message passing communi-

cation. Despite their simplicity and ease of understanding, session types have a deep impact

in distribution theory and message passing. Furthermore, session types can be applied in nu-

merous ways to describe communication behaviour throughout the levels of computational

abstraction.

13

14 Chapter 2. Background

The basics for typing message passing send/receive interactions were set in a 1993 paper by

Honda called “Types in Dyadic Interactions” [Hon93]. Session types in their binary form

were first proposed by Honda et al. in [HVK98], where session types are described as a

tractable typing system that offers structured communication. A milestone work on session

types, [GH05], introduces the notion of session channel polarities and proves the properties of

session types in the presence of session subtyping. A revised version for session types that fol-

lowed in [YV07] shows type soundness for two session type systems via a subject reduction

theorem, with subject reduction being used to prove type safety and progress. Session types

for object oriented languages were first studied in [DCMYD06] and a study of the capabilities

of session types in the context of higher-order mobile processes can be found in [MY07] and

in [MY09], with the latter work introducing asynchronous session typed communication with

the use of FIFO queues.

The concept of communication choreography influenced session type theory for the devel-

opment of multiparty session types [HYC08, B+08]. Multiparty session types are based in

the concept the global protocol, that describes a communication consensus between differ-

ent computation participants. The global protocol is then projected to local protocols able to

describe the session interaction inside a single session participant.

Parametrised multiparty session types were proposed in [YDBH10], where a new session type

primitive was developed to allow the definition of network topologies with a parametrized

number of nodes. Dynamic multiparty session types [DY11] allow for an arbitrary number

of parties to join or leave a session interaction. A multiparty session type system related with

finite state automata is presented in [DY12].

A Curry Howard-like correspondence for session types can be found in the works by Caires

and Pfening [CP10] and Wadler [Wad12]. These works abstract session types as linear logic

propositions and the evaluation of session typed programs as cut-eliminated theorem proofs.

A session type system defines types on π-calculus names. The basic such type is called

2.1. Session Types 15

session. The session typing system ensures three main properties for a session:

1. The linearity of usage. A session name is a linear resource used as a communication

link between at most two endpoints. The term linearity is used here to identify a session

name as a finite resource.

2. The duality of usage. Two session endpoints that implement the same session should

have a dual send/receive correspondence, i.e. the send/receive sequence of one endpoint

is dual to the send/receive sequence of the other endpoint.

3. Type matching. On a communication interaction, the type of the object being sent

should be the same with the type of the object being received.

The above three main characteristics offer solutions for fundamental problems in concur-

rent computing. A linear typing system ensures the sound access to scarce and/or limited

resources. The duality of communication on session types excludes the possibility of com-

munication deadlocks inside a session. Furthermore, if we combine duality with linearity we

can avoid other communication related erroneous situations such as starvation. Type match-

ing ensures the soundness of the message exchange and ensures the safety of a program.

2.1.1 Session Types Semantics

This section presents the semantics for binary session types based on the second session π-

calculus presented in [YV07].

16 Chapter 2. Background

Syntax: We define the syntax for a session π-calculus:

P ::= u(s).P | u(x).P | k!〈v〉;P | k?(x);P | k⊕ l;P | k&{li : Pi}i∈I

| (ν s)P | (ν a)P | P1 | P2 | 0 | X | def D in P

u ::= a | x v ::= tt | ff | a | s

k ::= s | s | x D ::= X1 = P1 and . . . and X2 = P2

The calculus syntax assumes shared names to range over a,b, . . . and session names to range

over s,s′, We assume that a session name s exists in endpoint pairs denoted as s and s

and let s = s. Labels include l, . . . , constants include boolean tt,ff and variables range over

x,y,z, Values v are either constants, shared names (a) or session names (s). u denotes a

shared name a or a variable for a shared name, while k denotes a session name s or a variable

for a session name. We use the symbol n to denote either a shared name a or a session name

s.

Terms u(s).P and u(s).P define the request (resp. the accept) prefix of process P used for

the initiation of the fresh session s on the shared name u. Term s!〈v〉;P defines the send

of value v via session channel s and then continuing with process P. Respectively s?(x);P

receives a value substituted on variable x and continues with process P. Terms s⊕ l;P and

s&{li : Pi}i∈I describe the select and branch prefixes. The select prefix selects label l on

session channel s and continues with process P. The branch prefix offers a set of labels

{li}i∈I for branching. The rest of the terms are standard π-calculus terms. Terms (ν s)P and

(ν a)P restrict session name s (resp. shared name a) in the scope of process P. Term P1 | P2

is the parallel composition between process P1 and P2. The inactive term is denoted as 0. We

define recursion with the term def D in P where X is the process variable term and D is a set

of process definitions for process variables, that has the form X1 = P1 and . . . and Xn = Pn.

We define fn(P),bn(P) and n(P) as the free names, bound names and names in P respectively.

Furthermore, closed terms (i.e. processes with no free names) are called programs.

2.1. Session Types 17

Structural Congruence: Structural congruence is the least congruence relation, over the

rules:
P | 0≡ P P1 | P2 ≡ P2 | P1 (P1 | P2) | P3 ≡ P1 | (P2 | P3)

P1 ≡a P2 (ν n)0≡ 0

(ν n)P1 | P2 ≡ (ν n)(P1 | P2) if n /∈ fn(P2)

(ν n)def D in P≡ def D in (ν n)P if /∈ fn(D)

(def D in P) | Q≡ def D (P | Q) if fpv(D)∩fpv(Q) = /0

def D1 in (def D2 in P)≡ def D1 and D2 in P if fpv(D1)∩fpv(D2) = /0

The 0 process has no structural effect when composed in parallel with another process. Fur-

thermore, structural congruence respects the commutativity and associativity properties of the

parallel operator. Restricting a name in the inactive process has no effect and alpha-conversion

is included in the structural congruence. Rule (ν n)P1 | P2 ≡ (ν n)(P1 | P2) if n /∈ fn(P2) says

that the restriction scope of a name n in P1 can be extended to a parallel process P2 if n is not

free in P2. The last three rules define the structural congruence for the recursive term. The

restriction of name n on a recursive term def D in P can be limited to restrict the process

P if n is not free in the body D. A recursive term composed in parallel with another process

(def D in P) | Q is structurally equivalent with def D in (P | Q) if D and Q do not share

any free process variables. Finally, term with a nested recursion can be written as one level

recursive term if the bodies of the recursion do not share any free process variables.

18 Chapter 2. Background

Operational Semantics: The operational semantics clarify the syntax and the intuitions for

the session typed π-calculus.

a(s).P1 | a(x).P2 −→ (ν s)(P1 | P2{s/x})

s!〈v〉;P1 | s?(x);P2 −→ P1 | P2{v/x}

s⊕ lk;P | s&{li : Pi}i∈I −→ P | Pk k ∈ I

def D in (P1 | X) −→ def D in (P1 | P2) X = P2 ∈ D

P−→ P′

(ν s)P−→ (ν s)P′
P−→ P′

(ν a)P−→ (ν a)P′

P1 −→ P′1
P1 | P2 −→ P′1 | P2

P≡ P1 P1 −→ P2 P2 ≡ P′

P−→ P′

A fresh session s is created on the send/receive interaction on a shared name. The request

process a(s).P1 sends a fresh session s to the accept process a(s).P2, which receives s via

variable substitution. The exchange of value on a session send/receive interaction follows

the standard π-calculus definition, where the receiver uses the value sent by the sender via

substitution. The select/branch interaction defines the selection of a continuation in the branch

prefixed process from a select prefixed process. The select/branch interaction uses labels

to select and to offer selections respectively. In recursion semantics a process variable is

instantiated through a reduction. Name restriction and parallel composition on a process P do

not affect P’s internal reductions. Finally the reduction relation is closed under the structural

congruence relation. We define→→= (−→∪≡)∗

Session Syntax: We first introduce the syntax for session types.

U ::= bool | S | 〈S〉

S ::= !〈U〉;S | ?(U);S | ⊕{li : Si}i∈I | &{li : Si}i∈I | µt.S | t

2.1. Session Types 19

Shared type U denotes boolean types bool, session types S (described next) and shared names

channels 〈S〉. Session types S are included in type U , so we can allow the delegation of session

names with type S. Session types S include the terms !〈U〉;S and ?(U);S to define the output

(resp. the input) of type U and then continue with S. Type ⊕{li : Si}i∈I defines the selection

from a session type set {Si}i∈I on labels {li}i∈I respectively. Similarly type &{li : Si}i∈I

describes the session types {Si}i∈I offered for branching on labels {li}i∈I respectively. Type

end is the inactive type. Recursion is defined using the primitive recursor µt.S with t as the

recursive variable.

Before we proceed with the definition of a type system we define the duality relation between

sessions. Session duality is used by the typing system to ensure the duality of interactions

between session endpoints.

end= end t = t µt.S = µT.S !〈U〉;S =?(U);S ?(U);S =!〈U〉;S

⊕{li : Si}i∈I = &{li : Si}i∈I &{li : Si}i∈I =⊕{li : Si}i∈I

The duality relation relates opposing send/receive types. The dual of the output prefixed

session type is the input prefixed dual session type. The dual of the input prefixed session

type is symmetric. Similarly the dual of the select type is the branch type with the dual set of

session types. The dual of the branch type is symmetric. Duality for end and t is the identity

and finally duality of the recursion implies the duality of the session type inside the body of

the recursion.

Typing System: The typing system defines judgements of the forms:

Γ ` v : U and Γ ` P.∆

with

Γ ::= Γ · v : U | Γ ·X : ∆ | /0 ∆ ::= ∆ · s : S | /0

20 Chapter 2. Background

where Γ is a type environment that maps values v to shared types U and process variables X to

session type environments ∆ and ∆ is a session type environment that maps session endpoints

to session types.

Judgement Γ ` v : U is read as value v has type U under type environment Γ. Judgement

Γ ` P.∆ is read as process P has session typing ∆ under environment Γ.

The session typing system is defined in Figure 2.1.

Boolean values true tt and false ff are always typed with the boolean bool type. An envi-

ronment Γ · v : U judges value v with the U type.

Request and accept term check if the shared environment maps the shared channel to the

output (resp. the input) shared channel type. Send and receive on a session name require

that a value being sent (resp. received) on a session channel is typed according to the shared

environment Γ. We call delegation the action of sending a session channel through another

session channel. Delegation respects the linear properties of the carried session. When a

session channel is being sent, the typing rule requires that the sent is present with the correct

type in the linear environment ∆. Similarly when a session s is being received the typing

rule requires that the type of s is present in the linear environment ∆ after the reception.

Selection is typed similarly to send using the select session type. The branching type on a

session channel requires the typing of the set of the branching processes. Parallel composition

concatenates two disjoint session environments. Not disjoint session environments will lead

to the occurence of more than one endpoint with the same name and thus break session type

linerity. The restriction of a session name checks the duality of its two session endpoints,

while the restriction of a shared name has no effect in the typing judgement. The inactive

process is typed with a complete session typing (i.e. all session names are mapped to the end

session type). Finally recursion variables are typed according to their mapping in the shared

environment Γ. The recursive term typing checks for the definition of a process variable to

agree with the process variable typing.

2.1. Session Types 21

Γ ` tt,ff : bool Γ · v : U ` v : U

Γ ` u : 〈S〉 Γ ` P.∆ · x : S
Γ ` u(x).P.∆

Γ ` u : 〈S〉 Γ ` P.∆ · x : S
Γ ` u(x).P.∆

Γ ` v : U Γ ` P.∆ · k : S
Γ ` k!〈v〉;P.∆ · k :!〈U〉;S

Γ · x : U ` P.∆ · k : S
Γ ` k?(x);P.∆ · k :?(U);S

Γ ` P.∆ · k : S
Γ ` k!〈k′〉;P.∆ · k :!〈S′〉;S · k′ : S′

Γ ` P.∆ · k : S · k′ : S′

Γ ` k?(x);P.∆ · k :?(S′);S

Γ ` P.∆ · k : S
Γ ` k⊕ l;P.∆ · k :⊕{l : S}

∀i ∈ I,Γ ` Pi .∆ · k : Si

Γ ` k&{li : Pi}i∈I .∆ · k : &{li : Si}

Γ ` P1 .∆1 Γ ` P2 .∆2 ∆1∩∆2 = /0
Γ ` P1 | P2 .∆1 ·∆2

Γ ` P.∆ · k : S · k : S
Γ ` (ν k)P.∆

∆ end only
Γ ` 0.∆

Γ ` P.∆

Γ ` (ν u)P.∆

Γ ·X : ∆ ` X .∆
Γ ·X : ∆1 ` P1 .∆1 Γ ·X : ∆1 ` P2 .∆2

Γ ` def X = P1 in P2 .∆2

Figure 2.1: Typing system for binary Session Types

22 Chapter 2. Background

The next definition captures the requirements for a well defined process. We require that dual

endpoints (if present) in a linear environment ∆ have dual session types. The requirement

enforces the basic properties of session types.

Definition 2.1.1. ∆ is well-typed if s : S1,s : S2 ∈ ∆ then S1 = S2.

We use the well-typed definition to form the Subject Reduction theorem: If a process is well-

typed then a reduction on that process results in a well-typed process.

Theorem 2.1.1 (Subject Reduction). Let Γ ` P .∆ and ∆ well-typed. If P→→ P′ then Γ `

P′ .∆′ and ∆′ is well-typed.

Proof. The subject reduction theorem for session types was first proved in [YV07].

The subject reduction property ensures the soundness of the reduction of processes with re-

spect to the typing system. The subject reduction typing system is used to prove various type

safety results.

Multiparty Session Types: Binary session types offered the first understanding for the de-

sired properties of a session interaction. Unfortunately binary session types could not main-

tain their properties when applied to communication with multiple participants. Multiparty

Session types [HYC08, B+08] were developed to provide a solution to this problem. Based

on the idea of communication choreography, a multiparty session type describes in advance

the communication protocol of a multi-participant process. Essentially, in the level of a single

participant, multiparty session types introduce the ability to sequence a duality between dif-

ferent binary session channels. The basic idea is to construct a global communication session

type between participants and project it to local session types for each participant.

2.1. Session Types 23

We briefly provide a basic multiparty session type system based on a synchronous version of

the system developed in [B+08].

S ::= bool | 〈G〉

U ::= S | T

G ::= p→ q : 〈U〉.G | p→ q : {li : Gi} | end | t | µt.G

We let p,q, . . . range over participants. Shared type S is either a value type or a shared name

type. Type U denotes a shared type or a local type (i.e. session type). Global session type G

is sequenced on terms that describe the sending of a value from a participant p to a participant

q, a selection/branch term from a participant p to a participant q and the primitive recursor

operator. Finally, global types include the recursion variable t and the inactive term end.

T ::= [q]!〈U〉;T | [q]?(U);T | [q]⊕{li : Ti}i∈I | [q]&{li : Ti}i∈I

| µt.T | end | t

Local types annotate the sequence of interactions from the point of view of a single partic-

ipant. [q]!〈U〉;T designates the sending of a value with type U to participant q and then

continue with T . Similarly, the input local type [q]?(U);T denotes the receiving of a value

with type U and then continue as T . The select and branching local types offer a set of label

selections (resp.

branching) towards participant q. The inactive session type is the standard end, while the

recursion is described via the recursive variable t and the primitive recursor operator.

24 Chapter 2. Background

We define the local projection algorithm.

p′→ q : 〈U〉.Gdp

=

[q]!〈U〉;Gdp p= p′

[p′]?(U);Gdp p= q

Gdp otherwise

p′→ q : {li : Gi}i∈Idp

=

[q]⊕{li : Gidp}i∈I p= p′

[p′]&{li : Gidp}i∈I p= q

G1dp if ∀ j ∈ I. G1dp= G jdp

(µt.G)dp=
{

µt.(Gdp) p ∈ G

tdp= t enddp= end

The projection operation of a global type G on a participant p, denoted as Gdp, returns a

local type. The main idea is that the projection operator checks the prefix of G against the

projection participant p. If p is the sending (resp. selecting) participant then the projection

results in a local sending (resp. selecting) prefix type and then proceed with projection induc-

tively. Dually, if p is a receiving (resp. branching) participant the result is a local receiving

(resp. branching) prefix type and then proceed with projection inductively. If the participant

p is neither a sender nor receiver then the projection proceeds inductively. The projection

algorithm stops in the end and t projections.

A type system for multiparty session types follows the same principles with the binary session

typing system. Projection ensures the linearity and duality properties of interactions inside a

multiparty session channel. For more details and different approaches on multiparty session

types, see [HYC08] and [B+08].

2.2. Bisimulation Theory for the π-calculus 25

2.2 Bisimulation Theory for the π-calculus

Program equivalence is one of the basic problems on the specification and verification of

programs. The basic question that arises asks for the requirements for two programs to be

equivalent. Such a question has different answers, justified by different philosophical discus-

sions.

Process calculi contributed important results in the study of program equivalence. The struc-

tural nature of process calculi allowed for the definition of equivalence relations as mathemat-

ical objects, so way we could identify the basic and the desired properties for equivalences

and study the relations between different definitions of equivalences.

A framework for the study of equivalences in process calculi arises if we represent the partial

reduction of a process as a labelled graph, with the use of labelled transition semantics. A first

equivalence relation is drawn out of the idea of trace equivalence, where two processes are

considered equivalent if they have the same set of observed (i.e. labelled) traces in their cor-

responding transition graphs. The application of morphisms (i.e. functions between graphs)

and especially homomorphisms (i.e. structure preserving functions) from a source graph to

a target graph was the inspiring motive for developing the bisimulation relation. Homomor-

phisms preserve the structure of the target graph in the source graph, which is too restrictive

when relating processes. In the search of a coarser relation the bisimulation relation was de-

fined, which allows us to observe the structure of a graph only through its labelled edges, in

contrast with homomorphism which also considers graph nodes as part of the graph structure

(for a discussion of these notions, see [San09]).

Bisimulation for process calculus, was developed in the works of Park [Par81] and the study

of equivalences on CCS [Mil89] by Milner [Mil80]. The most important property of bisimu-

lation is its co-inductive definition. The co-inductive method defines the bisimilarity relation

as the largest fix-point for a binary relation that relates processes that have co-directed graphs

produced by the labelled transition system.

26 Chapter 2. Background

The core idea behind the co-inductive definition is for two processes to exhibit symmetric,

matching interactions with their environment (i.e. exhibit the same observables).

A desired property for the bisimilarity relation is to be the largest equivalence relation that

exhibits the observation-preserving, reduction-closed, congruence property [HY95].

In contrast to context-preserving relations, a bisimulation requires only local checks on a pair

of process states, while in contrast to trace equivalence, it requires no hierarchy of checks.

Furthermore, the computation of a bisimulation relation is decidible in a lower complexity

class than other equivalence relations. The computational properties of co-induction make

bisimilarity the finest and most successful equivalence over processes.

We proceed with the presentation of the basic bisimulation theory for the synchronous and

the asynchronous π-calculus.

2.2.1 The π-calculus

The bisimulation for the π-calculus was introduced in the first work for the π-calculus in

[MPW92] inspired by bisimulation works on other process calculi such as CCS [Mil89].

We briefly introduce the π-calculus bisimulation theory:

Syntax. The syntax of the π calculus follows the terms

P ::= x〈y〉.P | x(z).P | 0 | P | P′ | (ν x)P | !P

A countable set of Names has x,y,z, . . . as its members. Process x〈y〉.P denotes the capability

to send name y over name x and continue with P. Name z is bounded in P by the receiving

prefix x(z).P. When receiving occurs all the bounded occurrences of z in P are substituted

with the receiving object. The inactive process 0 offers no operations. Parallel composition

2.2. Bisimulation Theory for the π-calculus 27

places two processes in parallel. Operator (ν x)P restricts name x in the scope of P and

the replicator !P denotes the infinite use (i.e. infinite parallel composition) of process P. In

process x〈y〉.P, x is called the subject and y the object of the send prefix.

Context and Congruence Relations.

Definition 2.2.1 (Context). We define a context C as:

C ::= − | C | P | (ν x)C | x〈y〉.C | x(z).C

With C[P] to denote the replacement of − into C by P.

A relation R is a congruence if it is closed under the context definition, i.e. ∀C if P R Q then

C[P] R C[Q].

Structural Congruence. Structural congruence for the π-calculus follows the rules for

structural congruence relation in § 2.1.1, without the recursion rules and by adding:

...

!P≡ P | !P

where replication is structurally defined as an infinite parallel composition.

Labelled Transition System. We define a set of labels as

` ::= x〈y〉 | x(y) | x(y) | τ

with x〈y〉 � x(y) and x(y)� x(y)

The send label x〈y〉 denotes the send of name y on name x, while the bound send label x(y)

sends a bound name y on name x. The receive label x(y) denotes the reception of name y on

28 Chapter 2. Background

name x. Finally, label τ is the hidden or internal action. Send and receive actions are dual if

they have the same object and subject.

We define the labelled transition system for the synchronous π-calculus:

〈Out〉 x〈y〉.P x〈y〉−→ P 〈In〉 x(z).P
x(y)−→ P{y/z}

〈ParL〉 P `−→ P′ bn(`)∩fn(Q) = /0

P | Q `−→ P′ | Q
〈ParR〉 Q `−→ Q′ bn(`)∩fn(P) = /0

P | Q `−→ P | Q′

〈Tau〉 P `−→ P′ Q `′−→ Q′ `� `′

P | Q τ−→ (ν bn(`)∪bn(`′))(P′ | Q′)
〈Alpha〉 P `−→ Q P≡a P′

P′ `−→ Q

〈Name〉 P `−→ P′ a /∈ fn(`)

(ν a)P `−→ (ν a)P′
〈Extr〉 P

b〈a〉−→ P′

(ν a)P
b(a)−→ P′

We can observe the interaction of the send and receive prefixes with the environment on the

corresponding send and receive labels. The send action is observed on a process x〈y〉.P, with

name y being sent on channel x. The receive action on process x(y).P requires the substi-

tution function to substitute all bound occurrences of z to y in P. In a parallel composition

a process P can act independently from its parallel Q, provided that there are no common

names between the action’s ` bound names and Q’s free names. If two parallel processes can

interact on dual actions ` � `′, then they can interact together on the τ action. Transitions

happen with respect to alpha renaming. An action is independent from scope restriction if no

restricted name is in the free names of the action. A name is extruded from restriction when

the restricted name is send to the environment. Furthermore, the label for extrusion requires

the send of a bound name.

We write −→ for τ−→. We extend to =⇒ for the reflexive and transitive closure of −→. We

write `
=⇒ for =⇒ `−→−→ and

ˆ̀
=⇒ for `

=⇒ if ` 6= τ and =⇒ for `= τ .

2.2. Bisimulation Theory for the π-calculus 29

Bisimulation The labelled transition system is used to define different bisimilarity relations.

We begin with the definition of simulation.

Definition 2.2.2 (Strong Simulation). Let R be a binary relation over processes. R is called

strong simulation if whenever PRQ then if P `−→ P′ then ∃Q′ ·Q `−→ Q′ and P′RQ′

If R and R−1 are both simulations then we say that R is a bisimulation.

Definition 2.2.3 (Strong Bisimulation). Let R be a binary relation over processes. R is called

strong bisimulation if whenever PRQ then

1. If P `−→ P′ then there exists Q′ such that Q `−→ Q′ and P′RQ′

2. If Q `−→ Q′ then there exists P′ such that P `−→ P′ and P′RQ′

The union of all strong bisimulation relations is called strong bisimilarity denoted as ∼.

A weaker bisimulation relation ignores the hidden (τ) transitions.

Definition 2.2.4 (Weak Bisimulation). Let R be a binary relation over processes. R is called

weak bisimulation if whenever PRQ then

1. If P `−→ P′ then there exists Q′ such that Q
ˆ̀

=⇒ Q′ and P′RQ′

2. If Q `−→ Q′ then there exists P′ such that P
ˆ̀

=⇒ P′ and P′RQ′

The union of all weak bisimulation relations is called a weak bisimilarity denoted as ≈.

The bisimulation relation can be equivalently defined as the greatest fix-point produced by

the labelled transition monotone function (`−→).

Definition 2.2.5 (Stratification of Bisimulation). Let P be the set of all processes

30 Chapter 2. Background

1. ≈0= P×P

2. P≈n Q if

• If P `−→ P′ then Q
ˆ̀

=⇒ Q′ and P′ ≈n−1 Q′.

• If Q `−→ Q′ then P
ˆ̀

=⇒ P′ and P′ ≈n−1 Q′.

3. ≈ω =
⋂

n≤0 ≈n.

From the Knaster-Tarski theorem we know that ≈ω is the greatest fix point on the lattice

created by the transition relation on co-directed pairs of processes. Due to the image finiteness

of the LTS for the synchronous π-calculus1, we can derive that≈ω =≈, since≈ is the largest

bisimulation relation.

Observational Theory: Barbs are defined to study the observables of π-calculus processes.

Definition 2.2.6 (Barbs). We say that we observe a barb x on P, denoted P ↓x if

1. P ↓x if P≡ (ν w̃)(x〈y〉.P1 | P2),x /∈ w

2. P ↓x if P≡ (ν w̃)(x(y).P1 | P2),x /∈ w

We define a congruence relation on processes, that preserves barbs and is reduction closed,

which is used as an equivalence relation on processes.

Definition 2.2.7 (Reduction-closed Congruence). Let R be a binary relation. We say that R

is a reduction-closed congruence whenever P R Q then:

1. P ↓x if and only if Q ↓x.

1 An intuition about an image finite relation R comes when for all processes P the set {P′ | PRP′} is

finite. For the definition of image finitness and a proof of the fact that the labelled transition system `−→ of the
synchronous π-calculus is image finite, see [SW01, § 1]

2.2. Bisimulation Theory for the π-calculus 31

2. P−→∗ P′ if and only if Q−→∗ Q′ and P′ R Q′.

3. ∀C,C[P] R C[Q].

The union of all reduction-closed congruence relations is denoted with ∼=.

It is desirable for the bisimilarity relation to exhibit congruence properties.

Lemma 2.2.1. ≈ is a non-input congruence.

Proof. A proof can be found in [SW01, § 2]

Congruence in the bisimilarity relation is preserved by all contexts except the input context.

This is due to the effect name substitution has on processes. The most desirable property for

the bisimilarity is that it coincides with the barbed-preserving, reduction closed congruence

relation [HY95]. As we can see from Lemma 2.2.1, this does not hold for synchronous weak

bisimilarity.

We could however take advantage of the fact that name substitution does not respect input

congruence to define a congruent synchronous weak bisimilarity relation as follows:

Definition 2.2.8. We define P≈c Q if Pσ ≈ Qσ for all name substitutions σ .

Theorem 2.2.1. ≈c = ∼=

Proof. A proof can be found in [SW01, §2]

2.2.2 The Asynchronous π-calculus

The asynchronous π-calculus was proposed independently by Honda and Tokoro [HT91b]

and by Boudol [Bou92] along with a corresponding bisimulation theory. In [ACS98] there

is an extensive study for the bisimulation for the asynchronous π-calculus. We present the

asynchronous π-calculus and two different labelled transition systems that give rise to corre-

sponding bisimulation definitions.

32 Chapter 2. Background

Syntax:

P ::= x〈y〉 | x(z).P | 0 | P | P′ | (ν a)P | !P

We present the syntax for the asynchronous π calculus (cf. [HT91b]). The asynchronous π-

calculus achieves asynchrony, by restricting the continuation of the send prefix x〈y〉 in contrast

with the syntax of the synchronous π-calculus. This restriction allows for the unordered

transmission of names, since we cannot impose any order on them using a sequential operator.

Structural congruence is identical with the structural congruence for the synchronous π-

calculus.

Labelled Transition System: The labelled transition system (abbrev. lts of LTS) for the

asynchronous π-calculus was also introduced by Honda and Tokoro [HT91b]. Its definition

implies that at any moment a process can perform an input action.

The definition of the LTS assumes the replacement of rule 〈Out〉 in the synchronous LTS with

the following rule:

〈Out〉a x〈y〉 x〈y〉−→ 0

The second rule that allows the observation of inputs at any point of the process transition

comes by replacing rule 〈In〉 in the synchronous LTS with:

〈In〉a 0
x(y)−→ x〈y〉

We also need to change the definition of the rule 〈Tau〉 to handle name substitution, since

substitution is not observed in the 〈In〉a rule.

〈Tau〉a xy | x(z).Q τ−→ P′ | Q′{y/z}

2.2. Bisimulation Theory for the π-calculus 33

Weak asynchronous bisimulation is defined the same way as with bisimulation for the syn-

chronous π-calculus:

Definition 2.2.9 (Weak Asynchronous Bisimulation). Let R be a binary relation over the

asynchronous π-calculus processes. R is called weak bisimulation if whenever PRQ then

1. If P `−→ P′ then there exists Q′ such that Q
ˆ̀

=⇒ Q′ and P′RQ′

2. If Q `−→ Q′ then there exists P′ such that P
ˆ̀

=⇒ P′ and P′RQ′

The union of all asynchronous weak bisimulation relations is called weak bisimilarity denoted

as ≈a.

The asynchronous bisimulation theory and its properties can be found in [HT91b]. The asyn-

chronous bisimulation theory and its variations are studied in [HY95]. This paper introduces

some of the most significant properties for bisimulation theory in the presence of process cal-

culus, including the soundness and completeness of the asynchronous weak bisimilarity with

respect to barbed-preserving, reduction-closed congruence.

A different labelled transition system was proposed by Amadio et al. in [ACS98]. This la-

belled transition system disregards the fact that input actions can happen at any time imposing

the input action rule:

〈In〉 x(z).P
x(y)−→ P{y/z}

In [ACS98] different variants of the asynchronous bisimulation are discussed and compared

with the bisimulation semantics from [HT91b]. The main result is the coincidence of the

bisimilarity with the barbed-preserving, reduction-closed congruence.

34 Chapter 2. Background

2.2.3 Type Systems and Advanced Behavioural Theory for the π-Calculus

Type Systems: Type theory was developed as the basic meta-theory for the study of the

dynamics of computational models. The core type theory for the π-calculus is suggested

directly from well known and applied type systems for the λ -calculus, which gives us a basic

inside for the importance of the π-calculus as a process model and as a prospective model for

programming languages.

A first type system was the sorting system [Mil92], which defines a sorting classification on

the names of the polyadic π-calculus and which is used for statically infering some basic

properties between the subjects and the objects of the actions of the calculus.

Sorting is a typing system that equates two types (and thus the meta-information of π-calculus

names) if they have the same name. The introduction of structure into sorts gave rise to a typ-

ing system able to describe data structures such as products, unions, records and variants

[SW01]. The i/o (input/output) type system [PS96] is another basic type system for the

π-calculus. In the i/o type systems, sorts are annotated with the input and/or the output

capability and their equality is based on on the way sorts with the same i/o-capability are

structured. The basic intuition for i/o-types, requires from a typing environment to control

the read and write access on names, in order to disallow unintended process behaviour. Fur-

thermore, the structured nature of i/o-types allows for the definition of a subtyping theory.

The linear typing system for the π-calculus [KPT99] is based on definition of the linear logic

theory [Gir87], where the names of the π-calculus are treated as linear resources. Linear

types are a refinement of the i/o-types that allow for the usage of the i/o-capability on a

name only once. The work in [DGS12] proposes an encoding of session types into linear and

variant typed π-calculus and closes the relation between linear types and session types.

Typed Bisimulation Theory: Typed bisimulation was studied in the context of i/o-types

in [HR04]. The paper first develops a framework for may/must testing for the i/o-typed π-

2.2. Bisimulation Theory for the π-calculus 35

calculus, but the basic contribution begins with the proposal of a typed label transition system

that is controlled by the i/o-type environment in the presence of subtyping. The LTS is then

used to define a bisimulation relation, where bisimilarity is the maximal reduction-closed

congruence that preserves observation.

Bisimulation for the Higher Order π-calculus: The higher order π-calculus (HOπ) was

originally introduced in [San92]. The HOπ allows for processes to be carried as messages

and was inspired by the ability of the λ -calculus to carry λ -terms as parameters. A significant

result in [San92] is the full abstraction theorem for an encoding of the HOπ in the first order

π-calculus.

An advanced study of bisimulations for higher order languages can be found in [SKS11].

The study is concerned with various λ -calculi and the HOπ . The paper initially argues that

higher order bisimulation relations are a hard subject to reason about, since the higher order

values that can be observed on an action are produced by a large universe of classes. To

overcome theses difficulties and limit the universe of the observed higher order values, the

authors develop the environmental bisimulation that uses an environment observer to track

the higher order values that were produced earlier by the tested processes.

A bisimulation theory for a higher order π-calculus with cryptographic primitives is presented

in [KH11]. The main innovation on this approach is that the authors use an indexed observer

set to keep track of higher order knowledge and then they propose a label transition system

that observes the index of a higher value instead of the higher order value itself. The latter

definition reduces a higher order labelled transition system to a first order lts and allows for a

simpler bisimulation definition.

Confluence for the π-calculus: Concurent systems have in general a non-deterministic

execution and as a consequence they are considered more complex than sequential systems.

However it is often the case that a concurrent program will have a predictable and well formed

36 Chapter 2. Background

behaviour when it comes to the succession of program states during its execution. Such

observations motivate the development of the confluence theory for process calculi. Confluent

was initially studied for CCS in [Mil80, Mil89] and a confluence theory for the π-calculus

was studied in [PW97]. Confluence requires that the execution of an action from a process

will not preclude the execution of another action up-to the behaviour of the process, e.g the

competition for accessing a name by two actions may result in precluding one of the two, (thus

making the system non-confluent) and may affect the subsequent behaviour of the process.

The confluence property is used for reasoning about systems, since confluent systems enjoy

a number of good properties, such as the semantic invariant up-to internal actions and the

coincidence of trace equivalence with bisimulation [Mil89].

2.3 Event Driven Programming

Event-driven programming is one of the major paradigms that utilise concurrent and commu-

nication based programming. Event-driven concurrency can be defined as a model around the

notion of events. In general an event is a computation state change (i.e. an action) that can

happen asynchronously and concurrently to the computation. It is furthermore characterised

by detectability, in a sense that the computation itself can detect and react on an event action.

More specifically events in message passing-based programming, are typically detected as

the arrival of messages on asynchronous communication channels.

Interrupts. A first implemented notion of an event action was the interrupt, used as the

basic mechanism to handle concurrency in a computing machine. At the operating system

level, interrupts are used to coordinate the machine’s resources. An interrupt is the asyn-

chronous interruption of the instruction flow inside the central processing unit and can be

issued at hardware level after the completion of different input/output operations inside a ma-

chine (called hard interrupts). Interrupts can also be issued by the code running in the CPU

2.3. Event Driven Programming 37

itself (called soft interrupts) and are primarily used by programs to perform system calls and

multi-core coordination. Upon an interrupt the program counter is stored, the CPU mode

usually changes to kernel mode, the instruction flow stops and transferred into an interrupt

handling code, responsible for detecting the type of the interrupt and handling its side effects.

Interrupts were developed as a fundamental and necessary hardware function for the coordi-

nation of concurrent resources and their impact was stratified in all the computation levels,

from the hardware level to the operating system and the application level. Naturally interrupt

characteristics have influenced the way programs are written. For example a low level inter-

rupt on a communication device in the hardware level can be specified as a message arrival

on an abstract, programming entity called channel in the application level. The characteristics

of interrupts are passed into an abstract application layer entity called event. Many program-

ming models, libraries and frameworks were and are being developed around the event entity,

that give rise to a constant ongoing discussion for the trade-off of the different approaches.

Actors. The actors model was one of the first models developed using the event notion,

as an expressive event-driven programming model. It was first presented as a formalism

for artificial intelligence [HBS73] and was further developed as a full programming model

[Cli81, Agh86]. The actor programming model requires a set of concurrent and communi-

cating entities called actors. An actor is an object that encapsulates state, functionality and

control flow. Among other computational functions an actor can create new actors, pass mes-

sages to other actors and react to the arrival of messages from other actors.

Erlang [VWW96] is one of the first and widely used programming languages that support

the actor model characteristics. Erlang is a communication-based language, based on light-

weight processes (actors). Communication is defined using the mailbox abstraction: each

process asynchronously receives messages from other processes in its own mailbox. A mail-

box structure allows pattern matching to recognise at runtime a message type.

38 Chapter 2. Background

Another widely used framework implementing the actors model is the Scala programming

language [OAC+06], a purely object-oriented language that treats objects as concurrent ac-

tors. Scala was initially implemented on the Java Virtual Machine [LY99]. A runtime library

Scala [HO08], unifies event-based programming with the thread-based programming, by us-

ing closure to suspend threads on blocking (receiving) operations.

Task and Stack Management. Following the terminology in [AHT+02], event-driven han-

dling can be analysed in a two axis space, notably the task management axis and the stack

management axis. Task management describes the way a task is scheduled in a processor:

i) serial task management runs each task to completion, ii) pre-emptive task management al-

lows for tasks to interleave in a processor and iii) cooperative task management where the

execution from a task is passed to another task on well defined, usually blocking, points in

execution. To achieve cooperative task management, a programmer organises a program into

a set of blocking points, and associates each of them with an event handler. More specifically

in each execution blocking point, the program proceeds with an asynchronous function call.

The signal for the asynchronous function call is associated with an event handler and the caller

function closure and its continuation are stored in the heap. To achieve event-driven control

the caller function closure pointer, its continuation and the event are registered in an event-

handling structure, able to notify for the completion of the blocking function. This technique

is called manual stack management or stack ripping. A different approach, supported by

some programming frameworks, is automatic stack management where the programmer can

explicitly use system operations for handling asynchronous blocking calls and stack ripping.

The Concurrency Dichotomy - The Lauer Needham Duality. In 1979 Lauer and Need-

ham [LN79] observed that there is a duality in the way concurrent programs can be expressed.

The dichotomy is defined between a thread-based programming style and an event-based

style. In their work they develop two empirical sets of programming primitives, with each set

corresponding to one of the two models.

2.3. Event Driven Programming 39

The thread-based model requires a multi-threaded approach, implemented with thread han-

dling primitives such as the fork and join operations and equipped with shared memory prim-

itives for thread communication and coordination. On the other hand the event-based model

is based on a single instruction stream that consists of an event handling loop routine. Com-

munication is defined using message passing primitives. The event loop is responsible for

detecting messages (events) and proceeding with their handling according to their type.

The argument for the duality between the the models is made by expressing the primitives of

one model in the terms of other. The authors in their discussion around the impact of this dual

expressiveness, argue that there is no general way to decide, or better yet to justify which of

the two approaches a programmer should use for a concurrent implementation, other than the

nature of the underlying hardware architecture.

Events vs Threads. The purely empirical justification of the concurrency duality by Lauer

and Needham, ignited a series of discussions where the researchers were (and are) trying

to impose more abstract and philosophical justifications, taking into consideration different

reasons, in favour of the one or the other approach. In 1996 a presentation with the title ”Why

threads are a bad idea” [Ous96], argues in favour of event-driven programming mainly by

citing reasons against threaded programming. Threads suffer from deadlock problems and

are difficult to synchronize. Synchronization introduces performance issues in a trade-off

between complex fine-grain locks and low performance coarser synchronization techniques.

Threads are hard to abstract as a single computation stream and thus a sequential debugging

execution would be rather obfuscated. On the other hand the event-driven model minimizes

synchronization and synchronization related problems in a simple and easy to understand,

single stream program that uses callbacks to handle events.

The antithesis in Oysterhout’s presentation came in 2003 in a paper called “Why events are a

bad idea” [vBCB03], where the authors expose the virtue of a simpler and a more natural pro-

gramming model for thread programming. They argue that we can overcome the event-driven

40 Chapter 2. Background

programming problems with good implementations and framework support. Specifically they

discuss and propose methods for solving problems related to performance, synchronization,

control flow stack management and scheduling.

Different programming frameworks were proposed, that implement the characteristics dis-

cussed in the threads-events controversy. A closer analysis will indicate that these different

models emerged from the dialectical interaction of the two paradigms.

The explicit event library [CK05] provides a library interface used for cooperative task man-

agement and manual stack management, while it provides tools for software analysis and

verification. Tame [KKK07] is a set of libraries and a source to source implementation in

C++, that implements event-driven programming without explicit stack ripping. It introduces

language features, similar to the synchronisation mechanisms of futures, that allow control

flow to be returned from a blocked C++ function to the caller. Cappricio [vB+03] follows

[vBCB03] in a thread-oriented implementation. It uses compiler transformations of user-

level thread code, and replaces blocking functions with non-blocking equivalents to take into

advantage the notion of cooperating thread management. A hybrid threads-event system de-

veloped for Haskell [LZ07] claims the best of both worlds. The programmer in the application

level has the interface for thread-based programming and an exposed interface for a thread

scheduler, that allows the programmer to handle threads as event-driven entities. Event Java

[EJ09] integrates event correlation with object-oriented programming to provide high-level

syntax for expressing complex patterns of predicated events. A type-safe event-driven ses-

sion programming framework based called Session Java [HKP+10], counters the problems of

traditional event-based programming with abstractions and safety guarantees based on session

types. In the context of high performance, scalable web services OKWS [Kro04] describes an

operating system level event-driven architecture with emphasis on security. A most influen-

tial, highly scalable architecture for web services is Staged Event-driven Architecture (SEDA)

[WCB01], describes events as a pipeline of entities called stages. Every stage consists of an

event queue, an event scheduler and a thread pool. Stages are responsible for processing a

2.3. Event Driven Programming 41

blocking call. After the completion of the blocking call an event is registered in the next stage

of the pipeline.

42

Part I

43

Chapter 3

Asynchronous Session Types Behavioural

Theory

We developed a core theory for Asynchronous Session types, which is used as the the ve-

hicle for the study of asynchronous semantics [HT91b] in the presence of session types

[HVK98, MY09]. In this chapter we intend to present a minimal calculus, able to grasp

an applied aspect of asynchronous communicating, while having as a final goal the study

of the bisimulation framework for asynchronous session typed programs. Such a minimal

calculus should be able to describe or extended to describe (chapters 4 and 5) asynchronous

communication operators and frameworks.

To define the Asynchronous Session π calculus or ASP for short, we focus on the following

characteristics for communication:

• Buffered Communication. Modern network transport, such as TCP, provide reli-

able, order-preserving delivery of messages once a connection is established. This is

achieved with the use of intermediate memory buffers for storing communication data.

We explicitly define queues as communication media for the exchange of messages.

45

46 Chapter 3. Asynchronous Session Types Behavioural Theory

• Fine grained asynchronous session communication. We semantically define first-

in first-out (FIFO) communication queues, called endpoint configurations, as session

endpoints to achieve the non-blocking property of asynchrony and the order-preserving

property of session types.

• Asynchronous session initiation. Session types ordered message delivery contrasts

with session initiation that relies on unordered shared name interactions. We use a

combination of buffered communication and the asynchronous π-calculus [HT91b] se-

mantics to describe asynchronous session initiation on shared names. Session initiation

follows the principles of the asynchronous π-calculus. The asynchronous π-calculus

semantics allow for an unordered session initiation inside the network and together

with buffered initiation operations we get a more accurate description of a more ap-

plied communication framework.

• A sound session type system in the presence of session subtyping. We develop a

session type system in the presence of subtyping [GH05] based on [YV07] for typ-

ing programs (i.e. closed processes with no configurations) and a novel session type

for configuration endpoints (cf. [MY09]). A subject reduction theorem proves type

soundness and a type safety theorem lists the cases where error-free progress can be

guaranteed.

To study the bisimulation theory for ASP processes we develop a labelled type system on the

ASP processes and a labelled transition system on session environments. The two labelled

transition systems are combined together to give the typed transition definition, used to de-

fine the bisimulation theory for typed ASP processes. The bisimilarity relation is sound and

complete with respect to a corresponding congruence relation on typed processes. In the later

chapters of this dissertation we intent to reason about typed distributed systems. This gives us

a motivation to develop a basic confluence theory (based on [PW97]) defined using the typed

bisimilarity. The basic result extracted from confluence theory is that session interactions are

3.1. A Core Process Model for Asynchronous Sessions 47

confluent.

3.1 A Core Process Model for Asynchronous Sessions

In this section we present the syntax and operational semantics for a core calculus based on

the π-calculus with session primitives [HVK98, MY09]. We define the basic asynchronous

communication semantics using a structure of i/o message queues which guarantee order-

preserving delivery of messages inside a session. The operational semantics also allow

asynchronous and unordered session initiation using a send construct with no continuation

[HT91a].

3.1.1 Syntax of the Asynchronous Session π-Calculus

Processes. Figure 3.1 gives the syntax of the ASP processes. We explain session endpoint

configurations containing localised i/o-queues and introduce asynchronous session initiation

(cf. synchronous session initiation in preceding works [HVK98, YV07]). The syntax defined

in the the last four terms of the BNF for (Processes) is called run-time syntax. Closed terms

(bound and free variables are explained below) that are not structured on run-time syntax, are

called programs.

Values (v,v′, . . .) include the constants, shared channels (a,b,c, . . .) and session channel end-

points (s,s′, . . . ,s,s′, . . .). A session channel endpoint s designates one endpoint of a session,

and s the opposing end of the same session. We often shorten “session channel endpoint” (i.e.

the programming/runtime entity at a local configuration used to perform session actions) to

just “session channel” for brevity, and we set s to be s. Branch/select labels (simply labels)

range over l, l′, . . . , variables range over x,y,z, and recursion variables range over X ,Y,Z.

Shared channel identifiers (u,u′, . . .) are shared channels and variables; session identifiers

48 Chapter 3. Asynchronous Session Types Behavioural Theory

(Processes) P,Q ::= u(x).P Accept

| u(x).P Request

| k!〈e〉;P Sending

| k?(x);P Receiving

| k⊕ l;P Selection

| k&{li : Pi}i∈I Branching

| if e then P else Q Conditional

| (ν a)P Hiding

| P | Q Parallel

| µX .P Recursion

| X Variable

| 0 Inaction

| a[~s] Shared Configuration

| a〈s〉 Asynchronous Request

| (ν s)P Session Hiding

| s[i :~h,o :~h′] Session Configuration

(Identifiers) u ::= a,b,c | x,y,z

k ::= s,s | x,y,z

n ::= a,b,c | s,s

(Values) v ::= tt,ff | a,b,c | s,s

(Expressions) e ::= v | x,y,z | e = e | e∧ e | . . .

(Messages) h ::= v | l

Figure 3.1: The syntax of ASP processes.

3.1. A Core Process Model for Asynchronous Sessions 49

(k,k′, . . .) are session channels and variables. A session message h is either a value or a label.

Expressions e are either values, variables, logical operators on Boolean expressions, or the

equality operator on values. Note that the equality operator also corresponds to name match-

ing. We write~s and~h for the respective vectors of session channels s and messages h, and ε

for the empty vector.

The session initiation actions on shared channels are the request u(x).P and the accept u(x).P.

On an established session channel, output k!〈e〉;P sends the value denoted by e through chan-

nel k, input k?(x);P receives a value through k, selection k⊕ l;P chooses and sends the label

l through k, and branching k&{li : Pi}i∈I follows the branch with the label received through k.

Construct if e then P else Q is used for expression branching. The (ν u)P binder restricts

a shared channel u to the scope of P. P | Q is the standard π calculus parallel operator. Re-

cursion is handled with operator µX .P and process variable X using the standard λ calculus

notation. The inactive process is written as 0.

The Asynchronous Session π calculus incorporates two forms of asynchronous communi-

cation, asynchronous session initiation [Kou09] and asynchronous session communication

(over an established session). The former models the unordered transport of session request

messages to acceptors (servers) listening on a shared channel. We use a〈s〉 to represent a

request message in transit on shared channel a, carrying the initiation request for a (fresh)

session channel s. In network communications in practice, messages are buffered for reading

on arrival at the destination. This mechanism is formalised by introducing a shared input

buffer a[~s], which represents an acceptor’s input buffer at a containing pending requests for

sessions~s.

Communication in an established session is asynchronous but order-preserving, as in a TCP

session. For this purpose, each session channel s is associated with an endpoint configuration

(or simply, configuration) s[i :~h,o :~h′], which encapsulates both input (i) and output (o) mes-

sage queues. Sending a message first enqueues it at the source o-queue before it is eventually

transferred to the destination i-queue, signifying the arrival of that message. For brevity, one

50 Chapter 3. Asynchronous Session Types Behavioural Theory

or more components may be omitted from a configuration when they are irrelevant, e.g. we

may use s[i :~h] as an abbreviation of s[i :~h,o :~h′] when only the i-queue is required. The

(ν s)P binder restricts both session channels s and s, i.e. both endpoints of the session, to the

scope of P. The process terms specified in Figure 3.1 that feature s also apply to s.

The notions of , bound bn(P) and free names fn(P) and variables bv(P),fv(P) are standard

with the extension to treat fn(a〈s〉) = {a,s}, fn(a[~s]) = {a,s1, . . . ,sn} and fn(s[i :~h,o :~h′]) =

{s}.

P ≡ Q if P≡α Q

P | Q ≡ Q | P

(P | Q) | R ≡ P | (Q | R)

P | 0 ≡ P

(ν n)P | Q ≡ (ν n)(P | Q) if n 6∈ fn(Q)

µX .P ≡ P{µX .P/X}

(ν n)0 ≡ 0

(ν a)a[ε] ≡ 0

(ν s)(s[i : ε,o : ε] | s[i : ε,o : ε]) ≡ 0

Figure 3.2: Structural congruence for ASP.

We define structural congruence as the smallest congruence on processes generated by the

rules in Figure 3.2. Most of the rules are standard. The first rule says that processes are

equivalent up-to alpha-conversion commutativity and associativity in the next two rules. A

process in parallel with the inactive process is structurally congruent to itself. A name private

for the process P in the process P | Q, can also be private for the entire process if it does

not occur free in Q. Recursion is defined inside structural congruence as the substitution of

the recursive process on the recursive process variable in the actual process. Restriction of

names in the inactive process is congruent with the inactive process. The last two rules are

3.1. A Core Process Model for Asynchronous Sessions 51

for garbage collecting empty shared channel buffers and configurations, when they are not in

further use.

3.1.2 Operational Semantics of the Asynchronous Session π-Calculus

The reduction relation is defined on terms with no free variables and it is denoted using the

infix symbol −→. The operational semantics capture the asynchronous and session nature of

the ASP processes. The messages that are communicated on session channels follow a FIFO

policy inside the session endpoint configuration.

In the reduction relation definition, we use the standard evaluation contexts, E[−] defined as:

E ::= s!〈−〉;P | if − then P else Q

where the − can be substituted by the expression e, in E[e].

Figure 3.3 lists the reduction rules. The first three rules are used for session initiation. Rule

[Request1] issues a new request for a session of type S via shared channel a. A fresh (i.e. ν-

bound) session with endpoints s (acceptor-side) and s (requester-side) and the initial configu-

ration at the requester are generated, dispatching the session request message a〈s〉. [Request2]

enqueues the request in the shared input buffer at a. [Accept] dequeues the first session re-

quest, substitutes the bound session variable with the s in the request message, and creates

the acceptor-side configuration: the new session is now established between the requester and

acceptor.

The next five rules are for in-session communication. As described earlier, to send a mes-

sage, rule [Send] enqueues a value in the o-queue of the local configuration and removes the

output prefix from the current active type, signifying the completion of this action. [Receive]

dequeues the first value from the i-queue of the local configuration and again updates the

active type accordingly. [Sel] and [Bra] similarly enqueue and dequeue a label, using the label

52 Chapter 3. Asynchronous Session Types Behavioural Theory

(s /∈ fn(P))
a(x).P−→ (ν s)(P{s/x} | s[i : ε,o : ε] | a〈s〉)

[Request1]

a[~s] | a〈s〉−→a[~s · s] [Request2]

a(x).P | a[s ·~s]−→P{s/x} | s[i : ε,o : ε] | a[~s] [Accept]

s!〈v〉;P | s[o :~h]−→P | s[o :~h · v] [Send]

s?(x);P | s[i : v ·~h]−→P{v/x} | s[i :~h] [Receive]

(i ∈ J)

s⊕ li;P | s[o :~h]−→ P | s[o :~h · li]
[Select]

(i′ ∈ J ⊆ I)

s&{li : Pi}i∈I | s[i : li′ ·~h]−→ Pi′ | s[i :~h]
[Branch]

s[o : v ·~h] | s[i :~h′]−→s[o :~h] | s[i :~h′ · v] [Comm]

if tt then P else Q−→P [If-true]

if ff then P else Q−→Q [If-false]

e−→ e′

E[e]−→ E[e′]
[Eval]

P−→ P′

(ν a)P−→ (ν a)P′
[Chan]

P−→ P′

(ν s)P−→ (ν s)P′
[Sess]

P−→ P′

P | Q−→ P′ | Q
[Par]

P≡ P′ −→ Q′ ≡ Q
P−→ Q

[Struct]

Figure 3.3: Reduction rules for ASP.

3.1. A Core Process Model for Asynchronous Sessions 53

to select the appropriate case in the active type. Note that these four rules manipulate only

the local configurations, and output actions are always non-blocking. The actual transmission

of a session message is embodied by [Comm], which removes the first message from the o-

queue of the source configuration and enqueues it at the end of the i-queue at the opposing

configuration.

The remaining reduction rules are standard from the π calculus reduction semantics. Rule

[Eval] evaluates an expression inside an evaluation context. A reduction is not affected by the

restriction of a shared (rule [Chan]) or a session name (rule [Sess]). From rule [Par] we ensure

that a reduction on process is not affected if the process is composed in parallel with another

process. Finally reduction is closed under structural congruence using rule [Struct]. We define

→→= (−→∪≡)∗.

w w′ v′ v

v v′ w′ w

s s
o i

i o

s!〈v〉;P s?(x);Q

s?(x);P′ s!〈v〉;Q′

Figure 3.4: Schematic represantation of the ASP reduction semantics

Figure 3.4 shows a schematic representation of the reduction semantics for the ASP. We

present each endpoint s,s with the corresponding linear processes and the input/output con-

figurations. For example a value being sent from endpoint s to endpoint s is first sent by

process s!〈v〉;P to the corresponding o-configuration of session s. The o-configuration fol-

lows a FIFO policy to interact with the i-configuration for the dual session s. Again in the

i-configuration a message follows a FIFO policy to finally interact with the receiving process

s?(x);Q. The interaction to send a value from endpoint s to endpoint s follows a symmetric

direction.

54 Chapter 3. Asynchronous Session Types Behavioural Theory

3.2 Types for Asynchronous Session Processes

This section presents a session typing discipline for ASP processes and establishes some key

theoretical results: properties of subtyping (Proposition 3.2.1), subject reduction (Theorem

3.2.1), and communication safety (Theorem 4.2.2).

3.2.1 Type Syntax

The type syntax is an extension of the standard session types from [HVK98].

(Shared) U ::= bool | i〈S〉 | o〈S〉

(Value) T ::= U | S

(Session) S ::= !〈T 〉;S | ?(T);S | ⊕{li : Si}i∈I | &{li : Si}i∈I

| µX .S | X | end

The shared types U include Booleans bool, and the IO-types [PS96, HY07] i〈S〉 (accept,

i.e. input) and o〈S〉 (request, i.e. output) for the shared channels via which sessions of type

S are initiated. In the present work, IO-types (often called client/server types) are used to

control locality (shared channel buffers are located only at the server side) and the associated

typed transitions, playing a central role in our behavioural theory. In the session types S, the

output type !〈T 〉;S represents sending a value of type T , then continuing as S; dually for input

type ?(T);S. Selection type ⊕{li : Si}i∈I describes the selection of one of the labels li, then

continuing as Si. Branching type &{li : Si}i∈I waits with I options, behaving as type Si if the

label li is selected. End type end represents session completion and is often omitted. For

recursive types µX .S, we assume the type variables are guarded in the standard way. Process

variable X is the standard recursive variable. We do not allow the occurence of a recursive

variable as a session type object, i.e. being carried as a type on send or receive prefixes, cf.

[BH13].

3.2. Types for Asynchronous Session Processes 55

F (R) = {(bool,bool),(end,end)}

∪ {(i〈S〉,i〈S′〉),(o〈S〉,o〈S′〉) | (S,S′),(S′,S) ∈R}

∪ {(!〈T1〉;S1, !〈T2〉;S2) | (T2,T1),(S1,S2) ∈R}

∪ {(?(T1);S1,?(T2);S2) | (T1,T2),(S1,S2) ∈R}

∪ {(⊕{li : Si}i∈I,⊕{l j : S′j} j∈J) | I ⊆ J,∀i ∈ I.(Si,S′i) ∈R}

∪ {(&{li : Si}i∈I,&{l j : S′j} j∈J) | J ⊆ I,∀ j ∈ J.(S j,S′j) ∈R}

∪ {(µX .S,S′) | (S{µX .S/X},S′) ∈R}

∪ {(S,µX .S′) | (S,S′{µX .S′/X}) ∈R}

Figure 3.5: The generating function for the session subtyping relation.

3.2.2 Session Subtyping

If P has a session channel s of type S, the ways in which P is prepared to use s are at most

as S. For example, if S is &{li : Si}i∈{1,2}, then P handles the cases for l1 and l2 but not any

others; thus P can only interact with peers that select either one of these two labels. By this

intuition, for a process Q with session type S′ to be safely used in place of P (i.e. subsumption

via S′ ≤ S), Q should be composable in the same or more ways (i.e. with more peers) than

P, e.g. if S′ is &{li : Si}i∈{1,2,3}, then Q can interact with the same peers as P plus those that

select l3.

Formally, the subtyping relation is defined on the set of all closed and contractive types T as

follows: for T ′,T ∈ T , T ′ is a subtype of T , written T ′ ≤ T , if (T ′,T) is in the largest fixed

point of the monotone function:

F : P(T ×T)→P(T ×T)

given in Figure 3.5. Line 2 is standard: i〈S〉 and o〈S〉 are invariant on S since it supports both

S and S (see duality below). Lines 7 and 8 give the standard rules for recursion. In Lines

56 Chapter 3. Asynchronous Session Types Behavioural Theory

3 and 4, the linear output (resp. input) is contravariant (resp. covariant) on the message type

that follows [MY09]. In Line 5, a select that requires support for more labels means fewer

peers can be safely composed; dually for branching in Line 6.

!〈T 〉;S = ?(T);S &{li : Si}i∈I = ⊕{li : Si}i∈I

?(T);S = !〈T 〉;S ⊕{li : Si}i∈I = &{li : Si}i∈I

X = X end = end µX .S = µX .S

Figure 3.6: Session type duality.

In Figure 3.6 we define the duality relation between session types. Duality follows the struc-

ture of a session type. Send and receive operations are dual, similarly for the select and branch

operator. The dual of the inactive type and type variables is the identity.

We clarify the semantics of ≤ through duality.

Lemma 3.2.1. S1 ≤ S2 iff S2 ≤ S1.

Proof. Let us call any relation witnessing ≤ (i.e. is a fixed point of the subtyping function),

a subtyping relation. Because S = S, it suffices to show the relation {(S2,S1) | S1 ≤ S2} is a

subtyping relation, which is immediate by construction.

Definition 3.2.1 (Composable Types). We define the set of composable types of a session

type S as:

comp(S) = {S′ | S′ ≤ S},

That is, comp(S) is the set of types which can be dually composed with S (note S and S are

composable, hence if S′ is smaller than S, S′ should be more composable with S).

Subtyping can be completely characterised by composability.

Proposition 3.2.1 (Subtyping Properties). (1) ≤ is a preorder; (2) S1 ≤ S2 if and only if

comp(S2)⊆ comp(S1).

3.2. Types for Asynchronous Session Processes 57

Proof. (1) is standard, while (2) uses Lemma 3.2.1. For both, see Appendix A.1 for details.

3.2.3 Type System for Programs

Typing judgements for programs (i.e. closed processes that do not contain run-time syntax,

Section 3.1) and expressions have the form:

Γ ` P.∆ and Γ,∆ ` e : T

with

Γ ::= /0 | Γ ·u : U | Γ ·X : ∆ and ∆ ::= /0 | ∆ · k : S | ∆ ·a

The shared environment Γ is a mapping from variables and shared channels to constant types

and shared channel types. Recursion variables are recorded to type recursive processes. The

linear environment ∆ (also called session typing environment) is a mapping from variables and

session channels to session types. The linear environment is also used to record the shared

channels . The program typing judgement is read as: program P is typed under shared envi-

ronment Γ and uses channels according to linear environment ∆. The expression judgement,

expression e has type T under environments Γ and ∆. We may omit ∆ from the latter if it is

clear from the context.

Figure 3.7 defines the typing rules for programs. The system is similar to [HKP+10, B+08].

Rule (SChan) types shared channels in accordance with the environment Γ. A shared input

type can be used as a shared output type by rule (SChan)′. Rules (Bool) and (Match) assign

the boolean type to boolean constants tt,ff and value matching expressions (similarly for

other boolean expressions, e.g. e and e). Rule (Name) extracts the type of a name expression.

Rules (Req) and (Acc) check if the type of the carried session name agrees with the shared

58 Chapter 3. Asynchronous Session Types Behavioural Theory

Γ ·u : U ` u : U (SChan) Γ ·u : i〈S〉 ` u : o〈S〉 (SChan)′

Γ ` tt,ff : bool (Bool)

Γ ` n : T ∨∆ = ∆′ ·n : T
Γ,∆ ` n : T

(Name)
Γ,∆ ` ei : Ti i ∈ {1,2}

Γ,∆ ` e1 = e2 : bool
(Match)

Γ ` a : o〈S〉 Γ ` P.∆ · x : S
Γ ` a(x).P.∆

(Req)
Γ ` a : i〈S〉 Γ ` P.∆ · x : S

Γ ` a(x).P.∆
(Acc)

Γ ` v : U U 6= i〈S′〉
Γ ` P.∆ · k : S

Γ ` k!〈v〉;P.∆ · k :!〈U〉;S
(Send)

Γ · x : U ` P.∆ · k : S
U 6= i〈S′〉

Γ ` k?(x);P.∆ · k :?(U);S
(Recv)

Γ ` P.∆ · k : S
Γ ` k!〈k′〉;P.∆ · k :!〈S′〉;S · k′ : S′

(Deleg)
Γ ` P.∆ · k : S · x : S′

Γ ` k?(x);P.∆ · k :?(S′);S
(SRecv)

Γ ` P.∆ · k : S
Γ ` k⊕ l;P.∆ · k :⊕{l : S}

(Sel)
∀ i ∈ I Γ ` Pi .∆ · k : Si

Γ ` k&{li : Pi}i∈I .∆ · k : &{li : Si}i∈I
(Bra)

Γ ` Pi .∆i i ∈ {1,2}
dom(∆1)∩dom(∆2) = /0

Γ ` P1 | P2 .∆1 ·∆2
(Conc)

Γ,∆ ` e : bool Γ ` P.∆ Γ ` Q.∆

Γ ` if e then P else Q.∆
(If)

Γ ·a : U ` P.∆ ·a
Γ ` (ν a)P.∆

(CRes)
∆ end only

Γ ` a[ε].∆ ·a
(EBuff)

Γ ·X : ∆ ` P.∆

Γ ` µX .P.∆
(Rec) Γ ·X : ∆ ` X .∆ (Var)

∆ end only
Γ ` 0.∆

(Inact)
Γ ` P.∆ ∆≤ ∆′

Γ ` P.∆
′ (Subs)

Figure 3.7: Typing rules for programs.

3.2. Types for Asynchronous Session Processes 59

environment mapping of the shared name. Furthermore the shared environment should map

the shared channel to the output (resp. input) shared channel type. Rules (Send) and (Recv)

require that a value being sent (resp. received) on a session channel is typed with the send

session type prefix (resp. receive session type prefix) according to the shared environment Γ.

Rule (Deleg) types the delegation operation of session channels. It requires the session chan-

nel being sent, to be present with the correct type in the linear environment of the conclusion

judgement. Rule (SRecv) types the receiving of a delegated session channel. The delegated

channel should be present in the linear environment ∆ of the hypothesis judgement. Rules

(Sel) and (Bra) type the selection and branching actions respectively. The selection typing

judgement creates a selection session type on the label of the selection operation. Dually the

branch typing judgement types a branch operation on the labels offered by the branch opera-

tor. Note that appart from the session name being typed, the linear environment should be the

same in all branching processes.

The subsumption rule (Subs) is used to identify session types up-to the subtyping relation.

Rule (Conc) concatenates the disjoint environment typing of parallel processes. Rule (If)

checks for a boolean condition and for equality of the session types in both branches. Rule

(EBuff) types records the shared name of the empty shared configuration in the linear envi-

ronment. Rule (CRes) restricts a shared channel and its buffer by removing its typing from

both the shared linear environments. Rule (Rec) checks a process if it has the same linear en-

vironment with the mapping of the active process variable and (Var) maps a process variable

to a linear environment through the shared environment Γ. The empty process is typed with

a complete (all channels are typed with end) linear environment in rule (Inact).

3.2.4 Type System for Run-time Syntax

This section extends the type system for programs (Section 3.2.3) to the full type system for

run-time syntax. Our new system significantly simplifies that in [HKP+10] by adapting the

60 Chapter 3. Asynchronous Session Types Behavioural Theory

approach developed in [B+08]. First we define an additional type category T, which includes

session types and message types:

(General) T ::= S | M (IMsg) Mi ::= /0 | ?(T);Mi | &l;Mi

(Message) M ::= Mi | Mo (OMsg) Mo ::= /0 | !〈T 〉;Mo | ⊕ l;Mo

Message types provide a type abstraction for the values stored in queues, and are used for

typing endpoint configurations. A message type M is either an input Mi or an output Mo queue

abstraction. Incoming messages and branch labels enqueued in an i-queue are recorded as

?(T) and &l respectively. Similarly, !〈T 〉 and⊕l for outgoing messages and select labels in an

o-queue. /0 is used to type empty queues. We then extend the linear environment ∆ to include

the session channels for which a configuration is found to be present as T: a configuration

by itself is typed as M, where M are the enqueued message types, and the composition of a

session process and its associated configuration as S. Linear environment ∆ also records the

presence of a session endpoint configuration s. The linear environment ∆ is now given by the

extended grammar:

∆ ::= /0 | ∆ · k : S | ∆ ·a | ∆ · s : T | ∆ · s

The ∗ operator is used to type the parallel composition of run-time processes.

Definition 3.2.2 (Message Type Concatenation).

S∗ /0 = S

S ∗ !〈T 〉;Mo = !〈T 〉;S ∗ Mo

?(T);S ∗ ?(T);Mi = S ∗ Mi

Sk ∗ ⊕lk;Mo = ⊕{li : Sk ∗ Mo} (k ∈ I)

&{li : Si}i∈I ∗ &lk;Mi = Sk ∗ Mi (k ∈ I)

3.2. Types for Asynchronous Session Processes 61

∆1 ∗ ∆2 = ∆1\dom(∆2)∪∆2\ dom(∆1)∪{s : S ∗ M |

s : S ∈ ∆i, s : M ∈ ∆ j where i, j ∈ {1,2}, i 6= j}

The ∗ operator is used to reconstitute an overall session type for a session endpoint locality,

which consists of the type of a session channel s : S and the corresponding session message

type s : M. A session s enqueues messages in the the o-queue, before they are delivered to the

opposing locality (i.e the opposing i-queue). We consider that in this case the messages did

not change their locality and still remain in the typing scope of the s channel, so we choose

to define ∗ as a form of concatenation between type Mo of the o-queue of session s and

session type S of session s. On the other hand, messages that exist in the i-queue of session

s are already delivered from the opposing locality. In this case we considered i-messages as

already received by the locality and we express it in the definition of ∗ by consuming the

message type Mi for session s out of the session type S of session s. We clarify the above

intuitions for the ∗ operator with its description:

In the cases where we concatenate a session type S with an output message type !〈T 〉;Mo

or ⊕lk;Mo, we concatenate the message type prefix with the session type S to get !〈T 〉;S

and⊕{li : Si}i∈I,k ∈ I and we continue with the concatenation inductively. Remember that an

output message type Mo types an o-configuration in the reverse order. The inductive definition

on ∗ is used to reverse the concatenation order once more, resulting in a consistent session

type sequence. Note that for the case of the select message type the result is non-deterministic.

This follows the intuition that session types can be subsumed up-to subtyping, for example

we can have:

[l1]⊕ ∗ S1 = ⊕{l1 : S1}

[l1]⊕ ∗ S2 = ⊕{l1 : S1, l2 : S2}

with the resulting type to be consistent up-to subtyping since⊕{l1 : S1} is a subtype of⊕{l1 :

S1, l2 : S2}. For the case of input message types we expect both the session type S and the

62 Chapter 3. Asynchronous Session Types Behavioural Theory

message type Mi to have matching prefixes. The ∗ operator then consumes the prefixes

and proceeds inductively. Lastly, we use the ∗ operator to compose the extended linear

environments. The two linear environments that are being composed should have disjoint

domains. In the case where they have a common domain on a session name s, we expect that

one linear environment will record a session type S for s and the other will record a message

type M for s. In any other case the ∗ operator is undefined.

As an example consider linear environments:

∆1 = {s1 : S1 · s2 :?(T2);S2}

∆2 = {s1 :!〈T1〉 · s2 :?(T2)}

Then we can compose ∆1 and ∆2 to get:

∆1 ∗ ∆2 = {s1 :!〈T 〉;S1 · s2 : S2}

Consider now a linear environment:

∆3 = {s1 : S′1}

then the operation ∆1 ∗ ∆3 is undefined because s1 : S1,s1 : S′1 ∈ ∆1 ∩∆2. Also note that

∆2 ∗ ∆3 is defined:

∆2 ∗ ∆3 = {s1 :!〈T1〉;S′1 · s2 :?(T2)}

We present the typing rules for the run-time type system. Most of the typing rules are directly

inherited from the program type system (Figure 3.7). Figure 3.8 lists the rules for run-time

syntax. A session configuration for s is typed with the message type M. Rules (InQ) and

(OutQ) respectively type the empty i- and o-queues with the empty message type and record

the presence of the session queue in ∆. Rule (RcvQ) takes the typing of i-queue tail and pre-

3.2. Types for Asynchronous Session Processes 63

Γ ` s[o : ε]. s : /0 · s (OutQ) Γ ` s[i : ε]. s : /0 · s (InQ)

Γ ` s[o :~h]. s : Mo Γ ` v : T

Γ ` s[o : v ·~h]. s :!〈T 〉;Mo

(SndQ)
Γ ` s[i :~h]. s : Mi Γ ` v : T

Γ ` s[i : v ·~h]. s :?(T);Mi

(RcvQ)

Γ ` s[o :~h]. s : Mo

Γ ` s[o : l ·~h]. s :⊕l;Mo

(SelQ)
Γ ` s[i :~h]. s : Mi

Γ ` s[i : l ·~h]. s : &l;Mi

(BraQ)

Γ ` s[o :~h]. s′ : S′ · s : Mo

Γ ` s[o :~h · s′]. s :!〈S′〉;Mo

(DelQ)
Γ ` s[i :~h]. s : Mi

Γ ` s[i : s′ ·~h]. s :?(S′);Mi · s′ : S′
(SRcvQ)

Γ ` P.∆1 Γ ` Q.∆2

Γ ` P | Q.∆1 ∗ ∆2
(QConc)

Γ ` P.∆ · s : S · s : S · s · s
Γ ` (ν s)P.∆

(SRes)

Γ ` a[~h].∆

Γ ` a[~h · s].∆ · s : /0
(Buff) Γ ` a〈s〉. s : /0 (ReqM)

Figure 3.8: Extended typing rules for the ASP run-time processes.

fixes the message type for the head element. Rule (BraQ) is similar, but handles the branching

by prefixing the label message type. Rules (OutQ) and (SelQ) type o-queues. Note that rules

(OutQ) and (SelQ) construct the type in the reverse direction of the o-endpoint ordering.

Rules (InDelQ) and (DelQ) deal with the typing of the delegated session, but are otherwise

similar to (RcvQ) and (SndQ). As regards the parallel composition, rule [Conc] is replaced by

rule (QConc), which uses the ∗ for combining the types of the parallel components. Rule

(SRes) types the session restriction by asserting that the session endpoints have dual typing

and that the corresponding session queues are present. Rule (Buff) is used (in conjunction

with (EBuff) from Figure 3.7) to type non-empty shared channel endpoints by recording the

enqueued session channels. Finally, (ReqM) types asynchronous session request messages

with the recording of the message type for session channel s in the linear environment.

64 Chapter 3. Asynchronous Session Types Behavioural Theory

3.2.5 Subject Reduction

In this section we prove the main properties of the ASP session type system that are sum-

marised in the subject reduction and process safety theorems.

Definition 3.2.3 (Well-configured Linear Environments). We say that ∆ is well configured if

∀s ∈ dom(∆), then ∆(s) = S with ∆(s) = S

We say that a linear environment is well-configured if duality relates the types of dual session

channels.

Definition 3.2.4 (Linear Environment Reduction). We define:

1. {s :!〈T 〉;S · s :?(T);S′} −→ {s : S · s : S′}

2. {s :⊕{li : Si}i∈I · s : &{li : S′i}i∈I} −→ {s : Sk · s : S′k} (k ∈ I)

3. ∆∪∆′′ −→ ∆′∪∆′′ if ∆−→ ∆′.

Reduction over linear environments, require the interaction between dual endpoints with dual

types.

The next three lemmas are used to prove the subject reduction theorem. We prove the weak-

ening and strengthening cases for the type environments and the standard substitution lemma.

Lemma 3.2.2 (Weakening Lemma).

Let Γ ` P.∆.

1. If X /∈ dom(Γ), then Γ ·X : ∆′ ` P.∆.

2. If u /∈ dom(Γ), then Γ ·u : U ` P.∆.

3. If k /∈ dom(∆) then Γ ` P.∆ · k : end.

3.2. Types for Asynchronous Session Processes 65

Proof. The proof is done by induction on the structure of ASP process. See Appendix A.2.1

for details.

Lemma 3.2.3 (Strengthening Lemma).

1. If X /∈ fpv(P), then Γ ·X : ∆′ ` P.∆ implies Γ ` P.∆.

2. If u /∈ fn(P)∪fv(P), then Γ ·u : U ` P.∆ implies Γ ` P.∆.

3. If k /∈ fn(P)∪fv(P) then Γ ` P.∆ · k : end implies Γ ` P.∆.

Proof. The proof is done by induction on the structure of ASP process. See Appendix A.2.1

for details.

Lemma 3.2.4 (Substitution Lemma).

1. If Γ · x : U,∆ ` e : U ′ and Γ ` v.U , then Γ,∆ ` e{v/x} : U ′.

2. If Γ,∆ · x : T ` e : U and s fresh, then Γ,∆ · s : S ` e{s/x} : U .

3. If Γ · x : U ` P.∆ and Γ ` v.U , then Γ ` P{v/x}.∆.

4. If Γ ` P.∆ · k : T , then Γ ` P{s/k}.∆ · s : T .

Proof. The proof is done by induction on the structure of expressions for Parts (i) and (ii) and

by induction on the structure of ASP process. See Appendix A.2.1 for details.

The next theorem states the soundness property of the ASP typing system:

Theorem 3.2.1 (Subject Congruence and Reduction).

1. If Γ ` P.∆ and P≡ Q, then Γ ` Q.∆.

2. If Γ ` P .∆ with ∆ well-configured and P −→ Q, then we have Γ ` Q .∆′ such that

∆−→∗ ∆′ and ∆′ is well-configured.

66 Chapter 3. Asynchronous Session Types Behavioural Theory

Proof. The proof for Part (i) is done with a cases analysis on the structural congruence rules.

The proof for Part (ii) is done by induction on the reduction relation. For details, see Appendix

A.2.2.

We now prove communication safety.

Definition 3.2.5 (s-redex). We say an s-redex is a parallel composition of two s-processes

that has one of the following shapes:

(a) s!〈v〉;P | s[o :~h] (b) s⊕ li;P | s[o :~h]

(c) s?(x);P | s[i : v ·~h] (d) s&{li : Pi}i∈I | s[i : li′ ·~h]

(e) s[o : v ·~h] | s[i :~h′]

All redexes require the immediate action to correspond with the active type prefix in the local

configuration.

A process P is an error if up-to structural congruence (following [HYC08, § 5]), P contains

two s-processes which do not form an s-redex, or an expression in P contains a type error in

the standard sense. As a corollary of subject reduction (Theorem 3.2.1), we obtain:

Theorem 3.2.2 (Communication and Event-Handling Safety). If P is a well-typed program,

then Γ ` P. /0, and P never reduces to an error.

Proof. The proof is a direct consequence of the subject reduction theorem (Theorem 3.2.1). If

we assume that a well-typed process can result in an error process this leads to contradiction

using Theorem 3.2.1, because error processes are not typable. See Appendix A.2.3 for details.

3.3. Asynchronous Session Bisimulation and its Properties 67

3.3 Asynchronous Session Bisimulation and its Properties

This section presents the behavioural theory for the ASP. We define the observational theory

using an untyped labelled transition system on the ASP processes and a labelled transition

system on the typing environment. Both labelled transition systems are combined to define

a typed labelled transition system for the ASP processes. We use the typed LTS to define

the asynchronous session typed bisimulation, where typed bisimilarity is the maximal typed

reduction-based congruence that preserves observations. We use the bisimulation theory to

study the confluence and determinacy properties of the session types. The results of this

section are directly used to study properties of event-driven programming in Chapter 4 and

Chapter 5.

3.3.1 Labelled Transition Semantics

We define a set of labels (`,`′, ...) together with their standard relations:

Definition 3.3.1 (Action Labels). Let ` range over:

` ::= a〈s〉 | a〈s〉 | a(s) | s?〈v〉 | s!〈v〉 | s!(a) | s&l | s⊕ l | τ

The first three labels denote the session accept, session request and bound session request re-

spectively. The next labels define the session actions for input, output, bound output, branch-

ing, selection respectively. The last action is the standard silent τ-action. We write subj(`)

(resp. obj(`)) to denote the set of free subjects (resp. object) in `; and fn(`) (resp. bn(`)) to

denote the set of free (resp. bound) names in `. Moreover n(`) defines the union fn(`)∪bn(`):

68 Chapter 3. Asynchronous Session Types Behavioural Theory

Actions(`) subj(`) obj(`) fn(`) bn(`)

a〈s〉,a〈s〉 {a} {s} {a,s} /0

a(s) {a} {s} {a} {s}

s!〈v〉,s?〈v〉 {s} {v} {s,v} /0

s!(a) {s} {a} {s} {a}

s⊕ l,s&l {s} /0 {s} /0

Definition 3.3.2 (Context). A context is defined as:

C ::= − | C | P | P |C | (ν n)C | if e then C else C′ | µX .C

| s!〈v〉;C | s?(x);C | s⊕ l;C | s&{li : Ci}i∈I | a(x).C | a(x).C

Expression C[P] substitutes process P in each hole (−) of the context C definition.

We define the symmetric operator ` � `′ on labels. The expression ` � `′ denotes that ` is a

dual of `′ and it is defined as:

Definition 3.3.3 (Label Duality).

a〈s〉 � a〈s〉 a〈s〉 � a(s) s?〈v〉 � s!〈v〉 s?〈a〉 � s!(a) s&l � s⊕ l

Untyped Labelled Transition System. Figure 3.9 defines the untyped label transition sys-

tem (LTS). Rules 〈Acc〉/〈Req〉 are used to define the session initialisation. The accept label is

observed on shared endpoints and the request label is observed on the asynchronous request

processes. The next four rules 〈In〉/〈Out〉/〈Bra〉/〈Sel〉 impose that an action is observable

when a message moves from its local endpoint to its remote (i.e. opposing) endpoint. Note

that all the the visible actions (with the exception of a〈s〉) are observed on (shared and ses-

sion) endpoints. When the process accesses its local endpoint, the action is invisible from

the outside, as formalised by 〈Local〉. The rest of the compositional rules are standard. Rule

3.3. Asynchronous Session Bisimulation and its Properties 69

〈Acc〉 a[~s]
a〈s〉−→ a[~s · s] 〈Req〉 a〈s〉 a〈s〉−→ 0

〈In〉 s[i :~h]
s?〈v〉−→ s[i :~h · v] 〈Out〉 s[o : v ·~h] s!〈v〉−→ s[o :~h]

〈Bra〉 s[i :~h] s&l−→ s[i :~h · l] 〈Sel〉 s[o : l ·~h] s⊕l−→ s[o : h]

〈Local〉 P −→ Q

P τ−→ Q
〈Tau〉 P `−→ P′ Q `′−→ Q′ `� `′

P | Q τ−→ (ν bn(`,`′))(P′ | Q′)

〈ParL〉
P `−→ P′ bn(`)∩fn(Q) = /0

P | Q `−→ P′ | Q
〈ParR〉

P `−→ P′ bn(`)∩fn(Q) = /0

Q | P `−→ Q | P′

〈Res〉 P `−→ P′ n 6∈ fn(`)

(ν n)P `−→ (ν n)P′
〈OpenS〉 P

a〈s〉−→ P′

(ν s)P
a(s)−→ P′

〈OpenN〉 P
s!〈a〉−→ P′

(ν a)P
s!(a)−→ P′

〈Alpha〉 P≡α P′ P′ `−→ Q

P `−→ Q

Figure 3.9: Labelled transition system.

70 Chapter 3. Asynchronous Session Types Behavioural Theory

〈Tau〉 observes a τ transition on a parallel composition, when the parallel components exhibit

dual actions. We use rules 〈Par〉L and 〈Par〉R to define that if a process can do a transition `

then it can do the same transition when it is composed in parallel with a process Q, provided

that the bound names of ` are disjoint with the free names of Q. Rule 〈Res〉 preserves observ-

ability of an action ` in a process under the restriction operator, provided that the subject of `

remains free. Scope opening for action objects is desrcibed using rules 〈OpenS〉 for session

actions and 〈OpenN〉 for shared name actions. Rule 〈Alpha〉 closes the transition relation

under alpha-conversion.

Localisation and Typed Labelled Transition System. We introduce the notion of local-

isation for the ASP processes. A localised process is a typed process that is also a parallel

composition, which composes all session configurations for each session name used.

Definition 3.3.4 (Localisation). Let P be closed and Γ ` P .∆. Then we say Γ ` P .∆ is

localised if:

(1) For each s ∈ dom(∆), s : S · s ∈ ∆ and (2) If Γ(a) = i〈S〉, then a ∈ ∆.

A localised process owns all necessary queues as specified in its typing environment. For-

mally we say that for each free session name in ∆ the corresponding endpoint configura-

tion exists composed in parallel within the process. Restricted session names are implicitly

checked for localisation following the fact that a localised process is typed. A typed process

implies that rule [SRes] was used to check the presence of the session configuration on bound

session names. We further say P is localised if it is so for a suitable pair of environments.

Example 3.3.1 (Simple Localisation Example).

• Process Γ ` s?(x);s!〈x+1〉;0. s :?(U); !〈U〉;end is not localised, since s ∈ dom(∆) and

s /∈ ∆.

• On the other hand, process Γ ` s?(x);s!〈x+1〉;0 | s[i :~h1,o :~h2]. s :?(U); !〈U〉;end · s

is localised, since s ∈ dom(∆) and s ∈ ∆.

3.3. Asynchronous Session Bisimulation and its Properties 71

• Similarly, process Γ ` a(x).P. /0 is not localised, but Γ ` a(x).P | a[~s].a is.

By composing buffers at the appropriate channels, any typable closed process can become

localised.

Proposition 3.3.1. If Γ ` P1 .∆1 is localised, P1 −→ P2 and Γ ` P2 .∆2 then Γ ` P2 .∆2 is

localised.

Proof. The proof uses a simple induction on the structure of the −→ relation and concludes

because the reduction relation preserves endpoint configurations in a process.

We proceed with the definition of the typed LTS for typing environments on the basis of the

untyped one. The basic idea is to use the type information to control the enabling of actions

(cf. [HR04]). This is realised by introducing the definition of the environment transition,

defined in Figure 3.10. A transition (Γ,∆)
`−→ (Γ′,∆′) means that an environment (Γ,∆)

allows an action ` to take place, and the resulting environment is (Γ′,∆′), constraining process

transitions through the linear and shared environments. This constraint is at the heart of our

typed LTS, accurately capturing interactions in the presence of sessions and local buffers.

The first rule in Figure 3.10 says that the reception of a message via a is possible only when

a is input-typed (i-mode) and its endpoint is present (a ∈ ∆). The second is dual, saying

that an output at a is possible only when a has o-mode and no shared endpoint exists in

the linear environment. The case is similar for a bound output action a(s). The definition

for the session actions focuses on the precondition s /∈ ∆, that enforces that the opposing

endpoint is not present in the process for an action to be observed. This is a basic precondition,

since it ensures the linearity property for session type (i.e. if we drop this precondition a

session endpoint can interact with its dual endpoint and with the environment at the same

time, breaking the session linearity). The two session output rules (` = s!〈v〉 and s!(a)) are

the standard value output and scope opening rule. Output actions happen on an output prefixed

72 Chapter 3. Asynchronous Session Types Behavioural Theory

Γ(a) = i〈S〉,a ∈ ∆,s fresh implies (Γ,∆)
a〈s〉−→ (Γ,∆ · s : S)

Γ(a) = o〈S〉,a 6∈ ∆ implies (Γ,∆)
a〈s〉−→ (Γ,∆)

Γ(a) = o〈S〉,a 6∈ ∆,s fresh implies (Γ,∆)
a(s)−→ (Γ,∆ · s : S)

Γ ` v : U and U 6= i〈S′〉 and s /∈ dom(∆) implies (Γ,∆ · s : !〈U〉;S)
s!〈v〉−→ (Γ,∆ · s : S)

s /∈ dom(∆) implies (Γ,∆ · s : !〈o〈S′〉〉;S)
s!(a)−→ (Γ ·a : o〈S′〉,∆ · s : S)

Γ ` v : U and U 6= i〈S′〉 and s /∈ dom(∆) implies (Γ,∆ · s : ?(U);S)
s?〈v〉−→ (Γ,∆ · s : S)

s /∈ dom(∆) implies (Γ,∆ · s :⊕{li : Si}i∈I)
s⊕lk−→ (Γ,∆ · s : Sk)

s /∈ dom(∆) implies (Γ,∆ · s : &{li : Si}i∈I)
s&lk−→ (Γ,∆ · s : Sk)

∆−→ ∆′∨∆ = ∆′ implies (Γ,∆)
τ−→ (Γ,∆′)

Figure 3.10: Labelled transition rules for environments.

session type and should agree with the shared environment Γ. The next rule is for value input

and it is dual to the output rule. Note that in the case where the send/receive subject is a shared

channel, it should be on o-mode. This is because a new accept should not be created without

its endpoint in the same location. Label input and output are defined on the select and branch

prefixed session types. The final rule (` = τ) follows the reduction rules defined in § 3.2.4.

We can also observe a τ action on every environment (Γ,∆) without changing its state. The

labelled transition system for environments omits the delegation case. This is justified by the

fact that session input action s?〈s′〉 may result in a non-localised process (i.e. it breaks the

localisation requirement for a process).

The next definition defines a typed labelled transition system for processes.

Definition 3.3.5 (Typed Transition). Typed transition relation is defined as:

Γ1 ` P1 .∆1
`−→ Γ2 ` P2 .∆2

3.3. Asynchronous Session Bisimulation and its Properties 73

if (1) P1
`−→ P2 and (2) (Γ1,∆1)

`−→ (Γ2,∆2) with Γi ` Pi .∆i.

We use both the untyped labelled transition system and the labelled transition system for

environments to define a LTS for processes. The typed transition relation is used to study the

bisimulation theory for session typed processes.

We use the notation =⇒ for the reflexive and transitive closure of τ−→, `
=⇒ for the composi-

tion =⇒ `−→=⇒ and
̂̀

=⇒ for =⇒ if `= τ and `
=⇒ otherwise. Furthermore we write

̂̀
−→ for

−→ if `= τ and `−→ otherwise.

3.3.2 Bisimulation

Before we define any behavioural relation, we define the notion of a typed relation. Write

for a symmetric and transitive closure of −→ over linear environments.

Definition 3.3.6 (Typed Relation). We say a binary relation R over closed, typed processes

is a typed relation if, whenever it relates two typed processes, Γ ` P1 .∆1RP2 .∆2 we have

∆1
 ∆2.

We often leave the environments implicit, writing simply P1RP2.

We introduce the notion of typed barbs, for the observations of actions over typed processes.

Definition 3.3.7 (Typed Barbs). We write

1. Γ ` P.∆ ↓ a if P≡ (ν ~n)(a〈s〉 | R) with a 6∈~n.

2. Γ ` P.∆ ↓ s if P≡ (ν ~n)(s[o : h ·~h] | R) with s 6∈~n and s /∈ dom(∆).

We write Γ ` P.∆ ⇓ n if ∃P′.P→→ P′ and Γ ` P′ .∆′ ↓ n.

74 Chapter 3. Asynchronous Session Types Behavioural Theory

We can now introduce the reduction congruence and the asynchronous bisimilarity.

Definition 3.3.8 (Reduction Congruence). A typed relation R is reduction congruence if it is

a congruence and satisfies the following condition: for each Γ ` P1 .∆1 R P2 .∆2, whenever

Γ ` P1 .∆1,Γ ` P2 .∆2 are localised then:

1. Γ ` P1 .∆1 ⇓ n iff Γ ` P2 .∆2 ⇓ n.

2. Whenever

• Γ ` P1 .∆1RP2 .∆2 holds, P1→→ P′1 implies P2→→ P′2 such that Γ ` P′1 .∆′1RP′2 .

∆′2 holds with ∆′1
 ∆′2.

• The symmetric case.

The maximum reduction congruence ([HY95]), is denoted by ∼=.

Definition 3.3.9 (Asynchronous Session Bisimulation). A typed relation R over localised

processes is a weak asynchronous session bisimulation or often a bisimulation if, whenever

Γ ` P1 .∆1RP2 .∆2, it holds:

1. Γ ` P1 .∆1
`−→ Γ′ ` P′1 .∆′1 implies Γ ` P2 .∆2

̂̀
=⇒ Γ′ ` P′2 .∆′2 such that Γ′ ` P′1 .

∆′1RP′2 .∆′2 with ∆′1
 ∆′2 holds and

2. the symmetric case.

The maximum bisimulation exists which we call bisimilarity, denoted by ≈. We sometimes

leave environments implicit, writing e.g. P≈ Q.

We extend ≈ to possibly non-localised closed terms by relating them when their minimal

localisations are related by ≈ (given Γ ` P.∆, its minimal localisation adds empty queues to

P for the input shared channels in Γ and session channels in ∆ that are missing their queues).

Further ≈ is extended to open terms in the standard way [HY95].

3.3. Asynchronous Session Bisimulation and its Properties 75

3.3.3 Properties of Asynchronous Session Bisimilarity

This subsection studies central properties of asynchronous session semantics.

Characterisation of reduction congruence. We first show that the bisimilarity coincides

with the naturally defined reduction-closed congruence [HY95], given below.

Theorem 3.3.1 (Soundness and Completeness). ≈ = ∼=.

Proof. The soundness (≈ ⊂ ∼=) is by showing ≈ is a congruence. Since we are dealing with

closed and typable terms, input and output prefix context closure is straightforward. The

most difficult case is a closure under parallel composition, which requires us to check the side

condition ∆′1
 ∆′2 for each case.

The completeness direction (∼= ⊂ ≈) follows [Hen07, § 2.6] where we prove that every ex-

ternal action is definable by a testing process T 〈N,succ, `〉. The testing process uses a fresh

name succ that allows us to detect an observable action ` based on the reduction closure of

the reduction-closed congruence. See Appendix A.3.1 for details.

Asynchrony, session determinacy and confluence. We study the properties of our asyn-

chronous session bisimulations based on the notions of [PW97].

The next definition divides the labels ` into output actions and input actions.

Definition 3.3.10. Let us call ` an

1. output action if ` is one of a〈s〉,a(s),s!〈v〉,s!(a),s⊕ `.

2. input action if ` is one of a〈s〉,s?〈v〉,s&`.

In the following, the first property says that we can delay an output arbitrarily, while the

second says that we can always immediately perform a (well-typed) input.

76 Chapter 3. Asynchronous Session Types Behavioural Theory

Lemma 3.3.1 (Input and Output Asynchrony). Suppose Γ ` P.∆
`

=⇒ P′ .∆′.

• (input advance) If ` is an input action, then Γ ` P.∆
`−→=⇒ P′ .∆′.

• (output delay) If ` is an output action, then Γ ` P.∆ =⇒ `−→ P′ .∆′.

Proof. The proof is done by induction on the length of the silent transition. For the proof

we utilise an intermediate result (see Lemma A.4.1) where we prove the permutation of a

single hidden (τ) action and an input (resp. output) action. For the full proof, see Appendix

A.4.1.

The result of the above lemma starts from the fact that a single hidden action and an input

(resp. output) action can be permuted in advance (resp. delay). Output and input actions are

asynchronous and affect endpoint configuration terms (with the exception of action a〈s〉 that

is observed on the asynchronous term a〈s〉). For example assume the transition:

Γ ` P1 | s[i : ~h1].∆1 =⇒ P2 | s[i : ~h2].∆2
s?〈v〉−→ P2 | s[i : ~h2 · v].∆2 =⇒ P3 | s[i : ~h3].∆3

Due to the asynchronous nature of the typed LTS, it is always safe to observe an input action

before a series of silent actions. We can now observe:

Γ ` P1 | s[i : ~h1].∆
s?〈v〉−→ P1 | s[i : ~h1 · v].∆

s?〈v〉−→=⇒ P3 | s[i : ~h3].∆3

A similar example for an output action would be:

Γ ` P1 | s[o : v · ~h1].∆1 =⇒ P2 | s[i : v · ~h2].∆2
s!〈v〉−→ P2 | s[i : ~h2].∆2 =⇒ P3 | s[i : ~h3].∆3

An output action can be observed after a series of silent actions:

Γ ` P1 | s[o : v · ~h1].∆1 =⇒ Γ ` P3 | s[o : v · ~h1].∆1
s!〈v〉−→ P3 | s[i : ~h3].∆3

3.3. Asynchronous Session Bisimulation and its Properties 77

We follow the work on the confluence for the π-calculus in [PW97], to define determinacy

and confluence. Below and henceforth we often omit the environments in typed transitions.

The properties of determinacy and confluence characterise all derivatives of a process.

Definition 3.3.11 (Process Derivative). We say Γ′ `Q.∆′ is a derivative of Γ ` P.∆ if there

exists ~̀ such that Γ ` P.∆
~̀

=⇒ Γ′ ` Q.∆′.

A process derivative of the typed process Γ ` P . ∆ is any process that is derived by any

sequence of transitions on Γ ` P.∆.

Definition 3.3.12 (Determinacy). We say Γ ` P.∆ is determinate if for each derivative Γ′ `

Q.∆′ of P and action `, if Γ′ ` Q.∆′
`−→ Q′ .∆1 and Γ′ ` Q.∆′

̂̀
=⇒ Q′′ .∆2 then Q′ ≈ Q′′.

We define the notion of session transitions, where any transition on session channels is called

a session transition. Furthermore, a process that only exhibits traces of session transitions is

called session determinate:

Definition 3.3.13 (Session Determinacy). Let us write P `−→s Q if P `−→ Q where if ` = τ

then it is generated without using [Request1], [Request2], [Accept], in Figure 3.3 (i.e. a com-

munication is performed without session initiation actions). We extend the definition to
~̀

=⇒s and
̂̀

=⇒s etc. We say P is session determinate if P is typable and localised and if

Γ ` P.∆
~̀

=⇒ Q.∆′ then Γ ` P.∆
~̀

=⇒s Q.∆′. We call such Q a session derivative of P.

We follow the terminology from [PW97] to define the weight of action `1 over action `2,

which is used to define confluence:

Definition 3.3.14 (Action Weight). We define `1b`2 as

1. a〈s〉 if `1 = a(s′) and s′ ∈ bn(`2).

2. s!〈s′〉 if `1 = s!(s′) and s′ ∈ bn(`2).

78 Chapter 3. Asynchronous Session Types Behavioural Theory

3. s!〈a〉 if `1 = s!(a) and a ∈ bn(`2)

4. `1 otherwise.

We write that `1 ./ `2 when `1 6= `2 and if `1, `2 are input actions then subj(`1) 6= subj(`2).

The main intuition for the definition of the `1b`2 action comes from the order in which these

two actions are observed on a process. For example consider the actions:

Γ ` P.∆
s1!(a)−→ Γ ` P1 .∆1

Γ ` P.∆
s2!(a)−→ Γ ` P2 .∆2

If we were to observe on process Γ ` P2 .∆2 an output of the shared name a through session

channel s1 (i.e. action s1!〈a〉 after s2!(a)) then we would observe the transition:

Γ ` P2 .∆2
s1!(a)bs2!(a)−→ Γ ` P′2 .∆

′
2

where s1!(a)bs2!(a) = s1!〈a〉 because a was already extruded out of the scope of P. On the

other hand, if we wanted to observe action s2!〈a〉 after s1!(a) we get the transition:

Γ ` P1 .∆1
s2!(a)bs1!(a)−→ Γ ` P′1 .∆

′
1

with s2!(a)bs1!(a) = s2!〈a〉

Operator ./ is used for the confluence definition and relates two actions that are different and

moreover if they are input actions they are observed on different names.

Milner [Mil80] stated about the property of confluence that “of any two possible actions, the

occurence of one will never preclude the other”. This is captured by the confluence definition

for the π-calculus [PW97]:

3.3. Asynchronous Session Bisimulation and its Properties 79

Definition 3.3.15 (Confluence). We say Γ ` P .∆ is confluent if for each derivative Q of P

and actions `1, `2 such that `1 ./ `2,

1. if Γ ` Q .∆
`−→ Q1 .∆1 and Γ ` Q.∆

`
=⇒ Q2 .∆2, then Γ ` Q1 .∆1 =⇒ Q′1 .∆′1 and

Γ ` Q2 .∆2 =⇒ Q′2 .∆′2 with Q′1 ≈ Q′2.

2. if Γ ` Q.∆
`1−→ Q1 .∆1 and Γ ` Q.∆

`2=⇒ Q2 .∆2, then Γ ` Q1 .∆1
`̂2b`1
=⇒ Q′1 .∆′1 and

Γ ` Q2 .∆2
`̂1b`2
=⇒ Q′2 .∆′2 with Q′1 ≈ Q′2.

The next Lemmas are used to prove Theorem 3.3.2. The first Lemma states that session

determinate processes are semantically (i.e. up-to typed bisimulation) invariant under silent

actions:

Lemma 3.3.2. Let P be session determinate and Γ ` P.∆ =⇒ Q.∆′. Then P≈ Q.

Proof. For proof, see Appendix A.4.2

Lemma 3.3.3. Assume typable, localised P and actions `1, `2 such that subj(`1),subj(`2)

are session names and `1 ./ `2. If Γ ` P . ∆
`1−→ P1 . ∆1 and Γ ` P . ∆

`2−→ P2 . ∆2 then

Γ ` P1 .∆
`2b`1−→ P′ .∆′ and Γ ` P2 .∆

`1b`2−→ P′ .∆′

Proof. The proof considers the fact that `1 and `2 have different session subjects and are

observed on session endpoint configurations. For proof, see Appendix A.4.3.

We show that session transitions are determinate transitions.

Lemma 3.3.4. Let P be session determinate. Then if Γ ` P.∆
`−→ P′ .∆′ and Γ ` P.∆

̂̀
=⇒

P′′ .∆′′ then P′ ≈ P′′

Proof. There are two cases:

80 Chapter 3. Asynchronous Session Types Behavioural Theory

Case: τ:

Follow Lemma 4.3.2 to get P≈ P′ and P≈ P′′. The result then follows.

Case: `:

Suppose that P `−→s P′ and P `
=⇒s P′′ implies P=⇒s P1

`−→s P2 =⇒s P′′. From Lemma 4.3.2,

we can conclude that P ≈ P1 and because of the bisimulation definition, we have P′ ≈ P2 to

complete we call upon Lemma 4.3.2 once more to get P′ ≈ P′′ as required.

For proof, see Appendix A.4.4.

We show that session transitions are confluent transitions.

Lemma 3.3.5. Let P be session determinate and `1 ./ `2. Then if Γ ` P .∆
`1−→ P1 .∆1 and

Γ ` P.∆
`2=⇒ P2 .∆2, then Γ ` P1 .∆1

`̂2b`1
=⇒ P′ .∆′ and Γ ` P2 .∆2

`̂1b`2
=⇒ P′′ .∆′′ and P′ ≈ P′′.

Proof. We do a case analysis on the labels `1 and `2. The case analysis follows the pat-

tern: If P
`1−→s P1 and P =⇒s

`2−→s=⇒s P2 then P1 =⇒s
`̂2b`1−→s=⇒s P′1 and P1 =⇒s

`̂1b`2−→s=⇒s P′2,

where in each case we use Lemmas 3.3.1 and 4.3.3 to permute the order of the actions

=⇒s, `1, `2,̂̀2b`1,̂̀1b`2 to get the required result. For proof, see Appendix A.4.5.

The above lemma states formally a basic intuition about session types, that is due to the

linearity of usage of session channels, one session action cannot preclude another session

action, making a session determinate process confluent. The last two lemmas are expressed

by the next theorem.

Theorem 3.3.2 (Session Determinacy). Let P be session determinate. Then P is determinate

and confluent.

Proof. From the definition of confluence (resp. determinacy) and from the definition of P we

have that each derivative Q of P is also session determinate. The proof is an immediate result

of Lemma 4.3.5 (resp. Lemma 4.3.4).

3.3. Asynchronous Session Bisimulation and its Properties 81

The confluence property is used to reason about the behaviour of systems. In the following

definition we build a relation on determinate processes that is later shown to be a bisimulation

up-to determinate transitions. We use this relation later in the thesis to reason about session

determinate processes and especially event-based optimisations.

Definition 3.3.16 (Determinate Up-to expansion Relation). Let R be a symmetric, typed

relation such that if Γ ` P.∆ R Q.∆, then if

1. P,Q are determinate;

2. If Γ ` P.∆
`−→ Γ′ ` P′′ .∆′′ then Γ ` Q.∆

`
=⇒ Γ′ ` Q′ .∆′ and Γ′ ` P′′ .∆′′ =⇒ Γ′ `

P′ .∆′ with Γ′ ` P′ .∆′R Q′ .∆′;

3. the symmetric case.

Then we call R a determinate up-to expansion relation, or often simply up-to expansion

relation.

Lemma 3.3.6. Let R be an up-to expansion relation. Then R ⊂≈.

Proof. The proof is easy by showing =⇒R⇐= is a bisimulation. Denote this relation as S .

We can easily check that S is a bisimulation, using determinacy (commutativity with other

actions).

82

Chapter 4

Eventful Session Types Behavioural

Theory

The Asynchronous Session π-calculus, is extended in this Chapter to describe the event-

driven programming paradigm. To transit from asynchronous communication to an event-

driven model we first need to recognise and define the notion of the event in a session type

context. An event can be defined as an abstraction with three properties:

1. Asynchrony: An event is a computational state change (i.e an action) that happens con-

currently and asynchronously with respect to the computation.

2. Detectability: An event action can be detected by the underlying computation.

3. Type: An event has a type that can be recognised and may drive the computation pro-

cess.

The next step is to describe the three properties of an event in terms of the Asynchronous

Session π-Calculus, so we can undestand the extension choices made for the Eventful Session

Type π-Calculus.

83

84 Chapter 4. Eventful Session Types Behavioural Theory

ASP offers fine grained communication semantics, with the non-blocking property of asyn-

chrony and the order-preserving property of session types. The first event property defines

an event as the asynchronous arrival of a message in a session configuration. The second

event property requires for a primitive operator, able to interact with session configurations

and detect whether a message has arrived. From the last property of an event, we can see a

correlation between events and sessions types. One way to understand a session type system

is that a session type drives a process computation. Following this intuition, we expect an

event to be correlated with a session type and more specifically an event should be correlated

with the runtime session type of the session channel that has received a message. To com-

plete the eventful framework we should define a type match operator for session types, able

to decide about process continuation based on the inspection of the runtime session type.

In this Chapter we extend the Asynchronous Session π-Calculus to the Eventful Session π-

Calculus or ESP for short. We define the event-driven extensions in the syntax and operational

semantics, which now include typing notions to cope with event types. As a consequence,

the typing system passes through a major extension to support event typing. Despite the

extension, we use a subtyping relation to present the ASP type system as a superset of the

ESP type system.

The behavioural theory undergoes minor changes in the definitions with respect to the defini-

tions in ASP. The definition for the untyped labelled transition system and the definition of

the labelled transition system for session environments for ESP are technically the same as

the definitions for the ASP. Together both systems define the notion of a typed process transi-

tion that gives rise to a bisimilarity relation. The bisimilarity coincides with a corresponding

reduction congruence relation. We slightly adjust the definitions for the confluence theory in

the ASP to define a confluence theory for the ESP with similar results.

4.1. A Calculus for Eventful Sessions 85

4.1 A Calculus for Eventful Sessions

4.1.1 Syntax of the Eventful Session π-Calculus

The Asynchronous Session π-calculus is extended with a minimal set of event-driven session

programming constructs, that cooperate with the asynchronous nature of ASP to form an

event-driven model of computation.

To make the transition from ASP to an eventful framework, we introduce the message arrival

predicate, which we consider essential for the definition of an event-driven framework. The

message arrival predicate is used for event detection: it interacts with a (session and shared)

endpoint configuration and returns the boolean value true if the configuration is non-empty

and false otherwise. The second construct we introduce is the session typecase [ACPP89].

The event-driven paradigm is characterised by a reactive flow of control that introduces a

dynamic execution of a program. The typecase construct was first used in the λ -calculus

(cf. [ACPP89]) to adjust the dynamic nature of the event-driven framework in a statically

checked typing framework. We follow the same motivation to define the typecase construct

for session names in the context of the π-calculus. The session typecase is typed with the

session set type syntax, while the session typing system is adjusted to handle session set

types and type matching. We call this extension the Eventful Session π-calculus or ESP for

short.

Figure 4.1 presents the extensions of ESP syntax. We explain the extension from the ASP.

The ASP syntax description can be found in § 3.1.1.

Expressions e include the message arrival predicates: arrive u checks if any session initi-

ation request message is present (has arrived) at shared name endpoint u, arrive k checks

if any session message is present (has arrived) in the i-queue of a session endpoint k, and

arrive k h checks if the first available message of the i-queue, if any, is specifically h.

86 Chapter 4. Eventful Session Types Behavioural Theory

(Processes) P,Q ::= u(x : S).P Accept

| u(x : S).P Request

| k!〈e〉;P Sending

| k?(x);P Receiving

| k⊕ l;P Selection

| k&{li : Pi}i∈I Branching

| if e then P else Q Conditional

| (ν a)P Hiding

| P | Q Parallel

| 0 Inaction

| µX .P Recursion

| X Variable

| typecase k of {(xi : Si) : Pi}i∈I Typecase

| a[~s] Shared Configuration

| a〈s〉 Asynchronous Request

| (ν s)P Session Hiding

| s[S,i :~h,o :~h′] Session Configuration

(Identifiers) u ::= a,b | x,y

k ::= s,s | x,y

n ::= a,b | s,s

(Values) v ::= tt,ff | a,b | s,s

(Expressions) e ::= v | x,y,z | e = e | arrive u | arrive k | arrive k h

(Messages) h ::= v | l

Figure 4.1: The syntax of ESP processes.

4.1. A Calculus for Eventful Sessions 87

To introduce a type matching primitive we first need to carry inside the process the session

type of a session channel, which we call session runtime type. Session runtime type is carried

along session initiation and session endpoints.

The session initiation actions on shared channels are the request u(x : S).P and the accept

u(x : S).P actions. The annotation S specifies the session runtime type that directs how the

bound channel s should be used.

Session endpoints s[S,i :~h,o : ~h′] are annotated with session type S, called session runtime

type of k, that defines an endpoint’s session typed behaviour.

The typecase k of {(xi : Si) : Pi}i∈I attempts to match the session runtime type of channel

k against the specified session types Si, proceeding to the Pi for the first Si that matches.

The typecase acts as a binder for each of the (xi)i∈I variables in the corresponding {Pi}i∈I

process.

4.1.2 Structural Congruence

Structural congruence in Figure 4.2, defines a minimal congruence for the ESP syntax that

uses the same defining principles as Figure 3.2. Rule s[µX .S] ≡ s[S{µX .S/X}] is added as

the eventful extension to describe session runtime recursive unfolding.

4.1.3 Operational Semantics of the Eventful Session π Calculus

Figure 4.3 gives the operational semantics for the ESP. The reference description for the op-

erational semantics is Figure 3.3. The distinction between the ESP and the ASP operational

semantics lies on the handling of the runtime syntax carried by the session endpoints. The

session endpoint runtime syntax is reduced along the processes’ reduction actions to main-

tain a consistent runtime session type of a (non-endpoint) process. Whenever an interaction

88 Chapter 4. Eventful Session Types Behavioural Theory

P | Q ≡ Q | P

µX .P ≡ P{µX .P/X}

P ≡ Q if P≡α Q

(P1 | P2) | P3 ≡ P1 | (P2 | P3)

0 ≡ (ν n)0

(ν n)P | Q ≡ (ν n)(P | Q) if n 6∈ fn(Q)

P | 0 ≡ P

0 ≡ (ν a)a[ε]

s[µX .S] ≡ s[S{µX .S/X}]

0 ≡ (ν s)(s[i : ε,o : ε] | s[i : ε,o : ε])

Figure 4.2: Structural congruence.

between a session channel and an endpoint configuration is performed, the runtime syntax of

the session configuration is reduced accordingly. Note that for a reduction to take place, the

action performed and the runtime session type should agree. For example if a send action is

taking place, the corresponding runtime session type should be send prefixed. The runtime

session type of a process is used for type matching in the semantics of the typecase construct.

Specifically rules [Request1] and [Accept] create session endpoints with the proper runtime

syntax S carried by the definition of a(S : s).P and a(S : s).P prefixed processes. Rules [Send]

and [Receive] reduce the send and receive session type (session type syntax for ASP are de-

fined in §3.2.1 and session type syntax for ESP is defined in § 4.2.1) respectively. Similarly

for rules [Select] and [Branch]. The [Comm] rule does not affect the state of the runtime syntax

since there is no reduction of a non-endpoint process. The extension of the reduction relation

includes the semantics for the arrive and typecase construct. Rules [Arriv-req], [Arrive-sess]

4.1. A Calculus for Eventful Sessions 89

(s /∈ fn(P))
a(x : S).P−→ (ν s)(P{s/x} | s[S,i : ε,o : ε] | a〈s〉)

[Request1]

a[~s] | a〈s〉−→a[~s · s] [Request2]

a(x : S).P | a[s ·~s]−→P{s/x} | s[S,i : ε,o : ε] | a[~s] [Accept]

s!〈v〉;P | s[!〈U〉;S,o :~h]−→P | s[S,o : v ·~h] [Send]

s?(x);P | s[?(U);S,i : v ·~h]−→P{v/x} | s[S,i :~h] [Receive]

(i ∈ J)

s⊕ li;P | s[⊕{l j : S j} j∈J,o :~h]−→ P | s[Si,o :~h · li]
[Select]

(i′ ∈ J ⊆ I)

s&{li : Pi}i∈I | s[&{l j : S j} j∈J,i : li′ ·~h]−→ Pi′ | s[Si′,i :~h]
[Branch]

s[o : v ·~h] | s[i :~h′]−→s[o :~h] | s[i :~h′ · v] [Comm]

((|~s| ≥ 1) ↓ b)
E[arrive a] | a[~s]−→ E[b] | a[~s]

[Arrive-req]

((|~h| ≥ 1) ↓ b)

E[arrive s] | s[i :~h]−→ E[b] | s[i :~h]
[Arrive-sess]

((~h = h ·~h′) ↓ b)

E[arrive s h] | s[i :~h]−→ E[b] | s[i :~h]
[Arrive-msg]

(∃k ∈ I,∀ j < k ·S j 6≤ S∧Sk ≤ S)
typecase s of {(xi : Si) : Pi}i∈I | s[S]−→ Pk{s/xk} | s[Sk]

[Typecase]

if tt then P else Q−→P [If-true]

if ff then P else Q−→Q [If-false]

e−→e′ =⇒ E[e] −→ E[e′]

P−→P′ =⇒ (ν a)P −→ (ν a)P′

P−→P′ =⇒ (ν s)P −→ (ν s)P′

P−→P′ =⇒ P | Q −→ P′ | Q

P≡ P′−→Q′ ≡ Q =⇒ P −→ Q

[Eval]

[Chan]

[Sess]

[Par]

[Struct]

Figure 4.3: Reduction rules for Eventful Session π-calculus.

90 Chapter 4. Eventful Session Types Behavioural Theory

denote that the arrive expression inside a context is reduced to the Boolean value true (tt)

if the corresponding input endpoint is not empty and the Boolean value false (ff) if the cor-

responding input endpoint is empty. Rule [Arrive-msg] requires that expression arrive k h

returns a true (tt) value if a specific value h is prefixed at input endpoint k and false otherwise

(ff). The operation of the typecase construct requires that a session channel’s runtime type S

is type-checked against the session types defined in the typecase’s defining body {Si}i∈I . The

first match up-to subtyping Sk chooses the substitution of the corresponding bound variable

xk with session channel s on Pk as continuation.

We give examples for the use of the arrive and typecase constructs.

Example 4.1.1 (Usage of arrive and typecase).

(1) Usage of arrive:

Define process:

P = if arrive s then (s?(x);if arrive s then P1 else P2) else P3

and session endpoint configurations:

B1 = s[i : v1 · v2]

B2 = s[i : v1]

B3 = s[i : ε]

Process P | B3 yields the reduction:

if arrive s then (s?(x);if arrive s then P1 else P2) else P3 | B3 −→ P3 | B3

since the first arrive expression would return false on the empty B3.

4.1. A Calculus for Eventful Sessions 91

Process P | B1 reduces as:

P | B1 −→ s?(x);if arrive s then P1 else P2 | B1

−→ (if arrive s then P1 else P2){v1/x} | B2

−→ P1{v1/x} | B2

After the first reduction the process s?(x);if arrive s then P1 else P2 consumes the first

message in the i-queue to get another arrive-prefixed process. A third reduction proceeds

with process P1 | B2.

In the third example case we have the reductions: P | B2 returns true on the first arrive-

inspection:

P | B2 −→ s?(x);if arrive s then P1 else P2 | B2

−→ (if arrive s then P1 else P2){v1/x} | B3

−→ P2{v1/x} | B3

where the first arrive-inspection returns true and proceeds with the receive prefixed pro-

cess s?(x);if arrive s then P1 else P2. In the second transition the only message in B2

is consumed and the session endpoint configuration now remains empty. The third reduction

arrive-inspects the empty session configuration to return false and proceed with the process

P2 composed in parallel with the empty configuration B3.

(2) Usage of typecase:

Let process:

P = typecase s of {(x1 : S1) : P1,(x2 : S2) : P2}

and session endpoint configurations:

B1 = s[S1]

B2 = s[S2]

92 Chapter 4. Eventful Session Types Behavioural Theory

In process P | B1 the typecase operation matches the type S1 in B1, with the (x1 : S1) : P1 case

in the typecase body and reduces to P1{s/x1} | B1 with the bound variable x1 substituted by

session channel s:

typecase s of {(x1 : S1) : P1,(x2 : S2) : P2} | s[S1]−→ P1{s/x1} | B1

Similarly in process P | B2 we reduce as:

typecase s of {(x1 : S1) : P1,(x2 : S2) : P2} | s[S2]−→ P2{s/x2} | B2

4.2 Types for Eventful Session Processes

The eventful instance of the Asynchronous Session π-calculus introduces an extension to the

session typing discipline. This extension depends on the impact that both of the event-driven

primitives, arrive and typecase operators, have on the ASP .

The arrive inspection predicate can be viewed as an expression that evaluates to a Boolean

type constant. The typing system extension for the arrive keyword, is limited in the typ-

ing of the arrive expression with respect to the typing environment Γ and the session type

environment ∆.

To type the typecase construct we introduce a new construct on session types, called session

set type. Furthermore, there is the need to distinguish the type of the actually created session

channels and the type of typecase prefixed processes. The distinction is lifted up-to a sub-

typing relation for session set types to create a unified session type theory between the ASP

and the ESP.

The requirements of the last paragraph predispose a complicated extension for a session typ-

ing system in the eventful context. Nevertheless the typing system developed in this section

can be seen as a straightforward extension of the typing system in § 3.2.

4.2. Types for Eventful Session Processes 93

4.2.1 Syntax

The type syntax is an extension of the typing system in § 3.2, with session set types. This

simple extension allows us to treat type-safe event handling for an arbitrary collection of

differently typed communication channels.

(Shared) U ::= bool | i〈S〉 | o〈S〉

(Value) T e ::= U | S

(Session) Se ::= !〈T 〉;Se | ?(T);Se | ⊕{li : Se
i }i∈I | &{li : Se

i }i∈I | {Se
i }i∈I

| µX .Se | X | end

The eventful session types Se, is extended from the syntax in § 3.2.1 with the introduction of

session set type {Si}i∈I , which represents a set of possible behaviours designated by the Se
i .

Session set types are used to type the typecase construct. The shared types U are identical to

the shared types in § 3.2.1. Shared channel types i〈S〉,o〈S〉 are defined on the session types

definition from ASP - session types without session set type.

The notation Se is distinguished from notation S for ASP syntax of session types defined in

§ 3.2.1. Notation S is used to define the syntax and operational semantics of ESP in § 4.1 and

particularly the session runtime type. Se is used in the typing system to type the typecase

construct.

To understand this distinction consider the semantics for creating a session endpoint. If we

allow Se in the definition of a(x : S).P and the definition of session runtime typing then it will

be possible to create endpoints of the type s[{Si}i∈I,i : ε,o : ε]. This session endpoint has

the intuition of an arbitrary non-deterministic choice from a set of session types, which is not

supported by the intuition, syntax and semantics for the ESP.

94 Chapter 4. Eventful Session Types Behavioural Theory

F (R) = {(bool,bool),(end,end)}

∪ {(i〈S〉,i〈S′〉),(o〈S〉,o〈S′〉) | (S,S′),(S′,S) ∈R}

∪ {(!〈T1〉;S1, !〈T2〉;S2) | (T2,T1),(S1,S2) ∈R}

∪ {(?(T1);S1,?(T2);S2) | (T1,T2),(S1,S2) ∈R}

∪ {(⊕{li : Si}i∈I,⊕{l j : S′j} j∈J) | I ⊆ J,∀i ∈ I.(Si,S′i) ∈R}

∪ {(&{li : Si}i∈I,&{l j : S′j} j∈J) | J ⊆ I,∀ j ∈ J.(S j,S′j) ∈R}

∪ {(µX .S,S′) | (S{µX .S/X},S′) ∈R}

∪ {(S,µX .S′) | (S,S′{µX .S′/X}) ∈R}

∪ {({Si}i∈I,{S′j} j∈J) | ∀ j ∈ J,∃i ∈ I.(Si,S′j) ∈R}

∪ {({S},S′) | (S,S′) ∈R}

Figure 4.4: The generating function for the eventful session subtyping relation.

4.2.2 Session Subtyping

Subtyping is defined with respect to the subtyping relation in § 3.2.2. The generating function

in eventful types is extended to include the session set type subtyping.

As in § 3.2.2, the subtyping relation is defined on the set of all closed and contractive types

T : for T ′,T ∈T , T ′ is a subtype of T , written T ′ ≤ T , if (T ′,T) is in the largest fixed point

of the monotone function:

F : P(T ×T)→P(T ×T)

given in Figure 4.4. We describe only the extension for session set types, with reference the

the description in § 3.2.2. The ordering of set types in line 9, says that if every element in

the set type {S′j} j∈J has a subtype in {Si}i∈I , then the latter is at least as composable as the

former. The final clause states that singleton set types are transparent (i.e. the enclosed type

can be “unwrapped”) up-to subtyping.

4.2. Types for Eventful Session Processes 95

!〈T 〉;S = ?(T);S &{li : Si}i∈I = ⊕{li : Si}i∈I

µX .S = µX .S {Si}i∈I = {Si}i∈I

?(T);S = !〈T 〉;S ⊕{li : Si}i∈I = &{li : Si}i∈I X = X end = end

Figure 4.5: Session type duality.

The duality relation in Figure 4.5 is an extension of the duality relation in Figure 3.6, to

include the duality relation of session set types. Session set types are dual following the

structure of session set types as expected.

The semantics of ≤ are clarified through duality.

Lemma 4.2.1. S1 ≤ S2 iff S2 ≥ S1.

Proof. Let us call any relation witnessing ≤ (i.e. which is a fixed point of the subtyping

function), a subtyping relation. Because S = S, it suffices to show the relation {(S2,S1) | S1 ≤

S2} is a subtyping relation, which is immediate by construction.

Definition 4.2.1 (Composable Types). We define the set of composable types of a session

type S as:

comp(S) = {S′ | S′ ≤ S},

That is, comp(S) is the set of types which can be composed with S (note S and S are compos-

able, hence if S′ is smaller than S, S′ should be more composable with S).

Subtyping can be completely characterised by composability.

Proposition 4.2.1 (Subtyping Properties). (1) ≤ is a preorder; (2) S1 ≤ S2 if and only if

comp(S2)⊆ comp(S1).

Proof. (1) is standard, while (2) uses Lemma 4.2.1. For both, see Appendix A.1 for details.

96 Chapter 4. Eventful Session Types Behavioural Theory

4.2.3 Type System for Programs

This section follows very close the definition in § 3.2.3. For this reason the explanation

focuses on the extensions made.

We define typing judgements for programs and expressions.

Γ ` P.∆ and Γ,∆ ` e : T

with

Γ ::= /0 | Γ ·u : U | Γ ·X : ∆ and ∆ ::= /0 | ∆ · k : Se | ∆ ·a

The linear environment ∆ is extended from the linear environment of ASP to contain session

channels s typed with the event session syntax Se, to include session set types.

Figure 4.6 defines the typing rules for ESP programs. The description of Figure 3.7 is con-

sidered as the core reference.

Rules (AReq), (AMsg), (AVal) and (ALab) extend the typing core typing system and type the

arrive predicates with the boolean type; (AReq) checks that u is indeed a shared channel, and

(AVal) checks that the specified v corresponds to the expected message type on that session.

The reader should bear in mind that the subsumption rule uses a refined subtyping relation

to handle the interleaving of core session syntax S and event session syntax Se. Rules (Req)

and (Acc) check if the shared environment maps the shared channel to the output (resp. input)

shared channel type, consistent with the S (session types without session set type) annotation

and the usage of the bound session variable. The initiation annotation is restricted to ensure

that the active type of the session at run-time has an S shape (see [Request1] and [Accept] in

Figure 4.3), so that the execution of typecase can resolve the type of the session to a specific

case. Note that the presence of S in ∆ · x : S can be achieved through subsumption (Subs).

4.2. Types for Eventful Session Processes 97

Γ ·u : U ` u : U (SChan) Γ ·u : i〈S〉 ` u : o〈S〉 (SChan’)

Γ ` tt,ff : bool (Bool)

Γ ` n : T ∨∆ = ∆′ ·n : T
Γ,∆ ` n : T

(Name)
Γ,∆ ` ei : Ti i ∈ {1,2}

Γ,∆ ` e1 = e2 : bool
(Match)

Γ,∆ ` u : i〈S〉
Γ,∆ ` arrive u : bool

(AReq)
∃v,Γ,∆ ` arrive k v : bool

Γ,∆ ` arrive k : bool
(AMsg)

Γ,∆ ` k :?(U);S Γ,∆ ` v : U
Γ,∆ ` arrive k v : bool

(AVal)
Γ,∆ ` k : &{li : Si}i∈I j ∈ I

Γ,∆ ` arrive k l j : bool
(ALab)

Γ ` a : o〈S〉 Γ ` P.∆ · x : S
Γ ` a(x : S).P.∆

(Req)
Γ ` a : i〈S〉 Γ ` P.∆ · x : S

Γ ` a(x : S).P.∆
(Acc)

Γ ` v : U U 6= i〈S′〉
Γ ` P.∆ · k : Se

Γ ` k!〈v〉;P.∆ · k :!〈U〉;Se (Send)

Γ · x : U ` P.∆ · k : Se

U 6= i〈S′〉
Γ ` k?(x);P.∆ · k :?(U);Se (Recv)

Γ ` P.∆ · k : Se

Γ ` k!〈k′〉;P.∆ · k :!〈So′e〉;Se · k′ : S′e
(Deleg)

Γ ` P.∆ · k : Se · x : S′e

Γ ` k?(x);P.∆ · k :?(S′e);Se (SRecv)

Γ ` P.∆ · k : Se

Γ ` k⊕ l;P.∆ · k :⊕{l : Se}
(Sel)

∀ i ∈ I Γ ` Pi .∆ · k : Se
i

Γ ` k&{li : Pi}i∈I .∆ · k : &{li : Se
i }i∈I

(Bra)

Γ ` Pi .∆i i ∈ {1,2}
dom(∆1)∩dom(∆2) = /0

Γ ` P1 | P2 .∆1 ·∆2
(Conc)

Γ,∆ ` e : bool Γ ` P.∆ Γ ` Q.∆

Γ ` if e then P else Q.∆
(If)

Γ ·a : U ` P.∆ ·a
Γ ` (ν a)P.∆

(CRes)
∆ end only

Γ ` a[ε].∆ ·a
(EBuff)

Γ ·X : ∆ ` P.∆

Γ ` Γ.µX .P∆
(Rec) Γ ·X : ∆ ` X .∆ (Var)

∆ end only
Γ ` 0.∆

(Inact)
Γ ` P.∆ ∆≤ ∆′

Γ ` P.∆
′ (Subs)

∀ i ∈ I Γ ` Pi .∆ · xi : Se
i

Γ ` typecase k of {(xi : Se
i) : Pi}i∈I .∆ · k : {Se

i }i∈I
(Typecase)

Figure 4.6: Typing rules for programs.

98 Chapter 4. Eventful Session Types Behavioural Theory

Rule (Typecase) types the typecase, which intuitively says that the usage of the target session

channel in each of the sub-processes is collected into a set of possible behaviours represented

by the session set type. For the latter reason the rules that type session channel prefixes,

(Send) and (Recv), (Deleg), (Srecv), (Sel) and (Bra) use the Se type in their definition. Rest of

the rules follow the definition in Figure 3.7.

4.2.4 Type System for Run-time Syntax

The type System for Run-time Syntax is a straightforward extension of the Run-time Syntax

in § 3.2.4. The description in § 3.2.4 is used as a reference. The message T definition extends

its definition to include Se.

(General) T ::= Se | M (IMsg) Mi ::= /0 | ?(T);Mi | &l;Mi

(Message) M ::= Mi | Mo (OMsg) Mo ::= /0 | !〈T 〉;Mo | ⊕ l;Mo

The linear environment ∆ adds the notation [S] next to s : T to differ from definition in § 3.2.4.

[S] notation is used for recording the session runtime syntax from session endpoints in the

linear typing, as explained next. We extend the grammar for the linear environment ∆:

∆ ::= /0 | ∆ · k : Se | ∆ ·a | ∆ · s : T [S]

The definition and description of the ∗ parallel concatenation operator can be found in

§ 3.2.4. We only adjust the ∗ operator to be consistent with the s : T[S] notation in the

defining rule:

∆1 ∗ ∆2 = ∆1\dom(∆2)∪∆2\dom(∆1)∪{s : S ∗ M [S] |

s : S ∈ ∆i, s : M [S] ∈ ∆ j where i, j ∈ {1,2}, i 6= j}

Runtime typing rules in Figure 4.7 are an extended version of rules in Figure 3.8. Each rule

records the runtime session typing of the session endpoint being typed in its T[S] notation.

4.2. Types for Eventful Session Processes 99

Γ ` s[S,o : ε]. s : /0 [S] (OutQ) Γ ` s[S,i : ε]. s : /0 [S] (InQ)

Γ ` s[S,o :~h]. s : Mo [S] Γ ` v : T

Γ ` s[S,o : v ·~h]. s :!〈T 〉;Mo [S]
(SndQ)

Γ ` s[S,i :~h]. s : Mi [S] Γ ` v : T

Γ ` s[S,i : v ·~h]. s :?(T);Mi [S]
(RcvQ)

Γ ` s[S,o :~h]. s : Mo [S]

Γ ` s[S,o : l ·~h]. s :⊕l;Mo [S]
(SelQ)

Γ ` s[S,i :~h]. s : Mi [S]

Γ ` s[S,i : l ·~h]. s : &l;Mi [S]
(BraQ)

Γ ` s[S,o :~h]. s′ : S′ · s : Mo [S]

Γ ` s[S,o :~h · s′]. s :!〈S′〉;Mo [S]
(DelQ)

Γ ` s[S,i :~h]. s : Mi [S]

Γ ` s[S,i : s′ ·~h]. s :?(S′);Mi [S] · s′ : S′
(SRcvQ)

Γ ` P.∆1 Γ ` Q.∆2

Γ ` P | Q.∆1 ∗ ∆2
(QConc)

Γ ` P.∆ · s : Se [S1] · s : Se [S2]

Γ ` (ν s)P.∆
(SRes)

Γ ` a[~h].∆

Γ ` a[~h · s].∆ · s : /0 [S]
(Buff) Γ ` a〈s〉. s : /0 [S] (ReqM)

Figure 4.7: Extended typing rules for the ESP run-time processes.

Furthermore rule (SRes) is consisted with the Se notation.

A notable fact is the distinction between process typing and runtime session typing in rule

(SRes) and through the runtime session typing system. A process typing s : Se defines the

type of a session channel taking information from processes and endpoints. Session runtime

syntax [S] defines the session type information from a non-endpoint process. This runtime

information is used by the typing system to perform type match and choose a safe and sound

process to handle a session event.

100 Chapter 4. Eventful Session Types Behavioural Theory

4.2.5 Subject Reduction

In this section we show that the ESP extension maintains the typing properties of the ASP.

Following Definition 3.2.3 we define the well-configured linear environment using the infor-

mation for the session endpoint runtime type in the linear environment:

Definition 4.2.2 (Well-configured Linear Environments). We say that ∆ is well configured if

whenever ∀s ∈ dom(∆), then either ∆(s) = Se with ∆(s) = Se, or ∆(s) = Se [S1] with ∆(s) =

Se [S2].

The linear environment reduction for the ESP corresponds to the linear environment for the

ASP in § 3.2.5. Note that linear environment reduction is now expressed up-to session set

subtyping.

Lemmas for:

• Weakening – Lemma 3.2.2

• Strengthening – Lemma 3.2.3

• Substitution – Lemma 3.2.4

continue to hold for the ESP type system.

We proceed with the theorems for the soundness and safety of the typing system.

Theorem 4.2.1 (Subject Congruence and Reduction).

1. If Γ ` P.∆ and P≡ Q, then Γ ` Q.∆.

2. If Γ ` P .∆ with ∆ well-configured and P −→ Q, then we have Γ ` Q .∆′ such that

∆−→∗ ∆′ and ∆′ is well-configured.

4.2. Types for Eventful Session Processes 101

Proof. For proof, see Appendix A.2.

We now prove communication safety. We extend the definition of an s-redex in Defini-

tion 3.2.5 to include arrive and typecase s-redexes:

Definition 4.2.3 (s-redex). We say an s-redex is a parallel composition of two s-processes

that has one of the following shapes:

(a) s!〈v〉;P | s[!〈T 〉;S] (b) s⊕ li;P | s[⊕{l j : S j} j∈J] with i ∈ J

(c) s?(x);P | s[?(T);S,i : v ·~h] (d) s&{li : Pi}i∈I | s[&{l j : S j} j∈J,i : li′ ·~h] with i′ ∈ J ⊆ I

(e) s[o : v ·~h] | s[i :~h′]

(f) E[arrive s v] | s[?(U);S,i :~h] with v of type U , and~h = ε or~h = v′ ·~h′, v′ of type U

(g) E[arrive s li] | s[&{l j : S j} j∈J,i :~h] with i ∈ J, and~h = ε or~h = li′ ·~h′, li′ ∈ J

(h) typecase s of {(xi : Si) : Pi} | s[S] with ∃i ∈ I. Si ≤ S

All redexes require the immediate action to correspond with the active type prefix in the local

configuration. Cases (f–h) are for the new primitives for asynchronous event handling.

A process P is an error if up-to structural congruence (following [HYC08, § 5]), P contains

two s-processes which do not form an s-redex, or an expression in P contains a type error in

the standard sense. As a corollary of subject reduction (Theorem 4.2.1), we obtain:

Theorem 4.2.2 (Communication and Event-Handling Safety). If P is a well-typed program,

then Γ ` P. /0, and P never reduces to an error.

Proof. See Appendix A.2 for details.

102 Chapter 4. Eventful Session Types Behavioural Theory

4.3 Eventful Session Bisimulation and its Properties

Following Section 3.3 we define the behavioural theory for Eventful Session π-calculus. The

definitions for the behavioral theory coincide with the definitions in Section 3.3. For this

purpose we list the definitions and results with the appropriate comments whenever needed.

4.3.1 Labelled Transition Semantics

The labelled transition system is defined on the labels defined in Definition 3.3.1, together

with the definition for free and bound label names (§ 3.3.1) and Definition 3.1 for the label

duality. For contexts we use the definitions for contexts in the ASP (Definition 3.3.2).

Untyped Labelled Transition System. Figure 4.8 gives the untyped label transition system

(LTS). Note that in contrast with the LTS in Figure 3.9, session endpoints are defined with

the runtime session type. Furthermore, observable transition does not result in the transition

of the runtime session type in queues. Finally, the transition rules for the arrive and the

typecase constructs are subsumed by rule 〈Local〉.

Localisation and Typed Labelled Transition System. We define the localisation property

for ESP processes, based on the localisation Definition 4.3.1 for the ASP. In this definition

we take a slightly different approach, for checking endpoint configuration presence, based on

the fact that a linear session environment records the session runtime syntax.

Definition 4.3.1 (Localisation). Let P be closed and Γ ` P .∆. Then we say Γ ` P .∆ is

localised if:

(1) For each s ∈ dom(∆), s : S[S′] ∈ ∆ and (2) If Γ(a) = i〈S〉, then a ∈ ∆.

We exploit the fact that the presence of a session type runtime in the linear environment, de-

notes the presence of a session endpoint configuration. We impose that a session endpoint

4.3. Eventful Session Bisimulation and its Properties 103

〈Acc〉 a[~s]
a〈s〉−→ a[~s · s] 〈Req〉 a〈s〉 a〈s〉−→ 0

〈In〉 s[S,i :~h]
s?〈v〉−→ s[S,i :~h · v] 〈Out〉 s[S,o : v ·~h] s!〈v〉−→ s[S,o :~h]

〈Bra〉 s[S,i :~h] s&l−→ s[S,i :~h · l] 〈Sel〉 s[S,o : l ·~h] s⊕l−→ s[S,o : h]

〈Local〉 P −→ Q

P τ−→ Q
〈Tau〉 P `−→ P′ Q `′−→ Q′ `� `′

P | Q τ−→ (ν bn(`,`′))(P′ | Q′)

〈ParL〉
P `−→ P′ bn(`)∩fn(Q) = /0

P | Q `−→ P′ | Q
〈ParR〉

P `−→ P′ bn(`)∩fn(Q) = /0

Q | P `−→ Q | P′

〈Res〉 P `−→ P′ n 6∈ fn(`)

(ν n)P `−→ (ν n)P′
〈OpenS〉 P

a〈s〉−→ P′

(ν s)P
a(s)−→ P′

〈OpenN〉 P
s!〈a〉−→ P′

(ν a)P
s!(a)−→ P′

〈Alpha〉 P≡α P′ P′ `−→ Q

P `−→ Q

Figure 4.8: Labelled transition system.

104 Chapter 4. Eventful Session Types Behavioural Theory

configuration should be present for every free session name. Bound session names are im-

plicitly checked by the fact that a localised process is typable, i.e. typing rule [SRes] was used,

to check localisation of bound session names.

The labelled transition system for environment is essentially the labelled transition system

define in Figure 3.10 and described in § 3.3. Note that the LTS for ESP environment requires

to carry the session runtime type in its definition, but Figure 3.10 is still valid for its definition,

since the session runtime is not changed in the case of observable environment actions.

We use the typed transition definition for the ASP in Definition 3.3.5, to define the typed

transition for the ESP.

As the ASP definition we extend the typed transition to: =⇒ for the reflexive and transitive

closure of τ−→, `
=⇒ for the composition =⇒ `−→=⇒ and

ˆ̀
=⇒ for =⇒ if ` = τ and `

=⇒

otherwise. Furthermore we write
ˆ̀
−→ for −→ if `= τ and `−→ otherwise.

4.3.2 Bisimulation

The symmetric and transitive closure of −→ over linear environment is denoted as in Defi-

nition 3.3.2 using the symbol
. We assume that the typed relation Definition 3.3.6 holds

for the ESP processes. We introduce typed barbs for the ESP using Definition 3.3.7 from the

ASP calculus.

We explicitly define the Reduction Congruence relation, which is essentially the same with

the reduction congruence Definition 3.3.8 for the ASP.

Definition 4.3.2 (Reduction Congruence). A typed relation R is reduction congruence if it is

a congruence and satisfies the following condition: for each Γ ` P1 .∆1 R P2 .∆2 whenever

Γ ` P1 .∆1,Γ ` P2 .∆2 are localised then:

1. Γ ` P1 .∆1 ⇓ n iff Γ ` P2 .∆2 ⇓ n.

4.3. Eventful Session Bisimulation and its Properties 105

2. Whenever

• Γ ` P1 .∆1RP2 .∆2 holds, P1→→ P′1 implies P2→→ P′2 such that Γ ` P′1 .∆′1RP′2 .

∆′2 holds with ∆′1
 ∆′2.

• The symmetric case.

The maximum reduction congruence [HY95], is denoted by ∼=.

We explicitly define ESP Asynchronous Session Bisimulation, identical with bisimulation

(Definition 3.3.9) for the ASP.

Definition 4.3.3 (Asynchronous Session Bisimulation). A typed relation R over localised

processes is a weak asynchronous session bisimulation or often a bisimulation if, whenever

Γ ` P1 .∆1RP2 .∆2, it holds:

1. Γ ` P1 .∆1
`−→ Γ′ ` P′1 .∆′1 implies Γ ` P2 .∆2

ˆ̀
=⇒ Γ′ ` P′2 .∆′2 such that Γ′ ` P′1 .

∆′1RP′2 .∆′2 with ∆′1
 ∆′2 holds and

2. the symmetric case.

The maximum bisimulation exists which we call bisimilarity, denoted by ≈. We sometimes

leave environments implicit, writing e.g. P≈ Q.

We extend ≈ to possibly non-localised closed terms by relating them when their minimal

localisations are related by ≈ (given Γ ` P.∆, its minimal localisation adds empty queues to

P for the input shared channels in Γ and session channels in ∆ that are missing their queues).

Further ≈ is extended to open terms in the standard way [HY95].

106 Chapter 4. Eventful Session Types Behavioural Theory

4.3.3 Properties of Asynchronous Session Bisimilarity

This subsection studies central properties of eventful session semantics. The results for the

Asynchronous Session π-calculus in Section 3.3.3 continue to hold for the Eventful Session

π-calculus.

Characterisation of reduction congruence. Bisimilarity coincides with the naturally de-

fined reduction-closed congruence [HY95].

Theorem 4.3.1 (Soundness and Completeness). ≈ = ∼=.

Proof. To proof is done following the structure of the proof for Theorem 3.3.1 and extending

to the cases for the construct of arrive and typecase. Note that the presence of session

runtime typing does not affect the proof method used. Appendix A.3.1 gives the details.

Asynchrony, Session Determinacy and Confluence. We study the properties of our asyn-

chronous session bisimulations based on the notions of [PW97]. The results from § 3.3.3 for

the ASP are preserved in the ESP extension. Definitions for output/input actions, determinacy

and confluence are in § 3.3.3.

Lemma 4.3.1 (Input and Output Asynchrony). Suppose Γ ` P.∆
`

=⇒ P′ .∆′.

• (input advance) If ` is an input action, then Γ ` P.∆
`−→=⇒ P′ .∆′.

• (output delay) If ` is an output action, then Γ ` P.∆ =⇒ `−→ P′ .∆′.

Proof. For proof, see Appendix A.4.1.

The notion of session determinacy for ASP (§ 3.3.13) is now defined as:

4.3. Eventful Session Bisimulation and its Properties 107

Definition 4.3.4 (Session Determinacy). Let us write P `−→s Q if P `−→ Q where if ` = τ

then it is generated without using [Request1], [Request2], [Accept], [Arrive-req], [Arrive-sses]

nor [Arrive-msg] in Figure 4.3 (i.e. a communication is performed without arrival predicates or

session initiation actions). We extend the definition to
~̀

=⇒s and
ˆ̀

=⇒s etc. We say P is session

determinate if P is typable and localised and if Γ ` P.∆
~̀

=⇒Q.∆′ then Γ ` P.∆
~̀

=⇒s Q.∆′.

We call such Q a session derivative of P.

In the eventful extension of ASP, the arrive predicate reduction breaks the confluence and

determinacy properties, while the typecase reduction preserves them. For a discussion and

an example demonstrating the lack of confluence see Example 3 in § 5.1 of this thesis. The

above definition for session determinacy transfers this fact to the lemmas that follow. The

proof cases of the following lemmas are distinguished from the proves in § 3.3.3 with the add

of the typecase case. For a discussion and intuitions around the next results, see § 3.3.3.

Lemma 4.3.2. Let P be session determinate and Γ ` P.∆ =⇒ Q.∆′. Then P≈ Q.

Proof. For proof, see Appendix A.4.2

Lemma 4.3.3. Assume typable, localised P and actions `1, `2 such that subj(`1),subj(`2)

are session names and `1 ./ `2. If Γ ` P . ∆
`1−→ P1 . ∆1 and Γ ` P . ∆

`2−→ P2 . ∆2 then

Γ ` P1 .∆
`2b`1−→ P′ .∆′ and Γ ` P2 .∆

`1b`2−→ P′ .∆′

Proof. For proof, see Appendix A.4.3.

Lemma 4.3.4. Let P be session determinate. Then if Γ ` P.∆
`−→ P′ .∆′ and Γ ` P.∆

ˆ̀
=⇒

P′′ .∆′′ then P′ ≈ P′′

Proof. For proof, see Appendix A.4.4.

Lemma 4.3.5. Let P be session determinate and `1 ./ `2. Then if Γ ` P .∆
`1−→ P1 .∆1 and

Γ ` P.∆
`2=⇒ P2 .∆2, then Γ ` P1 .∆1

`̂2b`1
=⇒ P′ .∆′ and Γ ` P2 .∆2

`̂1b`2
=⇒ P′′ .∆′′ and P′ ≈ P′′

108 Chapter 4. Eventful Session Types Behavioural Theory

Proof. For proof, see Appendix A.4.5.

Theorem 4.3.2 (Session Determinacy). Let P be session determinate. Then P is determinate

and confluent.

Proof. From the definition of confluence (resp. determinacy) and from the definition of P we

have that each derivative Q of P is also session determinate. The proof is an immediate result

of Lemma 4.3.5 (resp. Lemma 4.3.4).

The following relation is used to prove the event-based optimisation.

Definition 4.3.5 (Determinate Up-to expansion Relation). Let R be a symmetric, typed rela-

tion such that if Γ ` P.∆ R Q.∆, then if

1. P,Q are determinate;

2. If Γ ` P.∆
`−→ Γ′ ` P′′ .∆′′ then Γ ` Q.∆

`
=⇒ Γ′ ` Q′ .∆′ and Γ′ ` P′′ .∆′′ =⇒ Γ′ `

P′ .∆′ with Γ′ ` P′ .∆′R Q′ .∆′;

3. the symmetric case.

Then we call R a determinate up-to expansion relation, or often simply up-to expansion

relation.

Lemma 4.3.6. Let R be an up-to expansion relation. Then R ⊂≈.

Proof. The proof is easy by showing =⇒R⇐= is a bisimulation. Denote this relation as S .

We can easily check that S is a bisimulation, using determinacy (commutativity with other

actions).

Chapter 5

Applications of the Eventful Behavioural

Theory

In this Chapter we demonstrate the applicability of the Eventful Session π-calculus behavioural

theory. In the first section we give core examples that give the first insights for the order-

preserving and non-blocking properties of the ESP. We also demonstrate the basic properties

of the arrive-predicate. In the second section of this Chapter, we show the differentiation

of our bisimulation equivalence with other well known bisimulation equivalences for other

well known π-calculi. We proceed with the ESP encoding of the selector, which is a basic

event handling operator. The selector is used to construct an event-loop, where we use the

bisimulation and confluence theory to study the properties of the event-loop. The last section

uses the event-loop to study a transform from a threaded program to an event-driven program.

The transformation is based on the work by Lauer and Needham [LN79], where they study

the duality of the threaded and event-based approaches. Our transformation is proven to be

typed and semantic preserving.

109

110 Chapter 5. Applications of the Eventful Behavioural Theory

5.1 Properties of the ESP Behavioural Theory

This section discusses the basic properties of the behavioural theory developed in § 4.3. We

use examples to examine the nature of non-blocking and order-preserving properties of the

asynchronous bisimulation. A process is characterised as non-blocking if the process prefix

does not block the execution of the process. In other words we can observe an action on the

process other than the action expected to obesrve on the prefix of the process. The order-

preserving property requires that messages are received in the same order they are being sent.

This is a main property that should hold for communication on session names. We show

by example the non-confluence property of the arrive operation, i.e. the arrive construct

breaks the confluence on session transitions. The last example gives an equivalence on a

recursive process that uses input asynchrony gives a very basic intuition about the structure

of event-driven programs.

In this Section, let: Ri = si[i : ~hi,o : ~h′i].

1. Input and output permutation. Two actions at different session names are permutable

up to ≈, if they are both in input or both in output mode:

s1?(x);s2?(y);P | R1 | R2 ≈ s2?(y);s1?(x);P | R1 | R2

s1!〈v〉;s2!〈w〉;P | R1 | R2 ≈ s2!〈w〉;s1!〈v〉;P | R1 | R2

Permutability shows that actions on different session names are non-blocking and asyn-

chronous. We expect a natural permutation on different session channels in the presence

of asynchrony. The fact that communication is fine-grained with the existence of both an

input and an output buffer on session endpoint configurations, allows for permutation of both

input and output actions.

5.1. Properties of the ESP Behavioural Theory 111

Note that an input and an output action on different sessions cannot generally be permuted:

s1?(x);s2!〈v〉;P | R1 | R2 6≈ s2!〈v〉;s1?(x);P | R1 | R2

2. Input and output ordering. In contrast to actions on different session names, two ac-

tions on the same session name cannot be permuted:

s1?(x);s1?(y);P | R1 6≈ s1?(y);s1?(x);P | R1

s1!〈v〉;s1!〈w〉;P | R1 6≈ s1!〈w〉;s1!〈v〉;P | R1

Non-permutability on the same session name shows the order-preserving property inside a

session. This result is expected since it is part of session types principle to enforce an action

sequence inside a session. Following this conclusion, it also holds that:

s1?(x);s1!〈v〉;P | R1 6≈ s1!〈v〉;s1?(x);P | R1

3. Arrival predicates. Let P1 6≈ P2. If the syntax of ESP does not include the arrive

predicate then:

if e then P1 else P2 | s[i : ε] | s[o : v]≈ if e then P1 else P2 | s[i : v] | s[o : ε]

In the presence of arrive s, the bisimulation does not hold anymore.

if arrive s then P1 else P2 | s[i : ε] | s[o : v]

6≈

if arrive s then P1 else P2 | s[i : v] | s[o : ε]

112 Chapter 5. Applications of the Eventful Behavioural Theory

This is because

if arrive s then P1 else P2 | s[i : ε] | s[o : v]−→ P2

but

if arrive s then P1 else P2 | s[i : v] | s[o : ε] 6−→ P2

The above result is important when designing and reasoning about systems that handle pro-

cess control by inspecting the arrival of messages.

As a direct consequence is the lack of confluence in the presence of the arrive predicate if

P1,P2 are confluent. To show confluence in a structure similar to the above, it is required to

show that P1,P2 are confluent and P1 ≈ P2. Note that

if arrive s then P else P | s[i : ε] | s[o : v]≈ P | s[i : ε] | s[o : v]

Again this is expected as in this case the if /else construct is considered in some sense

redundant by the bisimularity relation.

4. Arrive inspection ordering. A typical event-driven programming scenario requires the

sequential arrive-inspection of messages inside a loop. In this example we demonstrate the

simplest such module as a recursive sequence of arrive inspections over session configura-

tions.

P1 = if arrive s1 then s1?(x);P2 else if arrive s2 then s2?(x);P1 else P1

P2 = if arrive s2 then s2?(x);P1 else if arrive s1 then s1?(x);P2 else P2

5.2. Comparisons with Asynchronous and Synchronous π-calculi 113

Both processes recurse on the inspection of sessions s1 and s2. We can show by using an

up-to expansion relation (Lemma 4.3.6) that P1 | R1 | R2 ≈ P2 | R1 | R2. This result is used in

Section 5.3 to verify properties of the selector constructs.

5.2 Comparisons with Asynchronous and Synchronous π-

calculi

There is a behavioural differentiation between ESP and other well-known π-calculi. We com-

pare the non-blocking and order-preserving properties and the semantic effect of the arrive-

predicate, between the most studied synchronous and asynchronous bisimulations for the

π-calculus.

In this section we clarify the relationship between:

1. The asynchronous bisimulation≈a for the session-typed asynchronous π-calculus with-

out queues, defined based on the semantics proposed in [HT91a] (Honda and Tokoro

introduce a labelled transition system where we can always observe an input action).

2. The synchronous bisimulation≈s for the session-typed synchronous π-calculus without

queues (cf. [THK94, HVK98]).

3. The asynchronous bisimulation≈2 for the asynchronous session π-calculus with input-

queue endpoint configuration. The bisimilarity relation ≈2 is based on the systems

presented in [GV10, CDCY07, MY09] for the asynchronous session types that are de-

fined using two endpoint configurations for each session channel, without distinction

between input and output entries in queues. We briefly introduce below these seman-

tics, which we call non-local since the output directly puts the output message in the

input queue.

114 Chapter 5. Applications of the Eventful Behavioural Theory

〈AccA〉 a[~s]
a〈s〉−→ a[~s · s] 〈ReqA〉 a〈s〉 a〈s〉−→ 0

〈InA〉 s[~h]
s?〈v〉−→ s[~h · v] 〈OutA〉 s!〈v〉;P

s!〈v〉−→ P

〈BraA〉 s[~h] s&l−→ s[~h · l] 〈SelA〉 s⊕ l;P s⊕l−→ P

〈LocalA〉
P −→ Q

P τ−→ Q
〈ParA〉

P `−→ P′ bn(`)∩fn(Q) = /0

P | Q `−→ P′ | Q

〈TauA〉
P `−→ P′ Q `′−→ Q′ `� `′

P | Q τ−→ (ν bn(`,`′))(P′ | Q′)
〈ResA〉

P `−→ P′ n 6∈ fn(`)

(ν n)P `−→ (ν n)P′

〈OpenSA〉
P

a〈s〉−→ P′

(ν a)P
a(s)−→ P′

〈OpenNA〉
P

s〈a〉−→ P′

(ν a)P
s(a)−→ P′

〈AlphaA〉
P≡α P′ P′ `−→ Q

P `−→ Q

Figure 5.1: Labelled Transition for Session Type System with Two Buffer Endpoint Without
IO

4. The asynchronous session π-calculus with two end-point IO-queues ≈, i.e. the one

developed in § 4.3.

The proof for the behavioural semantics comparison can be found in Appendix B.1.1.

In Figure 5.1 we define the labelled transition relation for the non-local semantics. We define

the transition relation for the non-local semantics by replacing the output and selection rules

in Figure 3.9 with rules:

〈Out〉 s!〈v〉;P
s!〈v〉−→ P 〈Sel〉 s⊕ l;P s⊕l−→ P

The observation of the output actions (s!〈v〉, s⊕ l) happens on the transition of the output

prefix for processes. On the dual side, the observation of the input actions happens on session

endpoint configurations, which are called input queues.

5.2. Comparisons with Asynchronous and Synchronous π-calculi 115

We use the non-local, untyped labelled transition system together with the environment tran-

sition relation (Figure 3.10) to define the non-local, typed transition relation.

Definition 5.2.1 (Non-local Typed Transition). We write Γ ` P.∆
`−→ Γ′ ` P′ .∆′ if

1. P `−→ P′

2. (Γ,∆)
`−→ (Γ′,∆′)

The bisimulation relation is then defined with respect to the non-local, typed transition rela-

tion.

Definition 5.2.2 (Non-local Asynchronous Bisimulation). Let Γ ` P1 .∆1 R Γ ` P2 .∆2. R

is a non-local asynchronous bisimulation if whenever Γ ` P1 .∆1 R Γ ` P2 .∆2 then

1. If Γ ` P1 .∆1
`−→ P′1 .∆′1 then Γ ` P2 .∆2

`
=⇒ P′2 .∆′2 and Γ ` P′1 .∆′1 R Γ ` P′2 .∆′2

2. The symmetric case.

The largest bisimulation, denoted ≈2, is called non-local asynchronous bisimilarity.

Figure 5.2 summarises the distinguishing examples. The first table compares the non-blocking

property of the input/output actions on different channels. We say that a process is input

(resp. output) non-blocking, if the permutation of input (resp. output) actions in the process

maintains behaviour (i.e. the latter process is bisimilar with the former). Non-blocking input

holds for the asynchronous π-calculus, the non-local session semantics and, as expected, for

the ESP behavioural semantics. Non-blocking output holds only for the asynchronous π-

calculus and the ESP bisimulation theory. Non-blocking output does not hold for non-local

semantics due to the lack of output queue in the non-local session endpoint configuration.

In the second table, we explore the Input/Output Order-Preserving preserving property, which

ensures that messages on the same channel will be received/delivered in the order they were

116 Chapter 5. Applications of the Eventful Behavioural Theory

sent. In contrast to the non-blocking property, we require a non-bisimilar permutation of

input (resp. output) actions to clarify the input (resp. output) order-preserving property. The

order-preserving property does not hold for the input and the output case of the asynchronous

π-calculus. All other calculi respect order-preserving in both cases.

The table in Figure 5.3 explains whether the cases in Lemma 4.3.1 (1) (input advance) or

(2) (output delay) are satisfied or not. If not, we place a counterexample. Input advance and

output delay cannot happen in the synchronous setting. It is interesting to observe that due to

the absence of the output queue in the non-local semantics, the output advance property does

not hold.

5.2.1 Synchronous and Asynchronous π-calculi in the presence of arrive

Another technical interest is the effects of the arrive-predicate on four calculi under study.

In the cases of the synchronous and the asynchronous π-calculus we cannot define an arrive-

predicate, since their definition does not include local buffers for message passing. We define

two arrive-inspected calculi with local buffers that simulate the blocking and the order-

preserving properties for the synchronous and the asynchronous π-calculi, respectively.

For the synchronous π-calculus, we require to have the blocking and the order-preserving

properties for both input and output and for the asynchronous π-calculus we require to have

the non-blocking and the non-order preserving properties for both input and output. In the

context of the synchronous π-calculus, we cannot define the arrive-operator without a com-

promise of the non-blocking input property, due to the asynchronous nature of the arrive-

operator on the input queue of an endpoint.

We represent an asynchronous version of the synchronous π-calculus with the definition of

a buffer with size one. We clarify these intuitions with the syntax and the label transition

semantics for the Synchronous-like π-calculus with arrive.

5.2. Comparisons with Asynchronous and Synchronous π-calculi 117

Non-Blocking Input Non-Blocking Output

≈a s1?(x);s2?(y);P≈a s2?(y);s1?(x);P s1!〈v〉 | s2!〈w〉 | P≈a s2!〈w〉 | s1!〈v〉 | P

≈s s1?(x);s2?(y);P 6≈s s2?(y);s1?(x);P s1!〈v〉;s2!〈w〉;P 6≈s s2!〈w〉;s1!〈v〉;P

≈2
s1?(x);s2?(y);P | s1[ε] | s2[ε]≈2 s1!〈v〉;s2!〈w〉;P | s1[ε] | s2[ε] 6≈2

s2?(y);s1?(x);P | s1[ε] | s2[ε] s2!〈w〉;s1!〈v〉;P | s1[ε] | s2[ε]

≈
s1?(x);s2?(y);P | B1 | B2 ≈ s1!〈v〉;s2!〈w〉;P | B1 | B1 ≈
s2?(y);s1?(x);P | B1 | B2 s2!〈w〉;s1!〈v〉;P | B1 | B2

Bi = si[i : ε,o : ε] Bi = si[i : ε,o : ε]

Input Order-Preserving Output Order-Preserving

≈a s?(x);s?(y);P≈a s?(y);s?(x);P s!〈v〉 | s!〈w〉 | P≈a s!〈w〉 | s!〈v〉 | P

≈s s?(x);s?(y);P 6≈s s?(y);s?(x);P s!〈v〉;s!〈w〉;P 6≈s s!〈w〉;s!〈v〉;P

≈2
s?(x);s?(y);P | s[ε] 6≈2 s!〈v〉;s!〈w〉;P | s[ε] 6≈2

s?(y);s?(x);P | s[ε] s!〈w〉;s!〈v〉;P | s[ε]

≈ s?(x);s?(y);P | s[i : ε,o : ε] 6≈ s!〈v〉;s!〈w〉;P | s[i : ε,o : ε] 6≈
s?(x);s?(y);P | s[i : ε,o : ε] s!〈w〉;s!〈v〉;P | s[i : ε,o : ε]

Figure 5.2: Comparisons between bisimulations in the asynchronous and the synchronous
π-calculi.

118 Chapter 5. Applications of the Eventful Behavioural Theory

Lemma 3.3.1 (1) Lemma 3.3.1 (2)

≈a yes yes

≈s (ν s)(s!〈v〉;s′?(x);0 | s?(x);0) (ν s)(s!〈v〉;s′!〈v′〉;0 | s′?(x);0)

≈2 yes s!〈v〉;s′?(x);0 | s′[v′]

≈a≈ yes yes

Figure 5.3: Comparison between the synchronous and the asynchronous π-calculi for
Lemma 4.3.1

Syntax of the Synchronous-like π-Calculus with arrive:

P ::= 0 | a[ε] | a(x).P | a〈v〉.P | P | P

| (ν a)P | !P | if arrive a then P else P

The syntax for the synchronous-like π-calculus with arrive extends the standard synchronous

π-calculus syntax with a name configuration buffer a[ε] and the arrive expression.

5.2. Comparisons with Asynchronous and Synchronous π-calculi 119

Label Transition Semantics of the Synchronous-like π-Calculus with arrive:

a(v).P
a〈v〉−→ P a(x).P | a[ε] a〈v〉−→ a(x).P | a[v]

a(x).P | a[v] τ−→ P{v/x} P `−→ P′, fn(`)∩fn(Q) = /0

P | Q `−→ P′ | Q

P `−→ P′, Q `′−→ Q′, `� `′

P | Q τ−→ (ν bn(`,`′))(P′ | Q′)
P `−→ P′ n 6∈ fn(`)

(new n)P `−→ (new n)P′

P
a〈v〉−→ P′

(new a)P
a(v)−→ P′

P≡α P′ P′ `−→ Q

P `−→ Q

if arrive a then P else Q | a[ε] τ−→ Q | a[ε]

if arrive a then P else Q | a[v] τ−→ P | a[v]

The label transition semantics restrict the size of the name configuration to be at most one.

This is defined in the rule:

a(x).P | a[ε] a〈v〉−→ a(x).P | a[v]

where we further require the name a to exists as a subject in an input prefix, in order to

restrict to a behaviour closer to the order-preserving property of the synchronous π-calculus

(i.e. we only observe an input action a〈v〉 if there exists an input prefix to consume the input

message v). The LTS is completed with the definition of the semantics for the process:

if arrive a then P else Q

The rest of the rules are standard π-calculus label transition rules.

To demonstrate the compromise made from the definition of the synchronous π-calculus to

achieve the definition of the synchronous-like π-calculus, consider the input action in both

120 Chapter 5. Applications of the Eventful Behavioural Theory

calculi:
a(x).P

a?〈v〉−→ P{v/x}

a(x).P | a[ε] a?〈v〉−→−→ P{v/x} | a[ε]

The first process demonstrates an input action on an input prefixed process in the classic

synchronous π-calculus. The second process uses the semantics for the synchronous-like π-

calculus, where we observe an asynchronous input action. First an input action puts a message

v in the communication buffer and then a silent τ action receives and substitutes message v in

the receiveing process. Our interest focuses on the fact that, between the two transitions we

can apply an arrive -inspection that will return the boolean value true tt.

We move on to the asynchronous π-calculus with the arrive operator, which is easier to

define using endpoint configurations. The main idea here is to have queues that use a random

buffer policy for message exchange:

Syntax of the Asynchronous π-Calculus with arrive:

P ::= 0 | a[ε] | a(x).P | a〈v〉 | P | P

| (ν a)P | !P | if arrive a then P else P

The syntax for the asynchronous π-calculus with arrive, shares the same syntax with the

synchronous-like π-calculus system, with the exception of the send prefix that is defined with

no continuation.

5.2. Comparisons with Asynchronous and Synchronous π-calculi 121

Label Transition Semantics for the Asynchronous π-Calculus with arrive:

a〈v〉 a〈v〉−→ 0 a[~h]
a〈h〉−→ a[~h ·h]

a?(x);P | a[~h1 ·hi · ~h2]
τ−→ P{hi/x} | a[~h1 · ~h2]

P `−→ P′ fn(`)∩fn(Q) = /0

P | Q `−→ P′ | Q

P `−→ P′ Q `′−→ Q′ `� `′

P | Q τ−→ (ν bn(`,`′))(P′ | Q′)
P

a〈v〉−→ P′

(new v)P
a(v)−→ P′

P `−→ P′ n 6∈ fn(`)

(new n)P `−→ (new n)P′
P≡α P′ P′ `−→ Q

P `−→ Q

if arrive a then P else Q | a[ε] τ−→ Q | a[ε]

if arrive a then P else Q | a[h ·~h] τ−→ P | a[~h]

The label transition semantics allow an infinite size name configuration buffer. The definition

for rule:

a?(x);P | a[~h1 ·hi · ~h2]
τ−→ P{hi/x} | a[~h1 · ~h2]

uses a random policy to select a message to receive from the queue, which disallows the order

preserving property in the system but keeps the non-blocking property as required by the

asynchronous π-calculus. The rest of the label transition rules are standard π-calculus rules.

We define the arrive-inspected non-local semantics with the addition of the arrive predi-

cate in the syntax of non-local semantics and the addition of arrive transition semantics in

the label transition system for non-local semantics.

Figure 5.4 summarises the results between processes arrive-prefixed processes and condi-

tional branch prefixed processes that do not use the arrive. We number the four calculi

as: (1) the asynchronous π-calculus with arrive; (2) the synchronous-like π-calculus with

arrive; (3) the local-semantics with arrive; and (4) the eventful session π-calculus. It is

interesting to see that all of the calculi (1–4) separate the semantics between the two cases

122 Chapter 5. Applications of the Eventful Behavioural Theory

With arrive Without arrive

(1) if arrive s then P else Q | s[ε] | s〈v〉 if e then P else Q | s[ε] | s〈v〉
6≈ if arrive s then P else Q | s[v] ≈ if e then P else Q | s[v]

(2) if arrive s then P else Q | s[ε] | s〈v〉;0 if e then P else Q | s[ε] | s〈v〉;0
6≈ if arrive s then P else Q | s[v] ≈ if e then P else Q | s[v]

(3) if arrive s then P else Q | s[ε] | s〈v〉;0 if e then P else Q | s[ε] | s〈v〉;0
6≈ if arrive s then P else Q | s[v] ≈ if e then P else Q | s[v]

(4) if arrive s then P else Q | B1 if e then P else Q | B1
6≈ if arrive s then P else Q | B2 ≈ if e then P else Q | B2

B1 = s[i : ε] | s[o : v] B1 = s[i : ε] | s[o : v]
B2 = s[i : ε] | s[o : v] B2 = s[i : ε] | s[o : v]

Figure 5.4: Arrived message detection behaviour in asynchronous and synchronous calculi.

5.3. Representing High-level Event Constructs in ESP 123

(i.e. with and without the arrive predicate). We can see that the IO queues provide non-

blocking inputs and outputs, while preserving the input/output ordering, which distinguishes

the present framework from other known semantics.

As a conclusion, we observe that the present semantic framework is closer to the asyn-

chronous bisimulation (1) ≈a augmented with order-preserving nature per session. Its key

properties arise from local, buffered session semantics and typing. We have also seen the se-

mantic significance of the arrive predicates, which enables processes to observe the effects

of fine-grained synchronisations.

5.3 Representing High-level Event Constructs in ESP

A study of the event-driven paradigm identifies the different selector constructs, among the

known high-level programming facilities (including those realised by libraries) used for event-

based programming. The functionality of the selector construct offers a powerful event prim-

itive which is the key for programming many event-based applications and other high-level

event-based programming libraries. In the context of operating systems the selector construct

is reffered to as polling, which is the operation for waiting on the status of a set of input/output

devices until one of them is ready. A selector operation is introduced in the Java NIO pack-

age1 [Lea03, SMI11] and it is used for building high performance concurrent applications. In

brief, the selector component implements a mechanism that inspects a set of communication

(input) channels for the arrival of messages. If a message is present, it is dispatched together

with its channel for processing.

The functionality of the selector is used to build a core event-driven programming routine,

called the event-loop. An event-loop waits on a select operation for the dispatching of ready to

be processed events. When an event gets dispatched, its type is identified and the computation
1 Java NIO stands for for Java new input/output, which is a package that performs I/O operations based on

intermediate buffers and asynchrony.

124 Chapter 5. Applications of the Eventful Behavioural Theory

proceeds with its processing accordingly. After the event-processing the event-loop routine

recurses until the next event is ready.

This section gives the high-level semantics for a typesafe selector, shows its type-safe and

semantic preserving encoding into ESP , and studies the behavioural properties of the selector

based on the encoding, which will be directly used for the application in § 5.5.

5.3.1 A Basic Event Loop

Before we proceed with the semantic definition of the selector construct, we demonstrate the

operation of the selector with the use of a simple example of event-driven session program-

ming. The example comes from the context of web-services, where we define a multithreaded

server and then its equivalent event-based server to constrast and understand event-driven

concurrency. The event-driven server demonstrates the use of the selector construct as a basic

function for the event loop routine.

Consider the following multithreaded session server.

µX .a(x : S).(x?(y1);x?(y2);x!〈v′〉;0 | X) | Πn
i=1a(x : S).x!〈v1〉;x!〈v2〉;x?(z);0

The server process (on the left), listening (accepting sessions) on shared channel a, can un-

fold the required number of parallel “threads” (processes) to handle n client processes (on

the right) concurrently. The annotation S, which declares the communication protocol (i.e.

session type) that the server follows may be, e.g., ?(U1); ?(U1); !〈U2〉; /0, which declares the

reception of a sequence of two messages of type U1 before sending a value v′ of type U2 in

reply.

We give an event-driven server with the same capability to handle concurrent clients according

to type S, but without needing to fork (create) a new thread for client. The event-driven server

comprises a single thread, implementing the event loop routine, independent of the number

5.3. Representing High-level Event Constructs in ESP 125

of clients. We make use of a few high-level macros to focus on the key concepts. The central

notion is the event selector, henceforth referred to as just selector for short. In this example

a selector offers two main functions. One is to store (register) session channels, which the

selector then monitors for event occurrences, i.e. message arrivals. The other is to retrieve

(select) a stored session channel at which a message has arrived and is ready for reading.

new sel r in register s1 to r in . . .register sn to r in

µX .select x from r in

if x = a then

a(x : S).x?(y1);x?(y2);x!〈v′〉;X

else

typecase x of {

(x1 :?(U1); ?(U1); !〈U2〉;end) : x1?(y1);register x1 to r in X ,

(x2 :?(U1); !〈U2〉;end) : x2?(y2);x2!〈v′〉;X

}

The process first creates a new selector sel with name r. It then registers sessions s1, . . . ,sn

to the selector, as with n client connections of the multithreaded examples. In this example

for brevity and for understanding we define a static event loop by registering a fixed number

of already established sessions in contrast with the multithreaded example which dynamicaly

accepts new sessions during the computation. A full definition of a dynamic event loop will

be discussed later in this section. After session registering, the control flow enters the main

event loop. In each iteration, the server will select a session si that is enabled for reading

(waiting until one satisfies this condition), remove it from the internal storage of the selector

r and substitute si for x. The typecase tests the selected si against the specified session type

cases. If it is a newly established session, si will have the type specified by the first case: the

server will proceed by receiving the first U1 message, then re-registering si back to the selector

to await the arrival of the second message. Otherwise, si will correspond to the second case:

126 Chapter 5. Applications of the Eventful Behavioural Theory

the server will receive the second U1 message and send the U2; this session is now completed

and the server proceeds to the next iteration. In this way, session types are used to determine

not only the type of the expected event, but also the point in the protocol at which the event

is occurring, ensuring that the event is handled correctly. The key characteristic of the event-

driven server is that, by only selecting sessions with arrived messages, the event loop can

safely and efficiently interleave the handling of multiple, concurrent clients in a single thread

because delayed message arrival in any one session does not block the execution of any other

session.

5.3.2 Selector semantics

The core functionality of the selector, can be defined using three operations: create a new

selector, register a channel with the selector, and select (i.e. retrieve from the selector) a

channel on which a message has arrived. The syntax for the extended ESP, denoted ESP+, is

summarised as:

P ::=
...

| new sel〈S〉 r in P | register s to r in P | select x from r in P | r〈~s〉

A selector is represented as the process r〈~s〉, where r is the name of the selector and ~s the

registered channels in the selector queue. Construct new sel〈S〉 r in P is used to create

a new selector on the bound name r. Selector r is used to register channels with type S.

Note that S can be a session set type, allowing sessions with different types to be registered

with the selector. The operation register s to r in P registers a session s in selector r

and then continues with process P. The selection of a session channel with a non-empty i-

configuration is done via process select x from r in P, where variable x exists bounded in

5.3. Representing High-level Event Constructs in ESP 127

process P. The operation of the selector is defined as a reduction relation below:

new sel〈S〉 r in P−→ (new r)(P | r〈ε〉)

register s to r in P | r〈~s〉 −→ P | r〈~s · s〉

select x from r in P | r〈s ·~s〉 | s[i :~h]−→ P{s/x} | r〈~s〉 | s[i :~h] (~h 6= ε)

select x from r in P | r〈s ·~s〉 | s[i : ε]−→ select x from r in P | r〈~s · s〉 | s[i : ε]

We introduce the structural rule (new r)r〈ε〉 ∼= 0 for garbage collection.

Operator new sel〈S〉 r in P, binds r in P and creates a new selector r〈ε〉, named r, with

session interaction type S. register s to r in P registers the session channel with r, adding

s to the queue ~s. The selector select x from r in P checks whether a message is available

(i.e. an event has occurred) on the first session in the queue, s (note that x binds P). If so, it

executes P{s/x}; otherwise, s is re-enqueued and the next session is tested.

5.3.3 From ESP + to ESP

The selector semantics of ESP + can be easily encoded in ESP by combining the message

arrival predicate and recursions. We define the mapping from ESP + to ESP .

[[new sel〈S〉 r in P]] def
= (ν b)(b(xr).b(xr).[[P]] | b[ε])

[[register s to r in P]] def
= r!〈s〉; [[P]]

[[r〈~s ·~s′〉]] def
= r[o :~s′] | r[i :~s]

[[select x from r in P]] def
= µSelect.r?(x);if arrive x then [[P]] else r!〈x〉;Select

The mapping for other constructs is homomorphic. A selector is created using asynchronous

session initiation, where the two configuration endpoints of an establish session encode the

selector’s queue configuration. The register operation is syntactic sugar for the delegation of a

session to the dual session endpoint. The use of arrive is the key to avoiding blocked inputs

in the select operation, allowing the selector to proceed asynchronously while handling any

128 Chapter 5. Applications of the Eventful Behavioural Theory

available messages in the inspected session queues. The operations on the collection queue

(via r and r) exchange session channels, hence session delegation [HVK98] is essential.

Using the above selector encoding, the basic static event loop in Example 5.3.1, is encoded

in ESP as:

(ν a)(a(xr).a(xr).xr!〈s1〉; . . .xr!〈sn〉;

µ Select.xr?(y); if arrive y then

typecase y of {

(y1 :?(U1); ?(U1); ?(U2);end) : y1?(y1);xr!〈y1〉;Select

(y2 :?(U1); !〈U2〉;end) : y2?(y2);y2!〈v′〉;Select

}

else xr!〈y〉;Select) | a[ε])

5.3.4 Typing Event Selectors

Typing selectors. Typing rules for the extended ESP selector construct naturally follow

from the ESP -typing of the selector encoding. The type for a user of the selector is written

sel〈S〉, and for the selector itself sel〈S〉. For simplicity, we assume these types do not

occur as part of other types. The linear environment ∆ is extended with two additional type

assignments, r : sel〈S〉 and r : sel〈S〉, the latter only used for runtime typing for selector

queues. The program typing rules for the selector operations are:

Γ ` P.∆ · r : sel〈S〉
Γ ` new sel〈S〉 r in P.∆

[Selector]

Γ ` P.∆ · r : sel〈S〉 S′ ≤ S
Γ ` register s to r in P.∆ · r : sel〈S〉 · s : S′

[Reg]

Γ ` P.∆ · r : sel〈S〉 · x : S
Γ ` select x from r in P.∆ · r : sel〈S〉

[Select]

We define a mapping [[∆]] from the typing syntax of the selector to the ESP typing system,

5.4. Behavioural Properties of the Selector 129

where [[r : sel〈S〉]] is mapped as r : Sr · r : Sr, when Sr = µX .?(S);X . All other mappings are

homomorphic. The mapping for a selector construct is, as expected, a recursive session type,

since a selector process is recursive. We write ESP + for the extension of ESP with selectors:

Proposition 5.3.1 (Soundness of Selector Typing Rules).

1. (Type Preservation) Γ ` P.∆ in ESP + if and only if Γ ` [[P]]. [[∆]].

2. (Soundness) P≡ P′ implies [[P]]≡ [[P′]]; and P−→ P′ implies [[P]]−→∗ [[P′]].

3. (Safety) A typable process in ESP + never reduces to an error.

Proof. (1) is proved by typing the mapping from ESP + to ESP . A full proof can be found

in Appendix B.2.1. (2) is straightforward. (3) is a corollary from (1, 2) and Theorems 4.2.1

and 4.2.2.

The selector encoding demonstrates how the fine-grained typing rules of ESP can suggest and

justify sound typing rules for high-level event handling constructs through ESP encodings.

5.4 Behavioural Properties of the Selector

This section investigates the basic properties for the event-loop, under the hypothesis that

event handling processes are sequential and determinate. We can observe that if we arbitrarily

permute the entries (session names) inside a selector queue, its behaviour remains the same

with respect to the asynchronous session bisimilarity, ≈.

In the following definitions, we let Bi = si[i : hi,o : h′i]. We also extend the process syntax

to R;Q where R is a sequential series of actions, used as a prefix. The context definition now

allows C[R] where R is replaced at the hole (−) of the context.

130 Chapter 5. Applications of the Eventful Behavioural Theory

Definition 5.4.1. Let

PSel = select x from r in typecase x of {(xi : Si) : C[Ri]}1≤i≤m

where

1. C =−;register x to r in Select, where Select is the recursive variable of the select

construct (see the encoding of the selector in § 5.3.3)

2. Ri{s/xi} is a blocking prefixed, sequential series of actions and

3. C[Ri{s/xi}] is session determinate.

Then we define

Selni = PSel | r〈si, . . . ,sk,sk+1, . . . ,s1,sn, . . . ,si−1〉

and

PermSelni = PSel | r〈si, . . . ,sk+1,sk, . . . ,s1,sn, . . . ,si−1〉

i.e. we permute two arbitrary entries in the selector queue in Selni to get a PermSelni .

We also write ∏i P1≤i≤m for P1 | P2 | · · · | Pm.

Lemma 5.4.1. Selnk | ∏1≤i≤n Bi ≈ PermSelnk | ∏1≤i≤n Bi

Proof. We build a proof based on a similar idea explained in Example 4 in Section 5.1. For

full details of the proof, see Appendix B.2.2.

Next we extend the selector to the dynamic selector, where we allow the dynamic addition

of session channels in the selector queue through a shared channel in order to capture the

full functionality of the event-loop. The extension requires from the selector to periodically

arrive-check a shared channel queue endpoint for new incoming session connections. To

5.4. Behavioural Properties of the Selector 131

achieve this, we extend, without loss of generality, the selector queue r〈v1 . . .vn〉 to register

tuples of the form ~v, writting r〈~v1 . . .~vn〉. Then we register in the selecto queue tuples of

values with either the form (s,shd) or the form (sd,a), both typed as (S,io〈S′〉) (i.e. the first

value is a session channel and the second value is a shared name). Values shd and sd represent

a dummy shared channel and a dummy session channel, respectively. The dynamic selection,

uses name matching to check whether the shared channel in the tuple is not a dummy (i.e. the

shared channel in the tuple is the shared channel listening for new connections), and at the

same time arrive-checks the shared channel for new sessions, otherwise it means that the

tuple contains a session channel s (or sd) and proceeds as the static selector to arrive-check

the s (or sd). For a session channel, we assume the corresponding endpoint of sd has empty

type end and is always empty sd[i : ε]. Hence the expression arrive sd will be automatically

evaluated to false (ff) in the case we arrive-check session sd. If the arrive-checks for the

shared and the session name in the tuple fail the tuple is re-registered in the queue of the

selector. We formally define the encoding from ESP to ESP + for the dynamic selector:

Definition 5.4.2 (Dynamic Selector Encoding). We extend the register queue r〈v1 . . .vn〉 to

store tuples of the form~v, writting r〈~v1 . . .~vn〉. A dynamic selector is encoded as:

[[select (xs,xa) from r in P]] def= µSelect.r?((xs,xa));if arrive xa and xa 6= shd

then [[P]] else if arrive xs then [[P]] else r!〈(xs,xa)〉;Select

It is straightforward to extend [[P]] for other constructs and prove the same soundness proper-

ties as Proposition 5.3.1.

Definition 5.4.3 (Dynamic Selector). We define

PDSel = select (xs,xa) from r in if xa = a then xa(y).register (y,shd) to r in

register (xs,xa) to r in X else typecase xs of {(xi : Si) : C[Ri]}1≤i≤m

where

132 Chapter 5. Applications of the Eventful Behavioural Theory

1. C = −;register (xs,xa) to r in Select, where Select is the recursive variable of the

select construct (see the encoding of the dynamic selector in § 5.4.2)

2. Ri{s/xi} is a blocked prefixed and sequential series of actions.

3. C[Ri] is session determinate.

Then we define

DSelni = PDSel | r〈vi, . . . ,vk,vk+1, . . . ,v1,vn, . . . ,vi−1〉

and

PermDSelni = PDSel | r〈vi, . . . ,vk+1,vk, . . . ,v1,vn, . . . ,vi−1〉

Lemma 5.4.2. DSelnk | ∏1≤i≤n Bi ≈ PermDSelnk | ∏1≤i≤n Bi.

Proof. For the full proof, see Appendix B.2.2.

Due to the fact that bisimulation is an equivalence relation, we can use Lemma 5.4.2 (and

Lemma 5.4.1) to arbitrarily apply a sequence of permutations in the channels in a selector

queue and maintain the process behaviour under the hypothesis of sequentiality and determi-

nacy.

The permutation of confluent selectors is a very important result for reasoning and verifying

event-loop applications, and is essential to understand the reactive nature of the event-driven

programming paradigm (see the next section).

5.5 Lauer-Needham Transform

In an early work [LN79], Lauer and Needham observed that a concurrent program may be

written equivalently either in a thread-based programming style or in an event-based style.

5.5. Lauer-Needham Transform 133

A thread-based programming style is defined on thread creation and shared memory primi-

tives, in contrast to the event-based style that requires message passing and a single-threaded

event loop that processes messages sequentially. Many studies follow the Lauer-Needham

framework and use the selector primitive (cf. [BDM98, Lea03, SMI11]) for the event-based

style to compare the two programming styles, often focusing on performance of server ar-

chitectures (see § 2.3 and [HKP+10, § 6] for recent studies on event programming). These

implementations implicitly or explicitly assume a transformation from a program written in

the thread-based style, especially those which generate a new thread for each service request

(as in some of the thread-based web servers), to its equivalent event-based program, which

treats concurrency by using a single threaded event-loop (as in event-based web servers).

However neither the precise semantic effects of such a transformation nor the exact meaning

of the associated “equivalence” have ever been clarified.

In this section we study the semantic effects of such a transformation using the asynchronous

session bisimulation. We follow [LN79] to introduce a formal mapping from a thread-based

process to an event-loop process. We assume a multithreaded server process whose code

creates fresh threads at each service invocation (session accept). The key idea to transform

the multithreaded server to an event-driven server with the same behaviour, is to decompose

its whole code into distinct smaller code segments, each handling the part of the original

code starting from a blocking action. Such a blocking action is represented as reception of a

message (input or branching). A single global event-loop uses the selector construct to inspect

a set of session configuration buffers for message arrivals. We stipulate a class of processes

which we consider for our translation. We set

∗a(x).P = µX .a(x).(P|X)

to abbreviate an input replication.

134 Chapter 5. Applications of the Eventful Behavioural Theory

5.5.1 Multithreaded Server Process

Definition 5.5.1 (Server). A simple server at a is a closed process

∗a(x).P

with a typing of form

a : i〈S〉,b1 : o〈S1〉, ..,bn : o〈Sn〉

where P is sequential (i.e. contains no parallel composition |), non-recursive and is determi-

nate under any localisation. A simple server is often considered with its localisation with an

empty queue a[ε].

A simple server spawns an unbounded number of threads as it receives session requests re-

peatedly. Each thread may initiate other sessions with outside, and its interactions may in-

volve delegations and name passing. Furthermore it is semantically ensured by determinacy

that a server does not involve accesses to non-trivial mutable local state by threads. A practi-

cal example is a web-server interacting independently with a dynamic set of clients.

5.5.2 The Transform

In this subsection we define a transform from a simple server to an event-driven server. We

begin by defining the programming constructs and operations used for defining the transform.

Preliminaries: We assume ESP extended with the following notions:

1. We model π-calculus communication on shared channels as the creation of session

channels that implement a send/receive interaction.

5.5. Lauer-Needham Transform 135

[[o〈v〉.P]] = o(s : o〈?(U);end〉).s!〈v〉;P

[[o(x).P]] = o(x : i〈?(U);end〉).s?(x);P

2. Polyadic Inputs/Outputs on session channels. Polydicity on session channels is straight-

forward since session channels have a linear usage, i.e. there are only two session end-

points for each channel.

Mapping from ESP to polyadic ESP :

[[s!〈v1, . . . ,vn〉;P]] = s!〈v1〉; . . .s!〈vn〉; [[P]]

[[s?(x1, . . . ,xn);P]] = s?(x1); . . .s?(xn); [[P]]

3. Each client/session accepted is maintained in the server through its context. A con-

text is expressed as a data closure structure. We define the syntax sugar to create and

manipulate such a structure.

Let y be a meta-value range over a list mapping between labels and values:

y ::= (li : vi)i∈I

We define operations on meta-value y. Each operator is translated into an ESP + value:

val((li : vi)i∈I) = (vi)i∈I new env (li : vi)i∈I in P = (ν v1,v2, . . .)P

[[lk]](li:vi)i∈I = vk (li : vi)i∈I{lk 7→ v} = (vi)i∈I{v/vk}

Operations on y are ESP terms and are used for a list manipulation structure. val(y)

returns the list of values (vi)i∈I from the list mapping y. new env (li : vi)i∈I in P creates

a list of fresh names (vi)i∈I restricted in P. Expression [[lk]]y represents the value vk of

136 Chapter 5. Applications of the Eventful Behavioural Theory

y mapped by lk. The y{lk 7→ v} returns the list of values (vi)i∈I from y with value vk

substituted by value v.

4. We say that a process P is blocking if it is input prefixed:

P ::= a(x).P′ | s?(x);P′ | s&{li : Pi}

We define the infix process operator � as a preorder relation over:

P � a(x).P P � a(x).P P � s!〈v〉;P

P � s?(x);P P � s⊕ l;P Pi � s&{li : Pi}i∈I

The blocking sub-terms of P are defined as

subterms(P) = {Pi | Pi blocking,Pi � P}

with i≤ j if Pi � Pj

The Transform: We are now ready to define a transform from a simple server to an event-

driven server in the terms of Lauer and Needham [LN79].

Definition 5.5.2 (Lauer-Needham Transform). Let

∗a(w : S).P

be a simple server. Then the mapping

LN[[∗a(w : S).P]]

is inductively defined by the rules in Figure 5.5.

5.5. Lauer-Needham Transform 137

LN[[∗a(w : S).P]]y def
= (ν o,q,~c)(Loop〈o,q〉y | o | q〈(sd,a, /0,c0)〉 |

CodeBlocks〈a,o,q,~c〉)y

where o, q and~c = c1..cn are fresh and pairwise distinct.

Loop〈o,q〉y def
= ∗o.select (xs,xa, x̃,z) from q in if xa = a then

new env y in z〈xs,val(y)〉.0
else typecase xs of {

xi : Si : z〈xs, x̃〉.0
}i∈I

CodeBlocks〈a,o,q,~c〉 def
= B[[a(w : S).P]]y |∏i∈IB[[Pi]]

y

where {Pi}i∈I = subterms(P)
and Γ ` Pi .∆ ·w : Si

B[[∗a(w : S).P]]y def
= ∗c0(xs, x̃).a(w′ : S).

register (xs,a, /0,c0) to q in [[P,y{w 7→ w′}]]y

B[[x(i)?(z);Q]]y
def
= ∗ci(x′, x̃).x′?(z′); [[Q,y{z 7→ z′}{w 7→ x′}]]y

B[[x(i)&{l j : Q j} j∈J]]
y def

= ∗ci(x′, x̃).x′&{l j : [[Q j,y{w 7→ x′}]]}y
j∈I

[[x!〈e〉;Q, x̃]]y def
= [[x]]y!〈[[e]]y〉; [[Q,val(y)]]y

[[x!〈k〉;Q, x̃]]y def
= [[x]]y!〈[[k]]y〉; [[Q,val(y)]]y

[[x⊕ l j;Q, x̃]]y def
= [[x]]y⊕ l j; [[Q,val(y)]]y

[[b(z : S);Q, x̃]]y def
= b(z′ : S).[[Q,y{z 7→ z′}]]y

[[Q, x̃]]y def
= register ([[w]]y,shd,val(y),ci+1) to q in o.0 (Q is blocking)

[[0, x̃]]y def
= o.0

Figure 5.5: Translation Function for Lauer-Needham Transform

138 Chapter 5. Applications of the Eventful Behavioural Theory

The transformation in Figure 5.5 uses the techniques of cooperative task management and

manual stack management (cf. [AHT+02]). The simple server process is divided to its block-

ing subterms implementing a notion of code ripping. The event-loop process selects the next

ready event and dispatches it to the corresponding blocking process subterm for processing. A

tuple structure is a closure used to maintain the state of an event and its continuation between

a blocking subterms. The storage of an event continuation implies the use of the continua-

tion passing style - CPS2. We implemented CPS with the definition of replicated processes

guarded by an input on the shared channels o,c1, . . . ,cn, which are passed as parameters and

are used to invoke and pass the state closure to the next part of the execution.

The main map LN[[∗a(w : S).P]] consists of:

1. A shared channel o at the output position is used to initiate the server.

2. A selector queue q〈(sd,a, /0,c0)〉 named q with the initial element (sd,a, /0,c0). The

selector is used to register a tuple structure that consists of: i) a shared channel that

is arrive-inspected for events, ii) a session channel that is arrive-inspected for events,

iii) a tuple structure that maintains the closure state for a session execution, iv) the

continuation channel ci for the execution. The initial element consists of the shared

channel a that accepts new session connections for the server.

3. An dynamic event loop Loop〈o,q〉 which denotes an loop invoked at shared channel o.

The event loop uses the selector structure q to select the next ready event. A typecase

construct decides how a selected event should be processed.

4. A collection of code blocks CodeBlocks〈a,o,q,~c〉, each defined using an auxiliary map

B[[R]] and [[Q, x̃]]. Each parallel process in the CodeBlocks〈a,o,q,~c〉 process is derived

out of the subterms(P) definition. Each blocking subterm R of P is mapped via the

2The continuation passing style is used in functional programming and requires that a function will get as
an argument its continuation. After the termination of the function, the function is responsible for invoking the
continuation code.

5.5. Lauer-Needham Transform 139

B[[R]] mapping to create a a replicated, guarded and terminating used to process an

event until the next blocking point. Codeblock processes are anotated with the corre-

sponding i index from the subterms(P) definition. This is used to decide the index of

the guard ci and the continuation ci+1. The guard on shared channels ci is used to pass

control to codeblock processes.

5. We use the operators for context manipulation to maintain the state of an event. Upon

a session channel accept, in the Loop〈o,q〉 process, we create a new closure with the

new env y in notation. Operator [[x]]y is used in the CodeBlocks〈a,o,q,~c〉 process and

is responsible for getting a value from the closure structure. Operator y{l 7→ v} is used

for updating the event structure and operator val(y) is used when passing the closure

structure around the execution.

The execution of LN[[∗a(w : S).P]] starts with the input on the guard of the Loop〈o,q〉 process.

The Loop〈o,q〉 fetches a channel from the selector queue at which a message has arrived via

the select operator. What the select returns is a structure containing a shared name, a session

name, a closure and a channel used for continuation. First the shared name is matched against

the shared name a to check whether there is a new session to accept. If the match succeeds

the a new event closure is created and the event-loop will pass control to Codeblock process

B[[a(w : S).P]] via the shared channel c0. Once invoked, the initial code block, B[[a(w :

S).P]], receives a fresh session channel through the endpoint of a, saves it in the environment

closure, and moves to [[P, x̃]]. The code [[P, x̃]] carries out “instructions” from P, using the

environment denoted by y to interpret variables. After completing all the consecutive non-

blocking actions (invocations, outputs, selections, conditionals and recursions) starting from

the initial input, the code will reach a blocking prefix or 0. If the former is the case, it registers

the blocking session channel, the associated continuation and the current environment in the

selector queue q. Then the control flow returns to the event-loop via the output on o.

If the shared name match, in the Loop〈o,q〉 process fails (the shared name is a dummy name),

140 Chapter 5. Applications of the Eventful Behavioural Theory

it means that the selector has returned a session name. The session name is then typechecked

by a typecase operator and invokes the corresponding continuation code block, passing the

session channel and the corresponing state environment via the continuation channel ci. The

code block, which has the shape B[[Pi]] for a blocking sub-term Pi of P, now receives the

message via the passed session channel, saves it in the passed environment, and continues

with the remaining behaviour until it reaches a blocking action, in the same way as illustrated

for the initial code block. The combination of a typecase and a session channel passing above

enables the protection of session type abstraction, ensuring type and communication safety.

Example 5.5.1 (Lauer-Needham Transform). As an example of a server, consider:

P = ∗a(x).x?(w);x!〈w+1〉;x?(z);x?(w+ z);0 | a[ε]

This process has the session type ?(nat); !〈nat〉; ?(nat); !〈nat〉;end at a which can be read:

a process should first expect to receive a message of type nat, then send a nat, then to

receive again a nat, and finish by sending a result. We extract the blocking subterms from

this process as follows.

Blocking Process Type at Blocking Prefix

a(x).x?(w);x!〈w+1〉;x?(z);x!〈w+ z〉;0 i〈?(nat); !(nat); ?(nat); !(nat)〉

x?(w);x!〈w+1〉;x?(z);x!〈w+ z〉;0 ?(nat); !(nat); ?(nat); !(nat)

x?(z);x!〈w+ z〉;0 ?(nat); !(nat)

These blocking processes are translated into code blocks, denoted CodeBlocks, given as:

∗c0(xs, x̃).a(x′).register q to (xs,a, /0,c0) in register q to (x′,shd,y{x 7→ x′},c1) in ;o |

∗c1(x, x̃).x?(w′);x!〈w′+1〉;register q to (x,shd,y{w 7→ w′},c2) in o |

∗c2(x,y).x?(z′);x!〈w+ z′〉;o

which is used for processing each message. Above, the operation register stores the block-

ing session channel, the associated continuation ci and the current environment y in a selector

queue sel.

5.5. Lauer-Needham Transform 141

Finally, using these code blocks, the main event-loop denoted Loop, is given as:

Loop = ∗o.select (xs,xa,y, x̃) from q in if xa = a then new env y in z〈xs, x̃〉. else

typecase xs of {

x1 :?(nat); !〈nat〉; ?(nat); !〈nat〉;end : z〈xs, x̃〉.

x2 :?(nat); !〈nat〉;end : z〈xs, x̃〉.

}

Above select from q in selects a message from the selector queue sel, and treats it in P.

The new construct creates a new environment y. The typecase construct then branches into

different processes depending on the session of the received message, and dispatches the task

to each code block.

A server is currently stateless, because the construction of the server does not allow an internal

shared state to be accessed by the spawned threads3. Hence we have:

Lemma 5.5.1. Let ∗a(x).P | a[ε] be a simple server. Then ∗a(x).P | a[ε] is confluent.

Proof. The proof is straightforward by using the confluence properties for the ESP, studied

in § 4.3.3 (see Appendix B.3).

Lemma 5.5.2. Let ∗a(x).P | a[ε] be a simple server. Then LN[[∗a(x).P | a[ε]]] is confluent.

Proof. For proof see, Appendix B.3.

Theorem 5.5.1 (Semantic Preservation). Let ∗a(x).P | a[ε] be a simple server. Then we have

∗a(x).P | a[ε] ≈ LN[[∗a(x).P | a[ε]]].

Proof. The proof of the above theorem constructs a determinate up-to expansion relation,

cf. Definition 4.3.5 and Lemma 3.3.6. The up-to expansion relation contains each process

pair that has all the parallel processes on a blocking prefix for the threaded server and starts

3 The transform can be extended to the situation where threads share state, though its behavioural justification
takes a different form.

142 Chapter 5. Applications of the Eventful Behavioural Theory

from the Loop process for the thread-free process, with arbitrary localisations. We show the

conditions needed Definition 4.3.5 by using Lemmas 5.5.1, 5.5.2, as well as Lemma 5.4.2.

We conclude the proof using Lemma 3.3.6. For details of the proof, see Appendix B.3.

Part II

143

Chapter 6

Multiparty Session Types Behavioural

Theory

Multiparty session types [HYC08, B+08] were developed to overcome the limitations pre-

sented by the binary definition of session types. Influenced by the idea of communication

choreography, multiparty session types offer a type-safe framework for a multi-participant

communication scenario.

Choreography in communication requires knowledge in advance of the communication sce-

nario by all computing processes. This was expressed through a structure called the global

session type. Global session types describe the communication choreography among the dif-

ferent participants. A local projection procedure projects the global type to individual local

session types for each participant. Local session types can be considered as a more refined

structure of binary session types. The implementation of each participant should conform

with its local projection to guarantee type safety and progress properties for the entire dis-

tributed program.

In this Chapter we are interested in studying the behavioural theory for multiparty session

types following the principles set out in Chapter 3. We first develop a core synchronous mul-

145

146 Chapter 6. Multiparty Session Types Behavioural Theory

tiparty session π-calculus and then extend it, in a straightforward way to three asynchronous

multiparty session π-calculi. What distinguishes the three asynchronous calculi is the local-

ity of the intermediate buffers that are used to achieve asynchronous communication. A local

output buffer locally stores values until they are sent on an endpoint, while a local input buffer

locally stores values that were received on an endpoint. A third version considers the exis-

tence of both output and input buffers for session endpoints (similar with the calculi presented

in Chapter 3 and Chapter 4). The semantic difference in input and output localities result in

a different behaviour for each of the four multiparty session π-calculi. All four calculi are

strongly related with the asynchronous multiparty framework developed in [B+08]. We then

develop a bisimulation framework based on different typed labelled transition systems.

The typed labelled transition semantics take into account the session type information from

typed processes. A main innovation in this chapter is the study of the impact of the global

session type on the label transition system in contrast to a labelled transition system that is

defined using only the local session type information.

All the bisimulation definitions developed in this chapter are sound and complete with respect

to their corresponding reduction-closed congruence relation.

6.1 Intuition for the Multiparty Behavioural Theory

We use the means of example to demonstrate the basic insights for the development of a

multiparty behavioural theory. Figure 6.1 describes two multiparty scenarios for a client that

is concurrently served by two servers on the same multiparty session. We assume the syntax

and the semantics for synchronous multiparty session types, which we believe are intuitive

(for a formal definition, see § 6.2).

In scenario (a) of Figure 6.1 process Client3 communicates with the single threaded process

Server1 and the multithreaded process Server2 via multiparty session s1. Process Server1 is

6.1. Intuition for the Multiparty Behavioural Theory 147

Server1 Server2 Client3

s1[1][3]!〈v〉

s2[1][2]!〈w〉

s1[2][3]!〈v〉

Server1 Server2 Client3

s1[1][3]!〈v〉

s2[1][2]!〈w〉

s1[2][3]!〈v〉

Figure 6.1: Resource Managment Example: (a) before optimisation; (b) after optimisation

responsible for sending value v to process Client3 (expressed with label s[1][3]!〈v〉) and simi-

larly the first thread of process Server2 is responsible for sending a value v to process Client3

(label s[2][3]!〈v〉). Furthermore process Server1 is communicating with the second thread

of process Server2 via the intra-service session s2, to exchange value w (label s[1][2]!〈w〉).

The process for the three participants can be expressed in the synchronous multiparty session

types as:

S1 = s1[1][3]!〈v〉;s2[1][2]!〈w〉;0 S2 = s1[2][3]!〈v〉;0 | s2[2][1]?(x);0

C3 = s1[3][1]?(x);s1[3][2]?(y);0

The multiparty protocols for channels s1 : G1 and s2 : G2 are defined as:

G1 = 1→ 3 : 〈V 〉.2→ 3 : 〈V 〉.end G2 = 1→ 2 : 〈W 〉.end

where in channel s1 participant 1 sends a value with type V to participant 3 and then partic-

ipant 2 sends a value with the same type again to participant 3 and the session terminates,

while channel s2 expects the send of a value with type W from participant 1 to participant 2

before it terminates.

In the second scenario (b) we want to optimise Server2 and avoid the overhead for thread cre-

ation. We also want to maintain the global protocol specification s1 : G1,s2 : G2 for the entire

scenario. The scenario for Server2 now expects a message from Server1 (label s2[1][2]!〈w〉)

and then sends value v to the Client3 (label s2[2][3]!〈v〉). The new process for Server2 now

148 Chapter 6. Multiparty Session Types Behavioural Theory

becomes:

S′2 = s2[2][1]?(x);s1[2][3]!〈v〉;0

Note that S′2 respects s1 : G1 and s2 : G2. Clearly, the behaviour of processes S1 | S2 and

S1 | S′2 on the actions they exhibit with respect to an arbitrary observer is not the same, since

the former can act as S1 | S2
s[2][3]!〈v〉−→ while the latter cannot. Nevertheless, because of the

restriction on global protocols s1 : G1 and s2 : G2 the former process can replace the latter

without any problems in the communication with the Client3 process.

This last observation drives our insight to define a pair of bisimilarity relations for the study

of multiparty session types. The first bisimilarity relation is based on the information from the

local session type of a process (does not relate S1 | S2 and S1 | S′2) and the second relation takes

into account the information from the global session type assignment on session channels

(relates S1 | S2 and S1 | S′2) . Furthermore, we are interested in studying the relation between

the two bisimilarities.

6.2 Synchronous Multiparty Session π-Calculus as a Core

Calculus

This section defines a synchronous version of the multiparty session π-calculus (or syn-

chronous MSP). The syntax follows [B+08] except we eliminate queues for asynchronous

communication. The synchronous version of the Multiparty Session π-calculus will be used

as the reference theory to be extended to a set of different asynchronous MSP calculi.

6.2.1 Syntax and Operational Semantics

Figure 6.2 defines the syntax for the synchronous MSP. Shared names are denoted as a,b, . . . ,

session names as s,s′, . . . , variables as x,y, . . . and constants as tt,ff, We call p,q, . . . the

6.2. Synchronous Multiparty Session π-Calculus as a Core Calculus 149

(Processes) P ::= u[p](x).P Request

| u[p](x).P Accept

| c[p]!〈e〉;P Sending

| c[p]?(x);P Receiving

| c[p]⊕ l;P Selection

| c[p]&{li : Pi}i∈I Branching

| if e then P else Q Conditional

| P | Q Parallel

| 0 Inaction

| (ν n)P Hiding

| µX .P Recursion

| X Variable

(Identifiers) u ::= x | a

(Name) n ::= s | a

(Expression) e ::= v | x | e and e′

| e = e′ | . . .

(Session) c ::= s[p] | x

(Value) v ::= a | tt | ff | s[p]

Figure 6.2: Syntax for synchronous multiparty session calculus

participants and let them to range over natural numbers. We write s[p] to denote a participant p

on session s and we call it a session role. Symbol u ranges over shared names or variables and

c ranges over session roles or variables. Values v,v′, . . . range over shared names, constants,

or roles. Expressions e,e′, . . . are either values, logical operations on expressions or name

matching operations.

For the primitives for session initiation, u[p](x).P initiates a new session through an identi-

fier u (which represents a shared interaction point) with the other multiple participants, each

of shape u[p](x)..Qq where 1 ≤ q ≤ p− 1. The (bound) variable x is the channel used to

do the communications. Session communications (communications that take place inside an

established session) are performed using the next two pairs of processes: the sending and

150 Chapter 6. Multiparty Session Types Behavioural Theory

P ≡α P

P ≡ P | 0
P | Q ≡ Q | P

(P | Q) | R ≡ P | (Q | R)
µX .P ≡ P{µX .P/X}

(ν n)(ν n′)P ≡ (ν n′)(ν n)P

(ν n)0 ≡ 0

(ν n)(P) | Q ≡ (ν n)(P | Q) n /∈ fn(Q)

Figure 6.3: Structural Congruence for Synchronous Multiparty Session Calculus

receiving of a value and the selection and branching (where the former chooses one of the

branches offered by the latter). The input/output operations specify the sender and the re-

ceiver, respectively. Hence c[p]!〈e〉;P sends a value to participant p; accordingly, c[p]?(x);P

denotes the intention of receiving a value from the participant p. The same holds for selec-

tion/branching. We call s[p] a channel with role: it represents the channel of the participant

p in the session s. Process 0 is the inactive process. The rest of the processes are standard

π-calculus processes. Process P |Q is the parallel composition of processes P and Q. Process

(ν n)P restricts name n in the scope of P. Term X is the process variable used in the standard

µ-recursive expression µX .P. We say that a process is closed it does not contain free vari-

ables. We denote fn(P)/bn(P) and fv(P)/bv(P) for a set of free/bound names and free/bound

variables, respectively.

Structural Congruence

The structural congruence rules are defined in Figure 6.3. Processes are structurally congru-

ent up-to alpha renaming. A parallel composition of terms P and 0 has no structural effect

on process P. Associativity and commutativity hold for parallel composition. Recursive un-

folding is defined up-to structural congruence. Restriction order is irrelevant and restricting

a name in term 0 is congruent with 0. Finally a restricted name n for a process P can still be

6.2. Synchronous Multiparty Session π-Calculus as a Core Calculus 151

a[1](x).P1 | . . . | a[n](x).Pn −→ (ν s)(P1{s[1]/x} | . . . | Pn{s[n]/x}) [Link]

s[p][q]!〈e〉;P | s[q][p]?(x);Q −→ P | Q{v/x} (e ↓ v) [Comm]

s[p][q]⊕ lk;P | s[q][p]&{li : Pi}i∈I −→ P | Pk k ∈ I [Label]

if e then P else Q −→ P (e ↓ tt) [If-True]

if e then P else Q −→ Q (e ↓ ff) [If-False]

P−→ P′

(ν n)P−→ (ν n)P′
[Res]

P−→ P′

P | Q−→ P′ | Q
[Par]

P≡ P′ −→ Q′ ≡ Q
P−→ Q

[Str]

Figure 6.4: Operational semantics for synchronous multiparty session calculus

restricted in a parallel process of P and Q provided that n does not occur free in Q.

Operational semantics

Operational semantics of the calculus are defined in Figure 6.4. Rule [Link] defines syn-

chronous session initiation. All session roles must be present to synchronously reduce each

role p on a fresh session name s[p]. Rule [Comm] is for sending a value to the correspond-

ing receiving process where e ↓ v means expression e evaluates to value v. The interaction

between selection and branching is defined via rule [Label], where a select prefix on role s[p]

selects branch Pk offered by role s[q] via label lk. The rest of the operational rules are standard

π-calculus operational rules. Rules [If-True] and [If-False], describe the reduction semantics

for the standard control construct if e then P else Q, where process P is selected if e eval-

uates to true (tt) and process Q otherwise. Rule [Res] states that the restriction of a name

n in a process P does not affect internal reductions of P. Similarly rule [Par] states that the

parallel composition of a process P does not affect its internal reductions. Rule [Str] closes

the reduction relation over structural congruence ≡. We write→→ for (−→∪≡)∗.

152 Chapter 6. Multiparty Session Types Behavioural Theory

Exchange U ::= S | T

Sort S ::= bool | 〈G〉

Global G ::= p→ q : 〈U〉.G′ exchange

| p→ q : {li : Gi}i∈I branching

| µt.G recursion

| t variable

| end end

Figure 6.5: Global types

6.2.2 Session Types for Synchronous Multiparty Session π-calculus

In this subsection we define the basic global type session type syntax. We define global types,

which we project to local types via a projection algorithm. The properties for local types are

clarified through the local type projection algorithm and the duality relation.

Global types, ranged over by G,G′, . . . describe the whole conversation scenario of a mul-

tiparty session as a type signature. Their grammar is given in Figure 6.5. The global type

p→ q : 〈U〉.G′ says that participant p sends a message of type U to participant q and then

interactions described in G′ take place. Type p→ q : {li : Gi}i∈I says participant p sends one

of the labels li to q. If l j is sent with j ∈ I, interactions described in G j take place. In both

cases we assume for well-formedness that p 6= q. Type µt.G is a recursive type, assuming

type variables (t, t ′, . . .) are guarded in the standard way, i.e. type variables only appear under

some prefix. We take an equi-recursive view of recursive types, not distinguishing between

µ.G and its unfolding G{µt.G/t} [Pie02, § 21.8]. Type end represents the termination of the

session. Exchange types U,U ′, ... consist of sorts types S,S′, . . . for values (either base types

or global types), and local session types T,T ′, . . . for channels (defined in the next paragraph).

We assume that G in the grammar of sorts is closed, i.e. without free type variables.

6.2. Synchronous Multiparty Session π-Calculus as a Core Calculus 153

Local T ::= [p]!〈U〉;T send

| [p]?(U);T receive

| [p]⊕{li : Ti}i∈I selection

| [p]&{li : Ti}i∈I branching

| µt.T recursion

| t variable

| end end

Figure 6.6: Local types

Local types are defined in Figure 6.6 and correspond to the communication actions, repre-

senting sessions from the view-points of single participants. We often call local types session

types. The send type [p]!〈U〉;T expresses the sending of a value of type U to participant

p, followed by the communications of T . The selection type [p]⊕{li : Ti}i∈I represents the

transmission of a label li chosen in the set {li | i∈ I} to participant p followed by the commu-

nications described by Ti. The receive type [p]?(U);T is dual to the send type, and expresses

the input of a value value with type U from participant p and then continues as T . Similarly

the branching type [p]&{li : Ti} offers the set of labels {li | i ∈ I} for a selection between

the types Ti | i ∈ I respectively. The inactive type is represented with the end term. The

recursive variable t is used for the standard µ-recursive type µt.T .

We proceed with the definition of global and local participants.

Definition 6.2.1 (Global and Local Participants).

• We define partic(G) as:

partic(end) = /0 partic(t) = /0 partic(µt.G) = partic(G)

partic(p→ q : 〈U〉.G) = {p,q}∪partic(G)

partic(p→ q : {li : Gi}i∈I) = {p,q}∪{partic(Gi) | i ∈ I}

• We define partic(T) on local types as:

154 Chapter 6. Multiparty Session Types Behavioural Theory

partic(end) = /0 partic(t) = /0 partic(µt.T) = partic(T)

partic([p]!〈U〉;T) = {p}∪partic(T)

partic([p]?(U);T) = {p}∪partic(T)

partic([p]⊕{li : Ti}i∈I) = {p}∪partic(T)

partic([p]&{li : Ti}i∈I) = {p}∪partic(T)

Global participants sets for global types partic(G) and local types partic(T) are induc-

tively defined on the syntax of global types and local types respectively and include all par-

ticipants in a type.

Global and Local Projection

The relation between global and local types is formalised by the standard projection function

[HYC08]. We proceed with the definition of global types projection:

Definition 6.2.2 (Global Projection). The projection of a global type G onto a participant p

is defined by induction on G:

6.2. Synchronous Multiparty Session π-Calculus as a Core Calculus 155

p′→ q : 〈U〉.Gdp =

[q]!〈U〉;Gdp p= p′

[p′]?(U);Gdp p= q

Gdp otherwise

p′→ q : {li : Gi}i∈Idp =

[q]⊕{li : Gidp}i∈I p= p′

[p′]&{li : Gidp}i∈I p= q

G1dp if ∀ j ∈ I. G1dp= G jdp

(µt.G)dp =

 µt.(Gdp) p ∈ G

end otherwise

tdp = t

enddp = end

Inactive end and recursive variable t types are projected to their respective local types. We

project a global type p′→ q : 〈U〉.G to participant p as a sending local type if p = p′ and as

a receiving local type if p = q. In any case the continuation of the projection is Gdp. For

p→ q : {li : Gi}i∈I global type the projection is the select local type for p= p′ and the branch

local type p= q. Otherwise we use the projection of one of the {Gi | i ∈ I} global types (all

types Gi should have the same projection with respect to p). Recursion µt.G is projected onto

a local type using local recursion and the projection of the global type G with respect to p.

Definition 6.2.3 (Projection Set). The projection set of s : G is defined as

proj(s : G) = {s[p] : Gdp | p ∈ partic(G)}

We define the following projection from a local type T to produce binary session types needed

for defining coherency and well-formedness properties later.

156 Chapter 6. Multiparty Session Types Behavioural Theory

Definition 6.2.4 (Local projection). The projection of a local type T onto a participant p is

defined by induction on T :

[p]!〈U〉;Tdq =

 !〈U〉;Tdq q= p

Tdq otherwise

[p]?(U);Tdq =

 ?(U);Tdq q= p

Tdq otherwise

[p]⊕{li : Ti}i∈Idq =

 ⊕{li : Tidq}i∈I q= p

T1dq if ∀i ∈ I.Tidq= T1dq

[p]&{li : Ti}i∈Idq =

 &{li : Tidq}i∈I q= p

T1dq if ∀i ∈ I.Tidq= T1dq

(µt.T)dq = µt.(Tdq)

tdq = t

enddq = end

Inactive local type and the recursive variables are always projected to their corresponding

binary session types syntax. The recursion operator µt.T is projected onto the corresponding

binary session types syntax. The types [p]!〈U〉;T, [p]?(U);T are projected with respect to q

to binary session type send and binary session type receive respectively, and continue with

the projection of T on q if p = q. If p 6= q local projection continues with the projection of

T . There is a similar argument for [p]⊕{li : Ti}i∈I, [p]&{li : Ti}i∈I , where in the case of p= q

the projection follows binary session types. In the case where p 6= q we project one of the

continuations in {Ti}i∈I since we expect all the projections to be the same.

The duality over the binary session types is defined in Figure 6.7. Duality is inductively

defined on the structure of binary session types with end and t to be homomorphic. The send

6.2. Synchronous Multiparty Session π-Calculus as a Core Calculus 157

!〈U〉;T = ?(U);T ?(U);T = !〈U〉;T

⊕{li : Ti}i∈I = &{li : Ti}i∈I &{li : Ti}i∈I = ⊕{li : Ti}i∈I

end = end t = t µt.T = µt.T

Figure 6.7: Multiparty Session Duality

prefix is dual to the receive session types. Similarly the select type is dual to the branch type.

Recursion is defined inductively on the structure of the recursive type.

Lemma 6.2.1. If p,q ∈ partic(G) then (Gdp)dq= (Gdq)dp.

Proof. The proof is an induction on the syntax structure of G. See Appendix C.1.1 for details.

6.2.3 Typing System and its Properties

The typing system is expressed though typing judgements for expressions and processes, that

have the shapes:

Γ ` e : S and Γ ` P.∆

where Γ is the standard environment which associates variables to sort types, shared names to

global types and process variables to session environments; and ∆ is the session environment

which associates channels to session types. Formally we define:

Γ ::= /0 | Γ ·u : S | Γ ·X : ∆ and ∆ ::= /0 | ∆ · s[p] : T

assuming we can write Γ · u : S if u 6∈ dom(Γ). We extend this to a concatenation for typing

environments as ∆ ·∆′ = ∆∪∆′.

158 Chapter 6. Multiparty Session Types Behavioural Theory

Coherency is an important property for the soundness of session environments. We define

coherency of session environments as follows:

Definition 6.2.5 (Coherency). Typing ∆ is coherent with respect to session s, written notation

co(∆(s)), if

∀s[p] : Tp,s[q] : Tq ∈ ∆,p 6= q then Tpdq= Tqdp

A typing ∆ is coherent, written co(∆), if it is coherent with respect to all s in its domain. We

say that the typing judgement Γ ` P.∆ is coherent if co(∆).

Typing System

We proceed with the definition of the typing system. The typing rules are essentially iden-

tical to the communication typing system for programs in [B+08] (since we do not require

session queues). Figure 6.8 defines the typing system. Rule [Name] types a shared name or

shared variable to 〈G〉. Boolean tt,ff are typed with the bool type via rule [Bool]. Logical

expressions are also typed with the bool type via rule [And], etc. Rules [MReq] and [MAcc]

check that the local type of a session role agrees with the global type of the initiating shared

name. Rules [Send] and [Recv] prefix the local type with send and receive local types respec-

tively, after checking the type environment for the sending value type (receiving variable type

resp.). Delegation is typed under rules [Deleg] and [Srecv] where we check type consistency of

the delegating/receiving session role. Rules [Sel] and [Bra] type select and branch processes

respectively. A select process uses the select local type. A branching process checks that all

continuing process have consistent typing environments. [Conc] types a parallel composition

of processes by checking the disjointness of their typing environments. Conditional is typed

with [If], where we check the expression e to be of bool type and the branching processes to

have the same typing environment. Rule [Nres] defines the typing for shared name restriction.

Rule [Sres] uses the coherency property to restrict a session name. Rule [Var] assigns a session

environment to process variable X with respect to the shared environment Γ and rule [Rec]

6.2. Synchronous Multiparty Session π-Calculus as a Core Calculus 159

Γ ·u : S ` u : S [Name] Γ ` tt,ff : bool [Bool]

Γ ` ei : bool
Γ ` e1 and e2 : bool

[And]

Γ ` a : 〈G〉 Γ ` P.∆ · x[p] : Gdp
max(partic(G)) = p

Γ ` a[p](x).P.∆
[MReq]

Γ ` a : 〈G〉 Γ ` P.∆ · x[p] : Gdp
Γ ` a[p](x).P.∆

[MAcc]

Γ ` e : S Γ ` P.∆ · c : T
Γ ` c[q]!〈e〉;P.∆ · c : [q]!〈S〉;T

[Send]
Γ · x : S ` P.∆ · c : T

Γ ` c[q]?(x);P.∆ · c : [q]?(S);T
[Recv]

Γ ` P.∆ · c : T
Γ ` c[q]!〈c′〉;P.∆ · c : [q]!〈T ′〉;T · c′ : T ′

[Deleg]

Γ ` P.∆ · c : T · x : T ′

Γ ` c[q]?(x);P.∆ · c : [q]?(T ′);T
[SRecv]

Γ ` P.∆ · c : T
Γ ` c[q]⊕ li;P.∆ · c : [q]⊕{li : Ti}i∈I

[Sel]

Γ ` Pi .∆ · c : Ti ∀ i ∈ I
Γ ` c[q]&{li : Pi}i∈I .∆ · c : [q]&{li : Ti}i∈I

[Bra]

Γ ` Pi .∆i i ∈ {1,2} ∆1∩∆2 = /0
Γ ` P1 | P2 .∆1 ·∆2

[Conc]
Γ ` e : bool Γ ` Pi .∆ i ∈ {1,2}

Γ ` if e then P1 else P2 .∆
[If]

∆ end only
Γ ` 0.∆

[Inact]
Γ ·a : 〈G〉 ` P.∆

Γ ` (ν a)P.∆
[NRes]

co({s[1] : T1 . . .s[n] : Tn})
Γ ` P.∆ · s[1] : T1 . . .s[n] : Tn

Γ ` (ν s)P.∆
[SRes] Γ ·X : ∆ ` X .∆ [Var]

Γ ·X : ∆ ` P.∆

Γ ` µX .P.∆
[Rec]

Figure 6.8: Typing System for Synchronous Multiparty Session Calculus

160 Chapter 6. Multiparty Session Types Behavioural Theory

expects the recursive process to have the same type as the recursive variable inside. Finally

the inactive process 0 is typed with the complete typing environment, where every session

role is mapped to the inactive local type end.

6.2.4 Type soundness

Next we define the reduction semantics for local types. Since session environments represent

the forthcoming communications, session environments can change when processes are re-

duced. This can be formalised as in [HYC08, B+08] by introducing the notion of reduction

of session environments, whose rules are:

Definition 6.2.6 (Session Environment Reduction).

1. {s[p] : [q]!〈U〉;T · s[q] : [p]?(U);T ′} −→ {s[p] : T · s[q] : T ′}.

2. {s[p] : [q]⊕{li : Ti}i∈I · s[q] : [p]&{l j : T ′j} j∈J} −→ {s[p] : Tk · s[q] : T ′k} I ⊆ J,k ∈ I.

3. ∆∪∆′ −→ ∆∪∆′′ if ∆′ −→ ∆′′.

Session types are reduced upon an interaction with their dual counterpart. Note that ∆−→∗ ∆′

is non-deterministic (i.e. not always confluent) by the second rule.

The following theorem is proved in [B+08].

Theorem 6.2.1 (Subject reduction). Let Γ ` P.∆ be coherent and P→→ P′ then

∆→→ ∆′ and Γ ` P′ .∆′ is coherent.

Proof. The proof is a standard subject reduction proof for session types, where we use induc-

tion on the length of→→. See Appendix C.2.1.

6.2. Synchronous Multiparty Session π-Calculus as a Core Calculus 161

6.2.5 Labelled Transition System

We present the labelled transition semantics for the synchronous MSP. Along with the untyped

LTS we present a labelled transition system on environments (Γ,∆), following the behaviour

of local session types. The environment LTS is used to control the transition behaviour of

typed processes, with respect to local session typing. We begin with the definition of the

action labels for the LTS.

Labels: We use the following labels, range over `,`′, ...:

Definition 6.2.7 (Labels).

` ::= a[A](s) | a[A](s) | s[p][q]!〈v〉 | s[p][q]!(a)

| s[p][q]!(s′[p′]) | s[p][q]?〈v〉 | s[p][q]⊕ l | s[p][q]&l | τ

A participant set A is a set of multiparty session participants. Labels a[A](s) and a[A](s)

define the accept and request, respectively, of a fresh session s by roles in set A. Actions on

session channels are denoted with labels s[p][q]!〈v〉 and s[p][q]?〈v〉 for output and input of

value v from p to q on session s. Bound output values can be shared channels or session roles

(delegation). Labels s[p][q]⊕ l and s[p][q]&l define the selection and branching respectively.

Label τ is the standard hidden transition.

Dual label definition is used to define the parallel rule in the labelled transition system:

Definition 6.2.8 (Dual Labels).

s[p][q]!〈v〉 � s[q][p]?〈v〉 s[p][q]!(v)� s[q][p]?〈v〉 s[p][q]⊕ l � s[q][p]&l

Dual labels are input and output (resp. selection and branching) on the same session channel

and on complementary roles. For example, in s[p][q]!〈v〉 and s[q][p]?〈v〉, role p sends to q and

162 Chapter 6. Multiparty Session Types Behavioural Theory

role q receives from p. Another important definition for the session initiation is the notion of

the complete role set.

Definition 6.2.9. We say the role set A is complete with respect to n if n = max(A) and

A = {1,2, . . . ,n}.

The complete participant set means that all global protocol participants are present in the set.

For example, {1,3,4} is not complete, but {1,2,3,4} is.

We use fn(`) and bn(`) to denote a set of free and bound names in ` and set n(`) = bn(`)∪

fn(`).

Untyped Labelled Transition System

Figure 6.9 gives the untyped labelled transition system. Rules 〈Req〉 and 〈Acc〉 define the

accept and request actions for a fresh session s on participants set {p}. Rules 〈Send〉 and

〈Rcv〉 give the send and receive respectively for value v from role p to role q in session s.

Similarly rules 〈Sel〉 and 〈Bra〉 define selecting and branching labels.

The last three rules are for collecting and synchronising the multiparty participants together.

Rule 〈AccPar〉 accumulates the accept participants and records them into role set A. Rule

〈ReqPar〉 accumulates the accept participants and the request participant into role set A. Note

that the request action role set always includes the maximum role number among the partici-

pants. Finally, rule 〈TauS〉 checks that a role set is complete, thus a new session can be created

under the τ-action (synchronisation). The rest of the rules are standard π-calculus LTS rules.

Rule 〈Tau〉 performs a τ action on a parallel composition if the parallel components exhibit

symmetric actions. If any bounded names are observed, then they are restricted in the entire

parallel composition. Rule 〈Par〉 implies that an action ` observed on a process P, can be also

observed on process P | Q, provided that the bound names of ` do not occur free in Q. Rules

〈OpenN〉 and 〈OpenS〉 describe scope opening for shared and session names respectively.

6.2. Synchronous Multiparty Session π-Calculus as a Core Calculus 163

〈Req〉 a[p](x).P
a[{p}](s)−→ P{s[p]/x} 〈Acc〉 a[p](x).P

a[{p}](s)−→ P{s[p]/x}

〈Send〉 s[p][q]!〈e〉;P
s[p][q]!〈v〉−→ P (e ↓ v) 〈Rcv〉 s[p][q]?(x);P

s[p][q]?〈v〉−→ P{v/x}

〈Sel〉 s[p][q]⊕ l;P
s[p][q]⊕l−→ P 〈Bra〉 s[p][q]&{li : Pi}i∈I

s[p][q]&lk−→ Pk

〈Tau〉 P `−→ P′ Q `′−→ Q′ `� `′

P | Q τ−→ (ν bn(`)∩bn(`′))(P′ | Q′)
〈Par〉 P `−→ P′ bn(`)∩fn(Q) = /0

P | Q `−→ P′ | Q

〈Res〉 P `−→ P′ n /∈ fn(`)

(ν n)P `−→ (ν n)P′
〈OpenS〉 P

s[p][q]!〈s′[p′]〉−→ P′

(ν s′)P
s[p][q]!(s′[p′])−→ P′

〈OpenN〉 P
s[p][q]!〈a〉−→ P′

(ν a)P
s[p][q]!(a)−→ P′

〈Alpha〉 P≡α P′ P′ `−→ Q′

P `−→ Q
〈AcPar〉

P1
a[A](s)−→ P′1 P2

a[A′](s)−→ P′2 A∩A′ = /0

P1 | P2
a[A∪A′](s)−→ P′1 | P′2

〈ReqPar〉
P1

a[A](s)−→ P′1 P2
a[A′](s)−→ P′2 A∩A′ = /0, A∪A′ not complete w.r.t max(A′)

P1 | P2
a[A∪A′](s)−→ P′1 | P′2

〈TauS〉
P1

a[A](s)−→ P′1 P2
a[A′](s)−→ P′2 A∩A′ = /0, A∪A′ complete w.r.t max(A′)

P1 | P2
τ−→ (ν s)(P′1 | P′2)

We omit the synmetric case of 〈Par〉 and conditonals.

Figure 6.9: Labelled transition system for processes

Rule 〈Alpha〉 closes the transition relation under structural equivalence. We write =⇒ for the

reflexive and transitive closure of−→, `
=⇒ for the transitions =⇒ `−→=⇒ and

ˆ̀
=⇒ for `

=⇒ if

` 6= τ otherwise =⇒.

Labelled Transition System for Environments

We use labels ` to introduce the definition of an environment labelled transition system `−→

on the environment structure (Γ,∆), defined in Figure 6.10. (Γ,∆) `−→ (Γ′,∆′) means that an

environment (Γ,∆) allows an action to take place, and the resulting environment is (Γ′,∆′).

164 Chapter 6. Multiparty Session Types Behavioural Theory

Γ(a) = 〈G〉,s fresh implies (Γ,∆)
a[A](s)−→ (Γ,∆ · {s[i] : Gdi}i∈A)

Γ(a) = 〈G〉,s fresh implies (Γ,∆)
a[A](s)−→ (Γ,∆ · {s[i] : Gdi}i∈A)

Γ ` v : U,s[q] /∈ dom(∆) implies (Γ,∆ · s[p] : [q]!〈U〉;T)
s[p][q]!〈v〉−→ (Γ,∆ · s[p] : T)

s[q] /∈ dom(∆),a 6∈ dom(Γ) implies (Γ,∆ · s[p] : [q]!〈U〉;T)
s[p][q]!(a)−→ (Γ ·a : U,∆ · s[p] : T)

Γ ` v : U,s[q] /∈ dom(∆) implies (Γ,∆ · s[p] : [q]?(U);T)
s[p][q]?〈v〉−→ (Γ,∆ · s[p] : T)

a 6∈ dom(Γ),s[q] /∈ dom(∆) implies (Γ,∆ · s[p] : [q]?(U);T)
s[p][q]?〈a〉−→ (Γ ·a : U,∆ · s[p] : T)

s[q] /∈ dom(∆) implies (Γ,∆ · s′[p′] : T ′ · s[p] : [q]!〈T ′〉;T)
s[p][q]!〈s′[p′]〉−→ (Γ,∆ · s[p] : T)

s[q] /∈ dom(∆) implies (Γ,∆ · s[p] : [q]!〈T ′〉;T)
s[p][q]!(s′[p′])−→ (Γ,∆ · s[p] : T · {s′[pi] : Ti})

s[q],s′[p′] /∈ dom(∆) implies (Γ,∆ · s[p] : [q]?(T ′);T)
s[p][q]?〈s′[p′]〉−→ (Γ,∆ · s′[p′] : T ′ · s[p] : T)

s[q] /∈ dom(∆) implies (Γ,∆ · s[p] : [q]⊕{li : Ti}i∈I)
s[p][q]⊕lk−→ (Γ,∆ · s[p] : Tk)

s[q] /∈ dom(∆) implies (Γ,∆ · s[p] : [q]&{li : Ti}i∈I)
s[p][q]&lk−→ (Γ,∆ · s[p] : Tk)

∆−→ ∆′ or ∆ = ∆′ implies (Γ,∆) τ−→ (Γ,∆′)

Figure 6.10: Labelled Transition Relation for Environments

The basic intuition for this labelled system is that observables on session channels occur when

the corresponding endpoint is not present in the linear typing environment ∆, and when the

type of the object of the action respects the environment (Γ,∆). In the cases when new names

are created or received the environment (Γ,∆) is extended.

The first rule says that reception of a message via a is possible when a’s type 〈G〉 is recorded

into Γ and the resulting session environment records projected types from G ({s[i] : Gdi}i∈A).

The second rule is for the send of a message via a and it is dual to the first rule. The next four

6.3. Asynchronous Multiparty Session Calculus 165

rules are free value output, bound name output, free value input and name input. The rest of

the rules are free session output, bound session output, and session input as well as selection

and branching rules. The bound session output records a set of session types s′[pi] at opened

session s′. The final rule (` = τ) follows the reduction rules for linear session environment

defined in § 6.2.4 (∆ = ∆′ is the case for the reduction at hidden sessions). Note that if ∆

already contains destination (s[q]), the environment cannot perform the visible action, but

only the final τ-action.

Typed Labelled Transition System

We define a typed labelled transition system using the environment transition to control the

untyped labelled transition on typed processes. The typed LTS requires that a process can

perform an untyped action ` and that its typing environment (Γ,∆) can match the action `.

Definition 6.2.10 (Typed transition). The typed transition relation is defined as:

Γ1 ` P1 .∆1
`−→ Γ2 ` P2 .∆2

if

(1) P1
`−→ P2 and (2) (Γ1,∆1)

`−→ (Γ2,∆2)

with Γ1 ` P1 .∆1,Γ2 ` P2 .∆2.

6.3 Asynchronous Multiparty Session Calculus

In this section we use the definition of the Synchronous MSP (§6.2) as a reference calculus

to define three versions of the asynchronous Multiparty Session π-calculus: i) the output

Asynchronous MSP; ii) the input Asynchronous MSP; and iii) the input/output Asynchronous

MSP.

166 Chapter 6. Multiparty Session Types Behavioural Theory

o:s[p][q]!〈v〉;P1

s[p][q]!〈v〉 so[p][q]?〈v〉
s[p]

s[q][p]?(x);P2

so[p][q]!〈w〉 s[q][p]?〈w〉

(a) output queue

i:s[p][q]?(x);P1

s[p][q]?〈v〉 si[p][q]!〈v〉
s[p]

s[q][p]!〈w〉;P2

si[p][q]?〈w〉 s[q][p]!〈w〉

(b) input queue

o:

i:

s[p][q]!〈v〉;P1

s[p][q]?(x);P1

s[p][q]!〈v〉 so[p][q]?〈v〉

s[p][q]?〈w〉 si[p][q]!〈w〉

s[p]
:i

:o

s[p][q]?(x);P1

s[p][q]!〈w〉;P1

s[q][p]?〈v〉si[q][p]!〈v〉

s[q][p]!〈w〉so[q][p]?〈w〉

s[q]so[p][q]!〈v〉 si[q][p]?〈v〉

si[p][q]?〈w〉 so[q][p]!〈w〉

(c) input/output queue

Figure 6.11: Three asynchronous semantics

For their definition we use the construct of session endpoint configuration (see § 3.1). A

session endpoint configuration is a first-in, first-out intermediate communication buffer, used

to store sent values before they are being received, in order to simulate asynchrony. The

semantic definition of the interaction between multiparty session channels and session end-

point configurations allows us to control the input and output meaning of the asynchronous

communication at the same time offer a coarse-grained and a fine-grained version of the asyn-

chronous communication.

Figure 6.11 clarifies the last paragraph through a schematic representation of the three asyn-

chronous semantics. The reader can intuitively assume syntax and label transition semantics

for processes and session endpoint configurations. The formal definition is given later in this

section.

Output asynchrony is described in (a) where the output queue is located in the process side.

Following the arrows, an output message v is first enqueued by the sender process s[p][q]!〈v〉;P

in the local output queue at endpoint s[p], which intuitively represents a communication pipe

extending from the sender’s locality to the receiver’s. Hence an external observer can ob-

serve the output from the queue and input to the receiver, if we assume that enqueuing actions

6.3. Asynchronous Multiparty Session Calculus 167

within a location are local to each process and are therefore invisible (τ-actions) to external

observers. The observable actions are coloured by blue. The output asynchrony MSP defi-

nition is essentially the same with the system described in [B+08]. On the dual side, input

asynchrony is described in case (b). Following the arrows an external observer can observe

the session configuration input action si[p][q]?〈w〉. The reception of the value by process

s[p][q]?(x);P1 is done locally and therefore invisible to the external observer. A more fine-

grained asynchrony is captured by the diagram in (c) where output and input asynchrony are

combined. The communication medium (i.e. the connection) is responsible for transport-

ing the message from the sender’s locality to the receiver’s locality, formalised as a message

transfer from the sender’s output queue (at s[p]) to the receiver’s input queue. For the receiver

process, the message can only be received after this transfer takes place. In (c), both dequeu-

ing and enqueuing actions within a location are local to each process and invisible to external

observers.

We proceed with the definition of the Asynchronous Multiparty Session π-Calculi. We are

going to present all three calculi by extending in a uniform way the definition of the Syn-

chronous Multiparty Session π-Calculus in § 6.2.

6.3.1 Syntax and Operational Semantics

We extend the syntax of the Synchronous MSP in Figure 6.2 (description in § 6.2.1) with the

following session endpoint configuration terms:

P ::=
...

s[p][o :~h] (ConfigurationO)

| s[p][i :~h] (ConfigurationI)

h ::= [p](v) | [p]l | [p](s[q]) (Message)

168 Chapter 6. Multiparty Session Types Behavioural Theory

We define the output session endpoint configuration s[p][o :~h] and the input session endpoint

configuration s[p][i :~h]. Both session configurations are used to store message vectors. A

message is denoted as h and it is either a value v, a label l, or a session role s[p] along with

a participant p. The participant in the case of the output queue denotes the receiver of the

message and in the case of the input queue the sender of the message.

We distinguish the syntax between the three calculi:

• The Output Asynchronous MSP syntax uses only the output configuration session

endpoint s[p][o :~h].

• The Input Asynchronous MSP syntax uses only the input configuration session end-

point s[p][i :~h].

• The Input/Output Asynchronous MSP syntax uses both configuration session end-

points s[p][o :~h] and s[p][i :~h].

A runtime process is a closed asynchronous MSP term that contains session endpoint con-

figurations, while a program is a closed asynchronous MSP term without session endpoint

configurations and free session names.

Structural Congruence

We extend the structural congruence definition in Figure 6.3 (description in §6.2.1) with the

following rules:

...

s[p][o :~h · [q](v) · [q′](v′) ·~h]≡ s[p][o :~h · [q′](v′) · [q](v) ·~h] q 6= q′

s[p][i :~h · [q](v) · [q′](v′) ·~h]≡ s[p][i :~h · [q′](v′) · [q](v) ·~h] q 6= q′

(ν s[p])(s[p][o : ε])≡ 0

(ν s[p])(s[p][i : ε])≡ 0

6.3. Asynchronous Multiparty Session Calculus 169

We capture asynchrony using the first two rules. To achieve output (resp. input) asynchrony

we allow permutation of values inside output (resp. input) session endpoint configurations,

if the receiver (resp. sender) of the value is different. This condition allows asynchrony be-

tween the communication of different session participants and maintains the order-preserving

property inside a role to role communication. The last two rules are used for garbage col-

lection of session endpoints that cannot interact anymore. Each of the three versions of the

asynchronous MSP calculi is restricted to the use of the rules defined in their syntax.

Operational Semantics

The operational semantics for asynchronous MSP, clarify the use of session endpoint con-

figurations, to achieve the different semantics for asynchrony. The definition is based on the

operational semantics for the synchronous MSP, in Figure 6.4 (description in §6.2.1).

Operational Semantics for the Output Asynchronous MSP: The output asynchronous

MSP assumes an output locality of the session endpoint configuration, meaning that mes-

sages that are to be sent from a session role s[p] are enqueued in the corresponding so[p]

configuration endpoint.

a[1](x).P1 | . . . | a[n](x).Pn −→ (ν s)(P1{s[1]/x} | . . . | Pn{s[n]/x} |

s[p][o : ε] | . . . | s[n][o : ε]) [Link]

s[p][q]!〈v〉;P | s[p][o :~h] −→ P | s[p][o : [q](v) ·~h] [Send]

s[p][q]?(x);P | s[q][o :~h · [p](v)] −→ P{v/x} | s[q][o :~h] [Rcv]

s[p][q]⊕ l;P | s[p][o :~h] −→ P | s[p][o : [q]l ·~h] [Sel]

s[p][q]&{li : Pi}i∈I | s[q][o : [p]lk ·~h] −→ Pk | s[q][o :~h] [Bra]

Rule [Link] describes session initiation. All session participants should be present before each

participant p synchronously reduces to create a fresh role s[p] and the corresponding output

170 Chapter 6. Multiparty Session Types Behavioural Theory

session configuration s[p][o : ε]. Session communication is described as session configuration

interactions. Rule [Send] describes an enqueue operation from role s[p] of a value v as a

message [q](v) in session configuration s[p][o :~h]. Dually rule [Rcv] describes the dequeue

operation and reception of a value v from role s[q] out of session configuration s[q][o :~h ·

[p](va)]. The reception happens on the substitution of value v on variable x on the continuation

process of the receive action. Rule [Sel] and [Bra] send and receive labels l interacting with the

session endpoints (in a similar way with rules [Send] and [Rcv] respectively) to perform select

and branch operations respectively. A branch operation upon the reception of a label, decides

the continuation of the process with respect to the label received. Operational semantics are

completed with the standard π-calculus rules (see § 6.2.1).

Operational Semantics for the Input Asynchronous MSP: By contrast with the output

asynchronous MSP, the input asynchronous MSP assumes an input locality of the session

endpoint configuration. This means that messages intended to be received from a session role

s[p] are received by the corresponding si[p] configuration endpoint.

a[1](x).P1 | . . . | a[n](x).Pn −→ (ν s)(P1{s[1]/x} | . . . | Pn{s[n]/x} |

s[p][i : ε] | . . . | s[n][i : ε]) [Link]

s[p][q]!〈v〉;P | s[q][i :~h] −→ P | s[q][i : [p](v) ·~h] [Send]

s[p][q]?(x);P | s[p][i :~h · [q](v)] −→ P{v/x} | s[p][i :~h] [Rcv]

s[p][q]⊕ l;P | s[q][i :~h] −→ P | s[q][i : [p]l ·~h] [Sel]

s[p][q]&{li : Pi}i∈I | s[p][i : [q]lk ·~h] −→ Pk | s[p][i :~h] [Bra]

The key difference from the output asynchronous MSP operational semantics is the use of in-

put session configurations. Rule [Link] apart from session initiation, creates the corresponding

input configurations s[p][i : ε]. Session communication is done on the input session configu-

ration basis. A participant p receives values from the corresponding configuration s[p][i : ε]

6.3. Asynchronous Multiparty Session Calculus 171

(in contrast with output asynchronous MSP), while it sends a value to the corresponding re-

ceiving s[q][i : ε] configurations. Rule [Send] describes an enqueue operation from role s[p]

of a value v as a message [p](v) in session configuration s[q][i :~h]. Dually rule [Rcv] describes

the dequeue operation and reception of a value v from role s[q] out of session configuration

s[p][i :~h · [q](va)]. The reception happens on the substitution of value v on variable x on the

continuation process of the receive action. There is a similar use for labels for rules [Sel] and

[Bra]. The rest of the rules are standard π-calculus rules (similar to the synchronous MSP in

§ 6.2.1).

Operational Semantics for the Input/Output Asynchronous MSP: The input/output asyn-

chronous MSP combines both input and output localities for input and output session configu-

rations. Messages being send from s[p] are locally stored in session configuration so[p] while

messages are received from session configuration si[q].

a[1](x).P1 | . . . | a[n](x).Pn −→ (ν s)(P1{s[1]/x} | . . . | Pn{s[n]/x} |

s[p][i : ε,o : ε] | . . . | s[n][i : ε,o : ε]) [Link]

s[p][q]!〈v〉;P | s[p][o :~h] −→ P | s[p][o : [q](v) ·~h] [Send]

s[p][q]?(x);P | s[p][i :~h · [q](v)] −→ P{v/x} | s[p][i :~h] [Rcv]

s[p][q]⊕ l;P | s[p][o :~h] −→ P | s[p][o : [q]l ·~h] [Sel]

s[p][q]&{li : Pi}i∈I | s[p][i :~h · [q]lk] −→ Pk | s[p][i :~h] [Bra]

s[p][o : [q](v) ·~h] | s[q][i : ~h′] −→ s[p][o :~h] | s[q][i : [p](v) ·~h′] [Comm]

The message typing system for the Input/Output Asynchronous MSP is a combination of the

message typing systems for the output and the input Asynchronous MSP. The [Link] rule cre-

ates both input and output session endpoint configurations. Rules for sending [Send] and [Sel]

are identical with the corresponding rules for output message type rules and rules for receiv-

ing [Rcv] and [Bra] are identical with the corresponding rules for input message type rules.

172 Chapter 6. Multiparty Session Types Behavioural Theory

The key difference is rule [Comm] where it describes the interaction between session end-

points (session participant locality) for the exchange of a message. Notably session endpoint

s[p][o : h] dequeues a message [q](v) and enqueues it in the corresponding s[q][i : h′] session

endpoint. The rest of the rules are standard π-calculus rules (similar to the synchronous MSP

in § 6.2.1).

6.3.2 Typing for Asynchronous Multiparty Session π-calculus

In this subsection the synchronous MSP type theory in § 6.2.2 and § 6.2.3 , is extended to

define a type theory for the asynchronous MSP. The main focus of this section is the devel-

opment of a runtime typing system (see § 3.2.4, § 4.2.4), for the typing of session endpoint

configurations.

The typing foundations and typing system for programs for the Asynchronous MSP are iden-

tical with the typing system for the Synchronous MSP typing system. More specifically we

assume the definitions for global and local types and their projections in § 6.2.2. We assume

the typing judgements from § 6.2.3:

Γ ` e : S and Γ ` P.∆

and the typing system in Figure 6.8 (description in § 6.2.3), with the exception of the rule

[SRes], is used to type program terms for the Asynchronous MSP calculi. Note that rule

[SRes] is defined as a runtime typing rule in the Asynchronous MSP typing semantics.

Essentially the typing semantics for the output Asynchronous MSP are identical to the system

developed in [B+08] and the semantics for the other two Asynchronous MSP calculi are

variations.

6.3. Asynchronous Multiparty Session Calculus 173

6.3.3 Runtime Typing for Asynchronous Multiparty Session π-calculus

A runtime process is a closed asynchronous multiparty session π-calculus term. We extend

the typing system for programs to type session endpoint configurations. Note that for each of

the asynchronous calculi we use only the minimum definitions that respect its syntax.

We extend the linear session environment ∆ with the message type M:

∆ ::= ∆ · c[p] : T | so[p] : M | si[p] : M | /0

where

M ::= Mo | Mi Message Type

Mo ::= [q]!U ;Mo | [q]⊕ l;Mo | /0 Output Message Type

Mi ::= /0 | [q]?U ;Mi | [q]&l;Mi | /0 Input Message Type

∆ is extended to include configuration endpoints so[p],si[q] types, which is notation so[p]

mapped to the message type M. A message type is defined as a sequence of output message

types, which are [q]!U and select message types [q]⊕ l, or a sequence of input message types,

which are [q]?U and branch message types [q]&l.

The Output Asynchronous MSP typing syntax uses only the output message type syntax,

while on the dual side the input Asynchronous MSP typing syntax uses the input message

type syntax. The input/output Asynchronous MSP typing syntax uses the entire definition.

We define a permutation relation as the smallest congruence over message types using the

rules:

174 Chapter 6. Multiparty Session Types Behavioural Theory

Definition 6.3.1 (Message Type Permutation).

M; [p]!U ; [q]!U ′;M′ ≈ M; [q]!U ′; [p]!U ;M′

M; [p]⊕ li; [q]⊕ l j;M′ ≈ M; [q]⊕ l j; [p]⊕ li;M′

M; [p]!U ; [q]⊕ l;M′ ≈ M; [q]⊕ l; [p]!U ;M′

M; [p]?U ; [q]?U ′;M′ ≈ M; [q]?U ′; [p]?U ;M′

M; [p]&li; [q]&l j;M′ ≈ M; [q]&l j; [p]&li;M′ if

M; [p]?U ; [q]&l;M′ ≈ M; [q]&l; [p]?U ;M′

The ≈ relation is a congruence on message type permutations. A message type (both input

and output) sequence can be permuted on two message types if they have different recipients.

We define a concatenation operator ∗ between message types M and local types T . The

result of the concatenation operator is a local type T . We use the concatenation operator to

reconstruct a complete local type T =M ∗ T ′out of the local type s[p] : T ′ of a process and the

message type so[p] : M of an output session configuration and/or si[p] : M of an input session

configuration.

6.3. Asynchronous Multiparty Session Calculus 175

Definition 6.3.2 (Message Type Concatenation).

/0 ∗ T = T

[q]!U ;Mo ∗ T = [q]!〈U〉;(Mo ∗ T)

[q]⊕ lk;Mo ∗ T = [q]⊕{li : Mo ∗ T}i∈I, k ∈ I

[q]?U ;Mi ∗ [q]?(U);T = Mi ∗ T

[q]&lk;Mi ∗ [q]&{li : Ti}i∈I = Mi ∗ T

Mi ∗ [q]!〈U〉;T = [q]!〈U〉;(Mi ∗ T) Mi 6= [q]?U ;M′i,Mi 6= [q]&l;M′i

Mi ∗ [q]⊕{li : Ti}i∈I = [q]⊕{li : Mi ∗ Ti}i∈I Mi 6= [q]?U ;M′i,Mi 6= [q]&l;M′i

Mi ∗ [q]?(U);T = [q]?(U);(Mi ∗ T) Mi 6= [q]?U ′;M′i

Mi ∗ [q]&{li : Ti}i∈Mi = [q]&{li : Mi ∗ Ti}i∈I Mi 6= [q]&l;M′i

The message type concatenation operator ∗ , is defined separately for output and input mes-

sage types, inductively on the structure of local and message types. The empty message type

has no effect when concatenated with a local type. The concatenation of an output prefixed

message type [p]!U ;M and a local type T results in a type prefixed with [p]!U and continued

inductively with the type M ∗ T . Similarly for [p]⊕ lk where the resulting type is a selec-

tion set [p]⊕{li : M ∗T}i∈I with k ∈ I. On the input message side a concatenation consumes

matching input prefixes between the input message type and the input prefixed local type. If

the two prefixes do not match then the concatenation algorithm proceeds inductively on the

structure of T .

Runtime Typing System

We proceed with the definition of the runtime typing system for each of the three asyn-

chronous MSP calculi.

176 Chapter 6. Multiparty Session Types Behavioural Theory

Runtime Typing System for the Output Asynchronous MSP

Γ ` s[p][o : ε]. so[p] : /0 (QEmptyO)

Γ ` s[p][o :~h].∆ · so[p] : M

Γ ` s[p][o : [q](v) ·~h].∆ · so[p] : [q]!S;M
(QVal)

Γ ` s[p][o :~h].∆ · so[p] : M

Γ ` s[p][o : [q](s′[q′]) ·~h].∆ · so[p] : [q]!T ;M
(QDel)

Γ ` s[p][o :~h].∆ · so[p] : M

Γ ` s[p][o : [q]l ·~h].∆ · so[p] : [q]⊕ l;M
(QSel)

Γ ` P1 .∆1 Γ ` P2 .∆2 dom(∆1)∪dom(∆2) = /0
Γ ` P1 | P2 .∆1 ·∆2

(QConc)

Γ ` P.∆ · so[p] : M M ≈M′

Γ ` P.∆ · so[p] : M′
(EquivO)

Rule (QEmpty) maps the empty session configurations to the empty message type /0. Rule

(QVal) (and rules (QSel),(QDel)) requires an inductive typing of the session configuration

so[p] without its message prefix [q](v) ([q]l, [q](s′[p′]) respectively) to get the type mapping

so[p] : M. The resulting message type for so[p] is prefixed with the message type of value

v together with the receiver q to get so[p] : [q]!U ;M. For rule (QSel) we prefix with the

select message type [q]⊕ l and for rule (QDel) we prefix with [q]!s′[p′]. Rules (QConc) and

(EquivO) are defined to type and keep consisted the runtime syntax. The parallel operator

in rule (QConc) is identical to the parallel operator for programs (Figure 6.8), and requires

disjoint linear session environments of the two operands. The result typing is the union of the

two linear session environments. Rule (EquivO) requires that a runtime process can be typed

6.3. Asynchronous Multiparty Session Calculus 177

up-to message permutation. Session restriction rule (SRes), defined as:

Γ ` P.∆ · s[1] : T1 · so[1] : M1 . . .s[n] : Tn · so[n] : Mn

co({s[1] : M1 ∗ T1 . . .s[n] : Mn ∗ Tn})

Γ ` (ν s)P.∆
(SRes)

has a distinct definition between the three asynchronous MSP calculi. The rule first require

to construct the local types for all session roles s[p] using the ∗ operator to concatenate the

message type so[p]M and s[p]T and then check that the resulting local types to be coherent.

Runtime Typing System for the Input Asynchronous MSP:

Γ ` s[p][i : ε]. si[p] : /0 (QEmptyI)

Γ ` s[p][i :~h].∆ · si[p] : M

Γ ` s[p][i : [q](v) ·~h].∆ · si[p] : [q]?S;M
(QRcv)

Γ ` s[p][i :~h].∆ · si[p] : M

Γ ` s[p][i : [q](s′[q′]) ·~h].∆ · si[p] : [q]?T ;M
(QRcvS)

Γ ` s[p][i :~h].∆ · si[p] : M

Γ ` s[p][i : [q]l ·~h].∆ · si[p] : [q]&l;M
(QBra)

Γ ` P.∆ · si[p] : M M ≈M′

Γ ` P.∆ · si[p] : M′
(EquivI)

The typing system for the input asynchronous MSP is very similar to the typing system for the

output asynchronous MSP. It requires the typing of configuration messages as input message

types. Rules (Conc) is identical and rule (EquivI) requires message permutation in input

session configurations . The session endpoint configuration typing rules follow the same

principles as the rules for session endpoints configurations in the output asynchronous MSP,

with the key difference that they are typed as input messages Mi. The session restriction rule

178 Chapter 6. Multiparty Session Types Behavioural Theory

(SRes), defined as:

Γ ` P.∆ · s[1] : T1 · si[1] : M1 . . .s[n] : Tn · si[n] : Mn

co({s[1] : M1 ∗ T1 . . .s[n] : Mn ∗ Tn})

Γ ` (ν s)P.∆
(SRes)

requires construction of the local types for all session roles for s in ∆ using the input concate-

nation rules (contrast with the (SRes) rule for output asynchronous MSP).

Runtime Typing System for the Input/Output Asynchronous MSP: The runtime typing

system for the input/output asynchronous MSP is the union of the two preceding type systems

for output and input asynchronous MSP. The key difference lies in rule (SRes), defined as:

Γ ` P.∆ · s[1] : T1 · so[1] : Mo
1 · si[1] : Mi

1 . . .s[n] : Tn · si[n] : Mo
n · si[1] : Mi

n

co({s[1] : Mo
1 ∗ (Mi

1 ∗ T1) . . .s[n] : Mo
n ∗ (Mi

n ∗ Tn)})

Γ ` (ν s)P.∆
[SRes]

where we expect the construction of the local types for all roles of a session name s by

concatenating both message types Mo and Mi with the local type T .

6.3.4 Type Soundness

In this subsection we prove the soundness for the typing theories developed for the Asyn-

chronous MSP, through a subject reduction theorem.

Before we proceed we define a reduction relation on session environments (see § 6.2.4,

§ 3.2.5).

Definition 6.3.3 (Session Environment Reduction).

We define a set of Session environment reduction semantics for each of the asynchronous

MSP calculi.

6.3. Asynchronous Multiparty Session Calculus 179

The basic congruence rule, is the same for all the sets of semantics:

1. ∆∪∆′ −→ ∆∪∆′′ if ∆′ −→ ∆′′

Output Asynchronous MSP

2. {s[p] : [q]!〈U〉;T · so[p] : M} −→ {s[p] : T · so[p] : [q]!U ;M}

3. {s[q] : [p]?(U);T · so[p] : M; [p]!U} −→ {s[q] : T · so[p] : M}

4. {s[p] : [q]⊕{li : Ti}i∈I · so[p] : M} −→ {s[p] : Tk · so[p] : [q]⊕ lk;M}

5. {s[q] : [p]&{li : Ti}i∈I · so[p] : M; [p]⊕ lk} −→ {s[q] : Tk · so[p] : M}

Input Asynchronous MSP

2. {s[p] : [q]!〈U〉;T · si[q] : M} −→ {s[p] : T · si[q] : [p]?U ;M}

3. {s[q] : [p]?(U);T · si[q] : M; [p]?U} −→ {s[q] : T · si[q] : M}

4. {s[p] : [q]⊕{li : Ti}i∈I · si[q] : M} −→ {s[p] : Tk · si[q] : [p]⊕ lk;M}

5. {s[q] : [p]&{li : Ti}i∈I · si[q] : M; [p]⊕ lk} −→ {s[q] : Tk · si[q] : M}

Input/Output Asynchronous MSP

2. {s[p] : [q]!〈U〉;T · so[p] : M} −→ {s[p] : T · so[p] : [q]!U ;M}

3. {s[p] : [q]?(U);T · si[p] : M; [q]?U} −→ {s[p] : T · si[p] : M}

4. {s[p] : [q]⊕{li : Ti}i∈I · so[p] : M} −→ {s[p] : Tk · si[p] : [q]⊕ l;M}

5. {s[p] : [q]&{li : Ti}i∈I · si[p] : M; [q]&lk} −→ {s[p] : Tk · si[p] : M}

180 Chapter 6. Multiparty Session Types Behavioural Theory

6. {so[p] : Mo; [q]!U · si[q] : Mi} −→ {so[p] : Mo · si[q] : [p]?U ;Mi}

7. {so[p] : Mo; [q]⊕ l · si[q] : Mi} −→ {so[p] : Mo · si[q] : [p]&l;Mi}

Session types interaction for each asynchronous MSP calculus, follows the intuition of the

interaction for the corresponding operational semantics. For the output asynchronous MSP a

session output on role s[p] interacts with the corresponding so[p] for enqueuing a type, and a

session input from participant q to role s[p] interacts with the corresponding so[q] to dequeue

a type. On the dual side the input asynchronous MSP, session outputs from role s[p] towards

q, interacts with si[q] to enqueue a type and a session input on s[p] interacts with si[p]. The

basic reduction rule for the input/output MSP is the interaction between so[p] and si[q] for the

transition of a type from the former to the latter. The rest of the reduction rules are defined in

the output and input asynchronous MSP.

It is convenient for our typing theory to include, as separate types, the local types and message

types in the session typing environment. The separation of the two types implies a notion of

locality for each session role, since we can use the separation to extract information about the

asynchronous state of each session role at runtime. For the subject reduction theorem it is

useful to construct the local type for a session role using its local and its message type. For

this we define the following operator:

Definition 6.3.4. Let ∆ be session typing environment. We define

∗(∆) = {s[p] : T | s[p] : T ∈ ∆,si[p],so[p] /∈ dom(∆)}

∪ {so[p] : M ∈ ∆ | s[p] /∈ dom(∆)}

∪ {si[p] : M ∈ ∆ | s[p] /∈ dom(∆)}

∪ {s[p] : Mo ∗ T | s[p] : T,so[p] : Mo ∈ ∆,si[p] /∈ dom(∆)}

∪ {s[p] : Mi ∗ T | s[p] : T,si[p] : Mi ∈ ∆,so[p] /∈ dom(∆)}

∪ {s[p] : Mo ∗ Mi ∗ T | s[p] : T,si[p] : Mi,so[p] : Mo ∈ ∆}

6.3. Asynchronous Multiparty Session Calculus 181

The ∗(∆) operator reconstructs the local types for the session roles inside a linear session

environment. It uses the ∗ operator to concatenate roles so[p] : Mo,si[p] : Mi with s[p] : T

for each session role s[p]. The resulting linear session environment is used for coherency

checking in the subject reduction theorem. Note that for each of the asynchronous MSP

calculi we only use the part of the definition given by its syntax and its typing system.

Note: Because we want to maintain a uniform framework for reasoning about all the MSP

calculi, we set:

∗(∆) = ∆

for the context of the synchronous MSP calculus.

We are now ready to state a subject reduction theorem.

Theorem 6.3.1 (Subject Reduction). Let Γ ` P .∆ with co(∗(∆)) and if P→→ P′ then Γ `

P′ .∆′ with ∆→→ ∆′ and co(∗(∆′)).

Proof. The subject reduction proof follows an induction on the length of →→. See Ap-

pendix C.2.2 for details.

6.3.5 Labelled Transition System

We extend the label definition ` in § 6.2.5 to include action labels on input configurations:

` =
...

| so[p][q]!〈v〉 | so[p][q]!(v) | so[p][q]?〈v〉 | so[p][q]⊕ l | so[p][q]&l

| si[p][q]!〈v〉 | si[p][q]!(v) | si[p][q]?〈v〉 | si[p][q]⊕ l | si[p][q]&l

Labels are divided into actions from output session configurations and actions from input

session configurations. Their intuitive meaning is the same in both cases. Labels so[p][q]!〈v〉

and so[p][q]!(v) (resp. si[p][q]!〈v〉 and si[p][q]!(v)) denote the output of value v and output

182 Chapter 6. Multiparty Session Types Behavioural Theory

of bound value v respectively from session configuration so[p] (resp. si[p]) to participant

q. Dually action so[p][q]?〈v〉 (resp. si[p][q]?〈v〉) denotes the reception of value v by session

configuration so[p] (resp. si[p]) sent by participant q. Actions so[p][q]⊕ l and so[p][q]&l

(resp. si[p][q]⊕ l and si[p][q]&l) respectively describe the send (select) and receive (branch)

of label l from participant p to participant q.

We use the definitions for role set A and max(A) from § 6.2.5.

Label semantics are clarified, with the definition of the duality relation� between labels. The

definition of the synchronous MSP label duality relation can be found in § 6.2.5. The duality

relation is defined for each of the asynchronous MSP.

Label Duality for the Output Asynchronous MSP:

s[p][q]!〈v〉 � so[p][q]?〈v〉 so[p][q]!〈v〉 � s[q][p]?〈v〉

s[p][q]!(v) � so[p][q]?〈v〉 so[p][q]!(v) � s[q][p]?〈v〉

s[p][q]⊕ l � so[p][q]&l so[p][q]⊕ l � s[q][p]&l

Process output actions s[p][q]!〈v〉 interact with the corresponding session configuration input

actions so[p][q]?〈v〉. Similarly for process bound output. Process input actions s[q][p]?〈v〉 in-

teract with the corresponding session configuration output action (so[p][q]!〈v〉) of the receiver

participant q. Similarly when the session configuration output action is bound. Select and

branching label duality follows the value send and receive semantics.

Label Duality for the Input Asynchronous MSP:

s[p][q]!〈v〉 � si[q][p]?〈v〉 si[p][q]!〈v〉 � s[p][q]?〈v〉

s[p][q]!(v) � si[q][p]?〈v〉 si[p][q]!(v) � s[p][q]?〈v〉

s[p][q]⊕ l � si[q][p]&l si[p][q]⊕ l � s[p][q]&l

6.3. Asynchronous Multiparty Session Calculus 183

Essentially label duality for the input asynchronous MSP, corresponds to the label duality for

the output asynchronous MSP, by reversing the participants in a session configuration action

i.e. we reverse the participants p,q in so[p][q]!〈v〉,so[p][q]!(v),so[p][q]?〈v〉,so[p][q]⊕ l to get

si[q][p]!〈v〉,si[q][p]!(v),si[q][p]?〈v〉,si[q][p]⊕ l.

Label Duality fot the Input/Output Asynchronous MSP:

s[p][q]!〈v〉 � so[p][q]?〈v〉 si[p][q]!〈v〉 � s[p][q]?〈v〉

s[p][q]!(v) � so[p][q]?〈v〉 si[p][q]!(v) � s[p][q]?〈v〉

s[p][q]⊕ l � so[p][q]&l si[p][q]⊕ l � s[p][q]&l

so[p][q]!〈v〉 � si[q][p]?〈v〉 so[p][q]⊕ l � si[q][p]&l

The duality relation on labels is a combination of the duality between process output labels

and output configuration input labels from the output asynchronous MSP definition and the

duality between process input labels and input configuration output labels from the input

asynchronous MSP definition. The key difference is the duality between configuration out-

put actions and configuration input actions (e.g. so[p][q]!〈v〉 and si[q][p]?〈v〉) for interaction

between session configurations for message exchange.

Untyped Labelled Transition System

The labelled transition system in Figure 6.12 extends the synchronous MSP labelled transition

system in Figure 6.9 (description in § 6.2.5) to define actions on output and input session

configurations. Each of the Asynchronous MSP calculi is limited to use the part of the labelled

transition system, consisted with its syntax.

We give a description for the labelled transition system for output configurations. In rule

〈QSendO〉 the observation of an output action so[p][q]!〈v〉 on a non-empty output configu-

ration queue so[p] sends (dequeues) a value v towards an observer role q. Dually, in rule

184 Chapter 6. Multiparty Session Types Behavioural Theory

〈QSendO〉 s[p][o : h · [q](v)] so[p][q]!〈v〉−→ s[p][o : h]

〈QRcvO〉 s[p][o : h]
so[p][q]?〈v〉−→ s[p][o : [q](v) ·h]

〈QSelO〉 s[p][o : h · [q]l] so[p][q]⊕l−→ s[p][o : h]

〈QBraO〉 s[p][o : h]
so[p][q]&l−→ s[p][o : [q]l ·h]

〈QSendI〉 s[p][i : h · [q](v)] si[p][q]!〈v〉−→ s[p][i : h]

〈QRcvI〉 s[p][i : h]
si[p][q]?〈v〉−→ s[p][i : [q](v) ·h]

〈QSelI〉 s[p][i : h · [q]l] si[p][q]⊕l−→ s[p][i : h]

〈QBraI〉 s[p][i : h]
si[p][q]&l−→ s[p][i : [q]l ·h]

〈QOpenSO〉 P
so[p][q]!〈s′[p′]〉−→ P′

(ν s[p])P
so[p][q]!(s′[p′])−→ P′

〈QOpenNO〉 P
so[p][q]!〈a〉−→ P′

(ν a)P
so[p][q]!(a)−→ P′

〈QOpenSI〉 P
si[p][q]!〈s′[p′]〉−→ P′

(ν s[p])P
si[p][q]!(s′[p′])−→ P′

〈QOpenNI〉 P
si[p][q]!〈a〉−→ P′

(ν a)P
si[p][q]!(a)−→ P′

Figure 6.12: Labelled Transition System for the Asynchrnous MSP calculi.

〈QRcvO〉, an input action so[p][q]?〈v〉 receives (enqueues) a value v from role p. Similarly

rules 〈QSelO〉 and 〈QBraA〉, describe the select and branch interactions on labels. Rules

〈QOpenS〉 and 〈QOpenN〉 respectively extend scope opening on actions so[p][q]!〈s′[p′]〉 and

so[p][q]!〈a〉 with bound actions so[p][q]!(s′[p′]) and so[p][q]!(a) respectively. Transitions on

input configurations, act on the corresponding input labels, and in the same way as the output

configuration lts is defined.

6.3. Asynchronous Multiparty Session Calculus 185

Localisation

The notion of localisation is presented for the Asynchronous MSP (refer to the localisation

definition for the ASP in Definition 4.3.1). A localised linear typing has the property of having

present all session configurations for each session name used, while a localised process is a

typed process with localised linear typing.

Definition 6.3.5 (Localisation).

• Let ∆ be a linear session typing. Then we say that ∆ is localised if

for each s[p] ∈ dom(∆), so[p],si[p] ∈ ∆.

• Let P be closed and Γ ` P.∆. Then we say P is localised if ∆ is localised.

The requirement so[p],si[p]∈∆ is relaxed depending on the linear session environment syntax

of the underlying Asynchronous MSP. P is localised if for all free session roles in P then all

corresponding endpoint configurations exist in P. Bound session roles are implicitly checked

for locality by exploiting the fact that P is typed and rule (SRes) was used to check endpoint

configuration presence.

Labelled Transition System for Environments

We define a labelled transition system for linear environments in the presence of multiparty

session asynchrony. We follow the definitions developed in § 3.3 and the lts for environment

for the synchronous MSP § 6.2.5.

Before we proceed with the definition of a labelled transition system for session environments,

it is convenient to define a context relation for local types:

186 Chapter 6. Multiparty Session Types Behavioural Theory

Definition 6.3.6 (Local Type Context).

T ::= − | [p]!〈U〉;T | [p]?(U);T

| [p]⊕{li : Ti}i∈I | [p]&{li : Ti}i∈I

| µX .T

A local type T [T] is defined if we replace the occurrences of − with T in the context T .

The local type context is used to define a labelled transition system for session environments

(see § 6.2.5, § 3.3.1), written (Γ,∆)
`−→ (Γ,∆) where ` ranges over the labels defined for the

untyped labelled transition system for asynchronous MSP.

We proceed with the definition of the session environment labelled transition system. A gen-

eral point of attention is that the labelled transition system for the Asynchronous MSP calculi

assumes a localised session environment, i.e. it assumes that the typing for a role s[p] includes

both the local type T and message types Mi and/or Mo. A second point is that the environ-

ment LTS does not allow observable delegation actions. This is because a delegation action

may result in a non-localised (see Definition 6.3.5) linear session environment ∆. However

internal delegation can happen using the τ action. Internal delegation always results in a lo-

calised session environment. Finally we can always observe a τ action on any environment

without changing its state. A third point is the fact that session actions happen when their

dual counterpart in a communication is not present in the linear environment. This restriction

enforces a linearity on session actions, forcing a session action to interact only with its dual

counterpart.

6.3. Asynchronous Multiparty Session Calculus 187

Environment LTS for the Output Asynchronous MSP:

Γ(a) = 〈G〉,s fresh implies (Γ,∆)
a[A](s)−→ (Γ,∆ · {s[p] : Gdp · so[p] : /0}p∈A)

Γ(a) = 〈G〉,s fresh implies (Γ,∆)
a[A](s)−→ (Γ,∆ · {s[p] : Gdp · so[p] : /0}p∈A)

Γ ` v : U,s[q] /∈ dom(∆) implies (Γ,∆ · so[p] : M; [q]!U)
so[p][q]!〈v〉−→ (Γ,∆ · so[p] : M)

a /∈ dom(Γ),s[q] /∈ dom(∆) implies (Γ,∆ · so[p] : M; [q]!U)
so[p][q]!(a)−→ (Γ ·a : U,∆ · so[p] : M)

so[q] /∈ dom(∆) implies (Γ,∆ · s[p] : [q]?(U);T)
s[p][q]?〈v〉−→ (Γ · v : U,∆ · s[p] : T)

s[q] /∈ dom(∆) implies (Γ,∆ · so[p] : M; [q]⊕ lk)
so[p][q]⊕lk−→ (Γ,∆ · so[p] : M)

so[q] :/∈ dom(∆) implies (Γ,∆ · s[p] : [q]&{li : Ti})
s[p][q]&lk−→ (Γ,∆ · s[p] : Tk)

∆−→ ∆′∨∆ = ∆′ implies (Γ,∆)
τ−→ (Γ,∆′)

Actions a[A](s) and a[A](s) extend a session environment to include the local type of the

session roles included in A. Types for each role derive from local typing of a in the shared

environment Γ. Action so[p][q]!〈v〉 happens on a message type. The rule checks for the type

of v in the shared environment Γ to agree with the object of the output prefix of message type

for so[p]. Output session actions carrying a bounded shared names so[p][q]!(a) check that a

shared name is not included in the shared environment Γ, with the transition to extend Γ to

include the type of a. Input action is s[p][q]?〈v〉 observed on an input prefixed local type.

After the action, the shared environment Γ is extended to include the received value. Similar

with the send and receive actions are the select and branch actions respectively, which carry

labels and proceed with selecting (resp. branching) the continuation type. Hidden actions τ

follow the session environment reduction for output asynchronous MSP in Definition 6.3.3.

Finally we can always observe a τ action on any environment without changing its state.

188 Chapter 6. Multiparty Session Types Behavioural Theory

Environment LTS for the Input Asynchronous MSP:

Γ(a) = 〈G〉,s fresh implies (Γ,∆)
a[A](s)−→ (Γ,∆ · {s[p] : Gdp · si[p] : /0}p∈A)

Γ(a) = 〈G〉,s fresh implies (Γ,∆)
a[A](s)−→ (Γ,∆ · {s[p] : Gdp · si[p] : /0}p∈A)

Γ ` v : U,si[q] /∈ dom(∆) implies (Γ,∆ · s[p] : [q]!〈U〉;T)
s[p][q]!〈v〉−→ (Γ,∆ · s[p] : T)

a /∈ dom(Γ),si[q] /∈ dom(∆) implies (Γ,∆ · s[p] : [q]!〈U〉;T)
s[p][q]!(a)−→ (Γ ·a : U,∆ · s[p] : T)

Γ ` v : U,si[q] /∈ dom(∆) implies (Γ,∆ · s[p] : [q]!〈li : Ti〉;)
s[p][q]⊕lk−→ (Γ · v : U,∆ · s[p] : Tk)

M ∗ T = T [[q]?(S);T ′] T not contain prefix on role q s[q] /∈ dom(∆)

(Γ,∆ · s[p] : T · si[p] : M)
si[p][q]?〈v〉−→ (Γ · v : U,∆ · s[p] : T · si[p] : [q]?S;M)

M ∗ T = T [[q]&{li : Ti}] T not contain prefix on role q s[q] /∈ dom(∆)

(Γ,∆ · s[p] : T · si[p] : M)
si[p][q]&lk−→ (Γ,∆ · s[p] : T · si[p] : [q]⊕ lk;M)

∆−→ ∆′∨∆ = ∆′ implies (Γ,∆)
τ−→ (Γ,∆′)

As with the session environment semantics for the output asynchronous MSP, actions a[A](s)

and a[A](s) extend a session environment to include type mapping of the session roles in-

cluded in A. In contrast with the output asynchronous MSP environment lts, action s[p][q]!〈v〉

happens on a local type. Input action si[p][q]?〈v〉 is observed on message types M. The main

requirement for an input action on a session configuration is to check that the constructed

local type for s[p] : T and si[p] : M, written M ∗ T has a message input prefix up to a local

type context T with T not containing any other prefix of interaction with q. This condition

enforces input asynchrony when observing input actions on message types. After the input

action, the shared environment Γ is extended to include the received value. Similar with the

send and receive actions are the select and branch actions respectively. Output session actions

with shared name objects and the τ action is treated similarly with the output asynchronous

MSP case.

6.3. Asynchronous Multiparty Session Calculus 189

Environment LTS for the Input/Output Asynchronous MSP:

Γ(a) = 〈G〉,s fresh implies (Γ,∆)
a[A](s)−→ (Γ,∆ · {s[p] : Gdp · so[p] : /0 · si[p] : /0}p∈A)

Γ(a) = 〈G〉,s fresh implies (Γ,∆)
a[A](s)−→ (Γ,∆ · {s[p] : Gdp · so[p] : /0 · si[p] : /0}p∈A)

Γ ` v : U,si[q] /∈ dom(∆) implies (Γ,∆ · so[p] : M; [q]!U)
so[p][q]!〈v〉−→ (Γ,∆ · so[p] : M)

a /∈ dom(Γ),si[q] /∈ dom(∆) implies (Γ,∆ · so[p] : M; [q]!U)
so[p][q]!(a)−→ (Γ ·a : U,∆ · so[p] : M)

si[q] /∈ dom(∆) implies (Γ,∆ · so[p] : M; [q]⊕ lk)
so[p][q]⊕lk−→ (Γ,∆ · so[p] : M)

M ∗ T = T [[q]?(S);T ′] T not contain prefix on role q so[q] /∈ dom(∆)

(Γ,∆ · s[p] : T · si[p] : M)
si[p][q]?〈v〉−→ (Γ · v : U,∆ · s[p] : T · si[p] : [q]?U ;M)

T ∗ M = T [[q]&{li : Ti}] T not contain prefix on role q so[q] /∈ dom(∆)

(Γ,∆ · s[p] : T · si[p] : M)
si[p][q]⊕lk−→ (Γ,∆ · s[p] : T · si[p] : [q]⊕ lk;M)

∆−→ ∆′∨∆ = ∆′ implies (Γ,∆)
τ−→ (Γ,∆′)

The environment labelled transition system for the input/output asynchronous MSP, com-

bines the output rules for the output asynchronous MSP and the input rules for the input

asynchronous MSP. The only adjustment made is on the requirement for the non-presence of

the dual corresponding type.

Typed Labelled Transition System

The typed labelled transition system for each of the asynchronous MSP calculi is defined as

in the definition for the typed transition relation for the synchronous MSP (Definition 6.2.10),

by using the corresponding untyped and environment labelled transition systems.

190 Chapter 6. Multiparty Session Types Behavioural Theory

6.4 Global Environment Semantics

On the way towards a bisimulation theory we develop a semantic theory for local and global

types (see § 6.2.5 and § 6.3.5). Our intention is to use the semantics developed in this section,

to control the transition behaviour of a process in order to define different classes of bisim-

ulation relations. In this section we establish a semantic theory for global types. The theory

allows a fine-grain control of the session environment (Γ,∆) using a set of global types, called

the global environment.

6.4.1 Global Environments

We formally define the global environment:

Definition 6.4.1. We write E,E ′, ..., called global environment, for a mapping from session

names s to global types G:

E ::= E · s : G | /0

The definition of projection (Definition 6.2.3) is extended to include global environments:

proj(E) =
⋃

s:G∈E

proj(s : G)

Labelled Reduction Relation for Global Environments

We define a labelled reduction relation, E `−→ E ′, on global environments. The environment

reduction relation corresponds to ∆−→ ∆′ in Definition 6.2.6.

To annotate the reduction relation we define the labels:

Definition 6.4.2 (Global Reduction Labels). Global reduction labels λ are defined to be:

λ ::= s : p→ q : U | s : p→ q : l

6.4. Global Environment Semantics 191

{s : p→ q : 〈U〉.G} s:p→q:U−→ {s : G} {s : p→ q : {li : Gi}i∈I}
s:p→q:lk−→ {s : Gk}

{s : G} λ−→ {s : G′} (?)

{s : p→ q : 〈U〉.G} λ−→ {s : p→ q : 〈U〉.G′}

∀i ∈ I,{s : Gi}
λ−→ {s : G′i} (?)

{s : p→ q : {li : Gi}i∈I}
λ−→ {s : p→ q : {li : G′i}i∈I}

E λ−→ E ′

E ·E0
λ−→ E ′ ·E0

Figure 6.13: Labelled Reduction Relation for Global Environments

with out(λ) and inp(λ):

1. out(s : p→ q : U) = out(s : p→ q : l) = p.

2. inp(s : p→ q : U) = inp(s : p→ q : l) = q.

3. p ∈ ` if p ∈ out(`)∪inp(`).

Figure 6.13 describes the global environment reduction relation. The first rule is the axiom

reduction for the input and output interaction between two parties; the second rule is the

axiom reduction for the choice; the third and fourth rules formulate the case that the action λ

can be performed under the assumption (?) where (?) is a condition on the participants of the

two actions according the underlying MSP calculus semantics. We summarise the conditions:

1. Synchronous MSP: p,q /∈ λ .

Synchronous MSP requires no relation between the participants of two actions. In-

tuitively it allows permutations on actions between participants that are not linearly

related.

192 Chapter 6. Multiparty Session Types Behavioural Theory

2. Output Asynchronous MSP: q /∈ λ .

For the output asynchronous MSP we require that the receiver q of the second action is

not related to the participants in the first action. This condition subsumes synchronous

permutations and the asynchrony on the senders (output asynchrony).

3. Input Asynchronous MSP: p,q /∈ out(λ).

In the case of global input asynchrony we require that the sender of the first action

out(λ) is not related to the participants p,q of the first action. Again this condition

subsumes synchronous permutations and input asynchrony.

4. Input/Output MSP: q /∈ λ ∨p,q /∈ out(λ).

Input/output asynchrony requires either the condition for output asynchrony to hold or

the condition for input asynchrony to hold.

The fifth rule of the labelled reduction system is the congruence rule. We often omit the label

λ by writing −→ for λ−→ and −→∗ for (λ−→)∗.

As a simple example of the above LTS, consider the synchronous MSP process:

s : p→ q : 〈U1〉.p′→ q′ : {l1 : end, l2 : p′→ q′ : 〈U2〉.end}

Since p,q,p′,q′ are pairwise distinct, we can apply the second and third rules for the syn-

chronous MSP to obtain:

s : p→ q : 〈U1〉.p′→ q′ : {l1 : end, l2 : p′→ q′ : 〈U2〉.end}
s:p′→q′:l1−→ s : p→ q : 〈U1〉.end

6.4.2 Global Configurations

We introduce the environment configuration structure.

6.4. Global Environment Semantics 193

Definition 6.4.3 (Environment Configuration and Labelled Transition Semantics). We write

(E,Γ,∆) if ∃E ′ ·E −→∗ E ′ and ∆⊆ proj(E ′)

The global environment E records the knowledge for the session environment ∆ and its dual

(observer) environment with respect to E. The side condition ensures that E respects the

linear environment ∆ up-to reduction.

In Figure 6.14, we define a labelled transition system over well-formed environment config-

urations, that refines the LTS over environments (i.e. (Γ,∆) `−→ (Γ′,∆′)) both for the syn-

chronous case (§ 6.2.5) and the asynchronous case (§ 6.3.5)

Each rule requires a environment LTS, corresponding to either Figure 6.10 for the syn-

chronous MSP or § 6.3.5 for the asynchronous MSP, in order to control a transition following

the global protocols that derive from the global environment E. Rule [Acc] is the rule for

accepting a session initialisation so that it creates a new mapping s : G which matches Γ in a

governed environment E. Rule [Req] is the rule for requesting a new session and it is dual to

[Acc].

The next seven rules are the transition relations on session channels and we assume the condi-

tion proj(E1)⊇ ∆ to ensure that the base action of the environment matches with the action

in the global environment. Rule [Out] defines the output action, where the type of the value

and the action of (Γ,∆) meets those in E. Rule [In] defines the input action and it is dual to

rule [Out]. Rule [ResN] is a scope opening rule for a name so that the environment can perform

the corresponding type 〈G〉 of a. Rule [ResS] is a scope opening rule for a session channel

which creates a set of mappings for the opened session channel s′ corresponding to the LTS

of the environment. Rules [Sel] and [Bra] define the selection and branching, which are similar

to [Out] and [In]. In rule [Tau], we annotated the reduction relation on ∆ (Definition 6.3.3) with

λ labels as follows:

194 Chapter 6. Multiparty Session Types Behavioural Theory

[Acc]
Γ ` a : 〈G〉 (Γ,∆1)

a[A](s)−→ (Γ,∆2)

(E,Γ,∆1)
a[A](s)−→ (E · s : G,Γ,∆2)

[Req]
Γ ` a : 〈G〉 (Γ,∆1)

a[A](s)−→ (Γ,∆2)

(E,Γ,∆1)
a[A](s)−→ (E · s : G,Γ,∆2)

[Out]
Γ ` v : U (Γ,∆1)

s[p][q]!〈v〉−→ (Γ,∆2) ∆⊆ proj(E1) E1
s:p→q:U−→ E2

(E1,Γ,∆1)
s[p][q]!〈v〉−→ (E2,Γ,∆2)

[In]
(Γ,∆1)

s[p][q]?〈v〉−→ (Γ · v : U,∆2) ∆⊆ proj(E1) E1
s:q→p:U−→ E2

(E1,Γ,∆1)
s[p][q]?〈v〉−→ (E2,Γ · v : U,∆2)

[ResN]
(Γ,∆1)

s[p][q]!(a)−→ (Γ ·a : 〈G〉,∆2) ∆⊆ proj(E1) E1
s:q→p:〈G〉−→ E2

(E1,Γ,∆1)
s[p][q]!(a)−→ (E2,Γ ·a : 〈G〉,∆2)

[ResS]

(Γ,∆1)
s[p][q]!(s′[p′])−→ (Γ,∆2 · {s′[pi] : Ti}i∈I) · ∀i.Gdpi = Ti

∆⊆ proj(E1) E1
s:q→p:T−→ E2

(E1,Γ,∆1)
s[p][q]!(s′[p′])−→ (E2 · s′ : G,Γ,∆2 · {s′[pi] : Ti}i∈I)

[Sel]
(Γ,∆1)

s[p][q]⊕l−→ (Γ,∆2) ∆⊆ proj(E1) E1
s:p→q:l−→ E2

(E1,Γ,∆1)
s[p][q]⊕l−→ (E2,Γ,∆2)

[Bra]
(Γ,∆1)

s[p][q]&l−→ (Γ,∆2) ∆⊆ proj(E1) E1
s:q→p:l−→ E2

(E1,Γ,∆1)
s[p][q]&l−→ (E2,Γ,∆2)

[Tau]
(∆1 = ∆2, E1 = E2)∨ (∆1

λ−→ ∆2, E1
λ−→ E2) ∆⊆ proj(E1)

(E1,Γ,∆1)
τ−→ (E2,Γ,∆2)

[Inv]
E1 −→∗ E ′1 (E ′1,Γ1,∆1)

`−→ (E2,Γ2,∆2)

(E1,Γ1,∆1)
`−→ (E2,Γ2,∆2)

Figure 6.14: The LTS for Environment Configuations

1. {s[p] : [q]!〈U〉;T · s[q] : [p]?(U);T ′} s:p→q:U−→ {s[p] : T · s[q] : T ′}.

2. {s[p] : [q]⊕{li : Ti}i∈I · s[q] : [p]&{l j : T ′j} j∈J}
s:p→q:lk−→ {s[p] : Tk · s[q] : T ′k} I ⊆ J,k ∈ I.

3. ∆∪∆′
λ−→ ∆∪∆′′ if ∆′

λ−→ ∆′′.

6.4. Global Environment Semantics 195

In rule [Tau], the τ reduction of the linear environment should match the reduction of the

global environment. Rule [Inv] is the induction rule: the global environment E1 reduces to E ′1

to perform the observer’s actions, hence the observed process can perform the action w.r.t.

E ′1. Hereafter we write −→ for τ−→.

Example 6.4.1 (LTS for environment configuration). Let

1. E = s : p→ q : 〈U〉.p→ q : 〈U〉.G, 2. Γ = v : U 3. ∆ = s[p] : [q]!〈U〉;Tp

with

1. partic(G) = {p,q} 2. Gdp= Tp, Gdq= Tq

Then (E,Γ,∆) is an environment configuration since:

E
s:p→q:U−→ s : p→ q : 〈U〉.G

and

proj(s : p→ q : 〈U〉.G) = s[p] : [q]!〈U〉;Tp · s[q] : [p]?(U);Tq

with

proj(s : p→ q : 〈U〉.G)⊃ ∆

Then we can apply the global configuration LTS rule [Out] to both:

s : p→ q : 〈U〉.G s:p→q:U−→ s : G

(Γ,s[p] : [q]!〈U〉;Tp)
s[p][q]!〈v〉−→ (Γ,s[p] : Tp)

to obtain:

(s : p→ q : 〈U〉.G,Γ,∆)
s[p][q]!〈v〉−→ (s : G,Γ,s[p] : Tp)

By the last result and the fact that E −→ s : p→ q : 〈U〉.G, we use rule [Inv] to obtain:

(E,Γ,∆)
s[p][q]!〈v〉−→ (s : G,Γ,s[p] : Tp)

196 Chapter 6. Multiparty Session Types Behavioural Theory

We clarify the semantics for environment configurations and the labelled transition system

for environment configurations in the next two definitions.

We introduce the governance judgement, where a global environment respects the session

typing environment of a process.

Definition 6.4.4 (Global Configuration). Let Γ ` P.∆ be coherent. We write

E,Γ ` P.∆ if ∃E ′ ·E −→∗ E ′ and ∆⊆ proj(E ′)

Following the global configuration definition, the global environment E records the knowl-

edge of both the session environment (∆) of the observed process P and the session environ-

ment of its observer. The side conditions ensure that E is coherent with ∆: there exist E ′

reduced from E whose projection should cover the environment of P (since E should include

the observer’s information together with the observed process information recorded into ∆).

We define the governed typed transition relation for processes.

Definition 6.4.5 (Global configuration transition). We write E1,Γ ` P1 .∆1
`−→ E2,Γ

′ ` P2 .

∆2 if E1,Γ ` P1 .∆1, P1
`−→ P2 and (E1,Γ,∆1)

`−→ (E2,Γ
′,∆2).

A global configuration transition for a process P is controlled by the global environment E,

in contrast to the typed transition (Figure 3.10 for the ASP, Figure 6.10 for the synchronous

MSP and § 6.3.5 for the asynchronous MSP) where the transition is only controlled by the

session environment ∆ and the shared environment Γ.

The following proposition states that the configuration LTS preserves the well-formedness of

the environment configuration.

Proposition 6.4.1 (Invariants).

1. (E1,Γ1,∆1)
`−→ (E2,Γ2,∆2) implies that (E2,Γ2,∆2) is an environment configuration.

6.5. Multiparty Session π-calculus Behavioural Theory 197

2. If Γ ` P.∆ and P−→ P′ with co(∆), then E,Γ ` P.∆−→ E,Γ ` P′ .∆′ and co(∆′)

Proof. The proof for Part 1 can be found in Appendix C.3.3. Part 2 is verified by simple

transitions using [Tau] in Figure 6.14.

6.5 Multiparty Session π-calculus Behavioural Theory

This section presents a typed behavioural theory for the Multiparty Session π-calculi, based

on the typed and untyped semantics, developed previously in this chapter. We define two

classes of bisimulation relations for each MSP calculi, based on the local typed transition

in Definition 6.2.10 and on the global configuration transition in Definition 6.4.5 respec-

tively. We also define the corresponding reduction-closed congruence relation. Note that

the reduction-closed congruence for the globally governed semantics is defined based on the

global environment semantics developed in § 6.4.

The results for this section are summarised in the inclusion relations between the locally typed

bisimulation and the conditions for both the locally typed and globally governed bisimulation

to coincide.

6.5.1 Local Multiparty Behavioural Theory

In this section we present the behavioural theory for the MSP calculi. The theory presented

here is characterised as local multiparty behavioural theory since we use the information

from the local type to restrict the behaviour of each process. The definitions in this section

apply equally for all of the MSP calculi. The differences between each calculi arise from

the different underlying reduction relations (for reduction congruence) and typed labelled

transition relations (for bisimulation) for each calculi.

We define the typed relation as the binary relation over typed processes.

198 Chapter 6. Multiparty Session Types Behavioural Theory

Definition 6.5.1 (Typed relation). We define a relation R as a typed relation if it relates two

closed, coherent typed terms Γ ` P1 .∆1 R Γ ` P2 .∆2. We often write Γ ` P1 .∆1 R P2 .∆2.

To define the relation counterparts for each of the MSP calculi we define:

Definition 6.5.2.

• m ::= s | i | o | io.

• We write Rs, Ri, Ro, Rio for a typed relation R over the terms of the synchronous, the

input asynchronous, the output asynchronous and the input/output asynchronous MSP

respectively.

• Furthermore we define the partial order v on the rules: s < i, s < o, i < io, o < io.

Next we define the notion of the typed barb [ACS98]:

Definition 6.5.3 (Barbs). We write

1. Γ ` P.∆ ↓s[p][q] if P≡ (ν ãs̃)(s[p][q]!〈v〉;R | Q) with s /∈ s̃ and s[q] /∈ dom(∆)

2. Γ ` P.∆ ↓a if P≡ (ν ãs̃)(a[n](s).R | Q) with a /∈ ã and a ∈ dom(Γ).

We write n for either a or s[p][q], to define Γ ` P . ∆ ⇓n if Γ ` P . ∆→→ Γ ` P′ . ∆′ and

Γ ` P′ .∆′ ↓n.

The typed barbed is controlled by the typing environment of the process, in the case of barbs

on session channels. For a session barb ↓s[p][q], we require that the opposing role (s[q]) is

not present in the linear environment ∆, to ensure the linear usage of session channels (i.e a

session endpoint interacts only with the its corresponding endpoint).

6.5. Multiparty Session π-calculus Behavioural Theory 199

The context is defined as:

C ::= − | C | P | P |C | (ν n)C | if e then C else C′ | µX .C |

s!〈v〉;C | s?(x);C | s⊕ l;C | s&{li : Ci}i∈I | a(x).C | a(x).C

where C[P] substitutes process P for each hole (−) in context.

In equivalence relations between typed processes we require that the linear environments

converge:

Definition 6.5.4 (Linear Environment Convergence). We write ∆1
 ∆2 if there exists ∆ such

that ∆1 −→∗ ∆ and ∆2 −→∗ ∆.

We now define the contextual congruence based on the typed barb definition and [HY95].

Definition 6.5.5 (Reduction congruence). A typed relation R is reduction congruence if it

satisfies the following conditions for each Γ ` P1 .∆1 R P2 .∆2 with ∆1
 ∆2.

1. Γ ` P1 .∆1 ⇓m iff Γ ` P2 .∆2 ⇓m

2. Whenever Γ ` P1 .∆1 R P2 .∆2 holds, then

• P1→→ P′1 implies P2→→ P′2 such that Γ ` P′1 .∆′1 R P′2 .∆′2 holds with ∆′1
 ∆′2.

• The symmetric case.

3. For all closed context C, such that Γ ` C[P1] .∆′1 and Γ ` C[P2] .∆′2 where ∆′1
 ∆′2,

Γ `C[P1].∆′1 R Γ `C[P2].∆′2.

The reduction congruence relation is denoted as ∼=.

Definition 6.5.6 (Multiparty session bisimulation). A typed relation R over closed processes

is a (weak) multiparty session bisimulation or often a bisimulation if, whenever Γ ` P1 .

∆1 R P2 .∆2 holds, then:

200 Chapter 6. Multiparty Session Types Behavioural Theory

1. Γ ` P1 .∆1
`−→ Γ′ ` P′1 .∆′1 implies Γ ` P2 .∆2

ˆ̀
=⇒ Γ′ ` P′2 .∆′2 such that Γ′ ` P′1 .

∆′1 R P′2 .∆′2.

2. The symmetric case.

The maximum bisimulation exists which we call bisimilarity, denoted by ≈. We sometimes

leave environments implicit, writing e.g. P ≈ Q. We also write ≈ for untyped bisimilarity

which is defined using only the untyped LTS in Figure 6.9 (together with its extension in

§ 6.3.5 for the asynchronous cases).

We use the following lemma, to derive Theorem 6.5.1. See Appendix C.3.2.

Lemma 6.5.1. Γ ` P1 .∆1 ≈ P2 .∆2 then ∆1
 ∆2.

Proof. The proof uses the co-induction method and can be found in Appendix C.3.2.

Theorem 6.5.1 (Soundness and completeness). ∼= = ≈.

Proof. The proof is a simplification of the proof of Theorem 6.5.3 in Appendix C.3.5.

We explain our theory with an example over synchronous MSP processes:

Example 6.5.1 (Synchronous Multiparty Bisimulation). Let:

P1 = Γ ` a[1](x).b[1](y).x[1][3]!〈v〉;y[2]!〈w〉;0. /0

P2 = Γ ` a[2](x).b[2](y).(y[1]?(z);0 | x[2][3]!〈v〉;0). /0

P3 = Γ ` a[3](x).x[3][1]?(z);x[3][2]?(y);0. /0

First we explain the LTS for session initialisation from Figures 6.9 and 6.10. By 〈Acc〉 and

〈Req〉, we get:

Γ ` P1 . /0
a[{1}](s1)−→ P′1 = Γ ` b[1](y).s1[1][3]!〈v〉;y[2]!〈w〉;0. s1[1] : [3]!〈U〉;end

Γ ` P2 . /0
a[{2}](s1)−→ P′2 = Γ ` b[2](y).(y[1]?(z);0 | s1[2][3]!〈v〉;0). s1[2] : [3]!〈U〉;end

Γ ` P3 . /0
a[{3}](s1)−→ P′3 = Γ ` s1[3][1]?(z);s1[3][2]?(y);0. s1[3] : [1]?(U); [1]?(U);end

6.5. Multiparty Session π-calculus Behavioural Theory 201

If we apply rule 〈AccPar〉, on P1 | P2 we can have:

Γ ` P1 | P2 . /0
a[{1,2}](s1)−→ Γ ` P′1 | P′2 . s1[1] : [3]!〈U〉;end · s1[2] : [3]!〈U〉;end

Another possible initialisation on P1 | P3 would be:

Γ ` P1 | P3 . /0
a[{1,3}](s1)−→ Γ ` P′1 | P′3 . s1[1] : [3]!〈U〉;end · s1[3] : [1]?(U); [1]?(U);end

If in the above process we compose in parallel the third process P2, the set {1,2,3} becomes

complete so that we can use the rule 〈TauS〉 to observe:

Γ ` P1 | P2 | P3 . /0 τ−→ Γ ` (ν s1)(P′1 | P′2 | P′3). /0

Further we can have:

Γ`P′1 |P′2.∆
τ−→Q1 =Γ` (ν s2)(s1[1][3]!〈v〉;s2[1][2]!〈w〉;0 | s2[2][1]?(z);0 | s1[2][3]!〈v〉;0).∆

with ∆ = {s1[1] : [3]!〈U〉;end · s1[2] : [3]!〈U〉;end}.

We can now observe that

Γ ` Q1 | P′3 .∆ · s1[1] : [3]!〈U〉;end · s1[3] : [1]?(U); [1]?(U);end≈s 0. /0

since (Γ,∆) 6 `−→ for any ` 6= τ . However by the untyped synchronous bisimulation (we con-

sider only the untyped LTS in Figure 6.9), we have that:

Q1 | P′3 6≈ 0

since, e.g. Q1 | P′3
s1[1][3]!〈v〉−→ .

It is very convenient to define a common syntax for the MSP calculi, in order to compare

202 Chapter 6. Multiparty Session Types Behavioural Theory

the behaviour of processes between the different calculi. The common syntax is easy to

be achieved with the addition of empty endpoint configurations to respect the input/output

syntax. Formally:

Definition 6.5.7 (Common MSP Syntax).

• Let all MSP calculi share the syntax and the structural congruence definition for the

input/output asynchronous MSP.

• For each calculi, we replace the operational rule [Link] with the operational rule [Link]

for the input/output asynchronous MSP.

• We ensure that MSP processes are localised with empty queues: The synchronous MSP

typing system is extended to use runtime typing and the localisation definition. The run-

time typing system for the synchronous and the output asynchronous MSP is extended

to use the rule (QEmptyI). Similarly the message typing system for the synchronous and

the input asynchronous MSP is extended to use rule (QEmptyO). Furthermore, for all

calculi we use the message typing rule (SRes) for the input/output asynchronous MSP.

The above definition ensures a common syntax for the MSP calculi up-to empty endpoint

configurations. All other semantics remain same. We use the annotation m on relations, (e.g

≈s) to specify the set of operational semantics we are using on the common syntax.

The MSP calculi are related with each other, based on their bisimulation definition. More

specifically the bisimilarity relations form inclusions based on the partial order defined by <:

Theorem 6.5.2 (Behavioural Inclusion).

• ≈m1
g (≈m2

g if m1 < m2.

• ≈i
g and ≈o

g are incompatible.

6.5. Multiparty Session π-calculus Behavioural Theory 203

Proof. To show the inclusion direction of the first part of the theorem we take advantage of

the fact that the bisimilarity relation is closed under session transition (see Lemma C.3.4 in

the Appendix). The incompatibility directions for Part 1 and Part 2 are shown by providing

the proper counter-examples. See Appendix C.3.6 for details.

The importance of the above result comes from the fact that we can relate and classify the

different asynchronous calculi based on the way they handle asynchronous communication.

The synchronous MSP behaviour is included in all the asynchronous cases, while the incom-

patible behaviours of the input and output asynchronous MSP are included in the input/output

asynchronous MSP.

6.5.2 Globally Governed Multiparty Behavioural Theory

We introduce the bisimulation theory based on the globally governed semantics presented in

§ 6.4. The bisimulation theory presented in this section derives from the labelled transition

system defined in Definition 6.4.5. The globally governed LTS offers fine-grained control

over the behaviour of processes with respect to global environments.

To define the reduction-closed congruence, we first refine the barb, which is controlled by the

global environment E:

Definition 6.5.8 (Global Barbs). We write:

1. E,Γ ` P.∆ ↓s[p][q] if

• P ↓s[p][q].

• ∃E ′ ·E −→∗ E ′ and ∆⊆ proj(E ′).

• E ′ λ−→ where λ ∈ {s : p→ q : U,s : p→ q : l}.

• s[p] ∈ ∆,s[q] /∈ ∆.

204 Chapter 6. Multiparty Session Types Behavioural Theory

2. E,Γ ` P.∆ ↓a if a ∈ dom(Γ)

We write E,Γ ` P.∆ ⇓m if E,Γ ` P.∆→→ E,Γ ` P′ .∆′ and E,Γ ` P′ .∆′ ↓m

Before we proceed with the definition of relations over global configurations (see Defini-

tion 6.4.4), we define the global environment concatenation operator. The concatenation

operator returns, if it exists, the minimal global environment that describes a pair of global

environments.

Definition 6.5.9 (Global Environment Concatenation).

1. We write T1 v T2 if the syntax tree of T2 includes T1.

2. We extend to G1 < G2 if ∀s[p] : T1 ∈ proj(s : G1) then s[p] : T2 ∈ proj(s : G2) and

T1 v T2.

3. Then we define: E1tE2 = {Ei(s) | E j(s)v Ei(s)}∪E1 \dom(E2)∪E2 \dom(E1).

Example 6.5.2 (Global Environment Concatenation).

• We write

[q]?(U ′);T v [p]!〈U〉; [q]?(U ′);T

since [q]?(U ′);T is included in the syntax tree of [p]!〈U〉; [q]?(U ′);T .

• Let:

E1 = s1 : p→ q : 〈U1〉.p′→ q′ : 〈U2〉.p→ q : 〈U3〉.end · s2 : p→ q : 〈W2〉.end

E2 = s1 : p→ q : 〈U3〉.end · s2 : p′→ q′ : 〈W1〉.p→ q : 〈W2〉.end

Then

E1tE2 = p→ q : 〈U1〉.p′→ q′ : 〈U2〉.p→ q : 〈U3〉.end

·s2 : p′→ q′ : 〈W1〉.p→ q : 〈W2〉.end

6.5. Multiparty Session π-calculus Behavioural Theory 205

We define the relation over global configurations.

Definition 6.5.10 (Configuration relation). The relation R is a configuration relation between

two configurations E1,Γ ` P1 .∆1 and E2,Γ ` P2 .∆2, written

E1tE2,Γ ` P.∆1 R P2 .∆2

if E1tE2 is defined.

Two global configurations can be related under a configuration relation if their global envi-

ronment typing is defined up to syntax tree inclusion. The configuration relation allows us to

prove:

Proposition 6.5.1 (Decidability).

1. Given E1 and E2, a problem whether E1tE2 is defined or not is decidable and if it is

defined, the calculation of E1tE2 terminates

2. Given E, a set {E ′ | E −→∗ E ′} is finite.

Proof. (1) Since T1 v T2 is a syntactic tree inclusion, it is reducible to a problem to check the

isomorphism between two types. This problem is decidable [YV07]. (2) The global LTS has

one-to-one correspondence with the LTS of global automata in [DY12] whose reachability

set is finite.

We define the governed reduction congruence relation:

Definition 6.5.11 (Governed reduction congruence). A configuration relation R is a governed

reduction congruence if whenever E,Γ ` P1 .∆1 R P2 .∆2 then

1. E,Γ ` P1 .∆1 ⇓n if and only if E,Γ ` P2 .∆2 ⇓n

206 Chapter 6. Multiparty Session Types Behavioural Theory

2. P1→→ P′1 if and only if P2→→ P′2 and E,Γ ` P′1 .∆′1 R P′2 .∆′2

3. For all closed contexts C, such that E,Γ `C[P1].∆′1 and E,Γ `C[P2].∆′2 then E,Γ `

C[P1].∆′1 R C[P2].∆′2.

The union of all governed reduction congruence relations is denoted as ∼=g.

We define the globally governed bisimulation relation:

Definition 6.5.12 (Globally governed bisimulation). A configuration relation R is a globally

governed weak bisimulation (or governed bisimulation) if whenever E,Γ ` P1 .∆1 R P2 .∆2

holds, then:

1. E,Γ ` P1 .∆1
`−→ E ′1,Γ

′ ` P′1 .∆′1 implies E,Γ ` P2 .∆2
ˆ̀

=⇒ E ′2,Γ
′ ` P′2 .∆′2 such that

E ′1tE ′2,Γ
′ ` P′1 .∆′1 R P′2 .∆′2.

2. The symmetric case.

The maximum bisimulation exists which we call governed bisimilarity, denoted by ≈g. We

sometimes leave environments implicit, writing e.g. P≈g Q.

Lemma 6.5.2 (Weakening).

1. If E,Γ ` P.∆ then

• E · s : G,Γ ` P.∆.

• E = E ′ · s : G and ∃G′ · {s : G′}→→ {s : G} then E ′ · s : G′,Γ ` P.∆.

2. If (E,Γ,∆) `−→ (E,Γ′,∆′) then

• (E · s : G,Γ,∆)
`−→ (E · s : G,Γ′,∆′)

• If E = E ′ ·s : G and {s : G′}→→{s : G} then (E ′ ·s : G′,Γ,∆) `−→ (E ′ ·s : G′,Γ′,∆′)

6.5. Multiparty Session π-calculus Behavioural Theory 207

3. If E,Γ ` P1 .∆2 ≈g P2 .∆2

• E · s : G,Γ ` P1 .∆2 ≈g P2 .∆2

• If E = E ′ · s : G and {s : G′}→→ {s : G} then E ′ · s : G′,Γ ` P1 .∆2 ≈g P2 .∆2

Proof. We only show Part 1. Other parts are similar.

• From the governance judgement definition we have that E −→∗ E1 and proj(E1) ⊇

∗(∆).

Let E ·s : G−→E1 ·s : G. Then proj(E1 ·s : G)= proj(E1)∪proj(s : G)⊇ proj(E1)⊇

∗(∆).

• From the governance judgement definition we have that E · s : G −→∗ E1 · s : G1 and

proj(E1 · s : G1)⊇ ∗(∆).

Let E · s : G′ −→∗ E1 · s : G′ −→∗ E1 ·S : G1. Then the result is immediate.

Lemma 6.5.3 (Strengthening).

1. If E · s : G,Γ ` P.∆ then

• If s /∈ fn(P) then E,Γ ` P.∆

• If ∃G′,E · s : G→→ E2 · s : G′→→ E1 · s : G1 with proj(E1 · s : G1)⊇ ∆ then E · s :

G′,Γ ` P.∆

2. If (E · s : G,Γ,∆)
`−→ (E ′ · s : G,Γ′,∆′) then

• (E,Γ,∆) `−→ (E ′,Γ′,∆′)

• If ∃G′,E · s : G→→ E2 · s : G′→→ E1 · s : G1 with proj(E1 · s : G1)⊇ ∆ then (E · s :

G′,Γ,∆) `−→ (E ′ · s : G′,Γ′,∆′)

208 Chapter 6. Multiparty Session Types Behavioural Theory

3. If E · s : G,Γ ` P1 .∆2 ≈g P2 .∆2 then

• If s /∈ fn(P) then E,Γ ` P1 .∆2 ≈g P2 .∆2

• If ∃G′,E · s : G→→ E2 · s : G′→→ E1 · s : G1 with proj(E1 · s : G1)⊇ ∆ then E · s :

G′,Γ ` P1 .∆2 ≈g P2 .∆2

Proof. We prove part 1. Other parts are similar.

• From the governance judgement definition we have that E · s : G −→∗ E1 · s : G1 and

proj(E1 · s : G1) = proj(E1)∪proj(s : G1)⊇ ∗(∆). Since s /∈ fn(P) then s /∈ dom(∆),

then proj(s : G1)∩∗(∆) = /0. So proj(E1)⊇ ∗(∆) and E −→∗ E1.

• The result is immediate from the definition of governance judgement.

Lemma 6.5.4. ≈g is congruence.

Proof. The proof is by a case analysis on the context structure. The interesting case is the

parallel composition, which uses Proposition 6.4.1. See Appendix C.3.4.

Lemma 6.5.5. ∼=g ⊆ ≈g

Proof. The proof follows the facts that bisimulation has a stratifying definition (the proof

method uses the technique from [ACS98]) and that the external actions can always be tested

(the technique from [Hen07]). The proof can be found in Appendix C.3.5.

By Lemmas A.3.1 and 6.5.5, we have:

Theorem 6.5.3 (Soundness and completeness). ≈g = ∼=g.

Proof. The proof was done in Lemmas A.3.1 and 6.5.5.

6.5. Multiparty Session π-calculus Behavioural Theory 209

We study the relationship between ≈ and ≈g.

Theorem 6.5.4. If for all E, E,Γ ` P1 .∆1 ≈g P2 .∆2 then Γ ` P1 .∆1 ≈ Γ ` P2 .∆2.

Also if Γ ` P1 .∆1 ≈ Γ ` P2 .∆2, then for all E, E,Γ ` P1 .∆1 ≈g P2 .∆2.

Proof. See Appendix C.3.7.

To clarify the difference between ≈ and ≈g, we introduce the notion of a simple multiparty

process defined in [HYC08]. A simple process contains only a single session so that it satisfies

the progress property as proved in [HYC08]. Formally a process P is simple when it is typable

with a type derivation where the session typing in the premise and the conclusion of each

prefix rule is restricted to at most a single session (i.e. for any Γ ` P .∆ which appears in a

derivation, ∆ contains at most one session channel in its domain; see [HYC08]). Thus each

prefixed sub-term in a simple process has a unique session. Since there is no interleaving of

sessions in simple processes, the difference between ≈s and ≈s
g disappears.

Theorem 6.5.5 (Coincidence). Assume P1 and P2 are simple. If ∃E ·E,Γ ` P1 .∆1 ≈g P2 .∆2

then Γ ` P1 .∆1 ≈ P2 .∆2.

Proof. The proof follows the fact that if P is simple and Γ ` P.∆
`−→ P′ .∆′ then ∃E ·E,Γ `

P .∆
`−→ P′ .∆′ to continue that if P1,P2 are simple and ∃E ·E,Γ ` P1 .∆1 ≈g P2 .∆2 then

∀E,E,Γ ` P1 .∆1 ≈g P2 .∆2. The result then comes by applying Lemma 6.5.4.

Details of the proof are in Appendix C.3.8.

Example 6.5.3 (Governed bisimulation). Recall Example 6.5.1, with Γ ` Q1 .∆ being the

process corresponding to Example 6.5.1. Let process:

R2 = Γ ` a[2](x).b[2](y).(y[1]?(z);x[2][3]!〈v〉;0). /0

210 Chapter 6. Multiparty Session Types Behavioural Theory

with

P1 | R2
a[1,2](s1)−→ τ−→

Q2 = Γ ` (ν s2)(s1[1][3]!〈v〉;s2[1][2]!〈w〉;0 | s2[2][1]?(x);s1[2][3]!〈v〉;0).∆

Recall that ∆ = {s1[1] : [3]!〈U〉;end · s1[2] : [3]!〈U〉;end}. Note that R2 has a sequential com-

position of actions instead of the parallel composition for actions in P2. Assume the two

global witnesses:

E1 = s1 : 1→ 3 : 〈S〉.2→ 3 : 〈S〉.end · s2 : 1→ 2 : 〈S〉.end

E2 = s1 : 2→ 3 : 〈S〉.1→ 3 : 〈S〉.end · s2 : 1→ 2 : 〈S〉.end

Then the projection of E1 and E2 are given as:

proj(E1) = s1[1] : [3]!〈S〉;end · s1[2] : [3]!〈S〉;end · s1[3] : [1]?(S); [2]?(S);end

s2[1] : [2]!〈S〉;end · s2[2] : [1]?(S);end·

proj(E2) = s1[1] : [3]!〈S〉;end · s1[2] : [3]!〈S〉;end · s1[3] : [2]?(S); [1]?(S);end·

s2[1] : [2]!〈S〉;end · s2[2] : [1]?(S);end

with ∆ ⊂ proj(E1) and ∆ ⊂ proj(E2). The reader should note that the difference between

E1 and E2 is the type of participant 3 at s1.

By the definition of the global environment configuration, we can write:

Ei,Γ ` Q1 .∆

Ei,Γ ` Q2 .∆

for i = 1,2. Both processes are well-formed global configurations under both witnesses. Now

we can observe

Γ ` Q1 .∆
s[2][3]!〈v〉−→ Γ ` Q′1 .∆

′

6.6. A Service Oriented Usecase 211

but

Γ ` Q2 .∆

s[2][3]!〈v〉
6−→

Hence

Γ ` Q1 .∆ 6≈s Q2 .∆

Using the same argument, we have:

E2,Γ ` Q1 .∆ 6≈s
g Q2 .∆

On the other hand, since E1 forces the action s[2][3]!〈v〉 to wait:

E1,Γ ` Q1 .∆

s[2][3]!〈v〉
6−→

Hence Q1 and Q2 are bisimilar under E1, i.e.

E1,Γ ` Q1 .∆≈s
g Q2 .∆

We conclude that the optimisation is correct.

6.6 A Service Oriented Usecase

The bisimulation techniques developed in this paper present interests in both the theoretical

and the applied aspects. We have developed semantics for typed environments and use them

to define labelled transition semantics for typed processes. We show that session type bisim-

ulations can be defined, either by taking only the local session information of each process

into account (≈) or by taking the global session protocols into account (≈s
g).

The session type restriction on behavioural semantics and the sound and complete bisimula-

tion relations that derive, can be used as a tool to optimise and verify of distributed systems,

212 Chapter 6. Multiparty Session Types Behavioural Theory

and to prove the correctness of service communication.

In this section, we present a usecase based on the real world usecase UC.R2.13 “Acquire Data

From Instrument” from the Ocean Observatories Initiative (OOI) [OOI], where we intent to

show the optimisation and verification of network services.

In this usecase we assume a user program (U) which is connected to the Integrated Obser-

vatory Network (ION). The ION provides the interface between users and remote sensing

instruments. The user requests, via the ION agent services (A), the acquisition of processed

data from an instrument (I). More specifically the user requests from the ION two different

formats of the instrument data. In the above usecase we distinguish two points of com-

munication coordination: i) an internal ION multiparty communication and ii) an external

communication between ION instruments and agents and the user. In other words it is natural

to require the initiation of two multiparty session types to coordinate the services and clients

involved in the usecase.

The behaviour of the multiparty session connection between the User (U) and ION is depen-

dent on the implementation and the synchronisation of the internal ION session.

Next we present three possible implementation scenarios and compare their behaviour with

respect to the user program. Depending on the ION requirements we can chose the best

implementation with the correct behaviour. See Figure 6.15 for a graphic representation of

the three scenarios.

6.6.1 Usecase Scenario 1

In the first scenario the user program (U) wants to acquire the first format of data from the

instrument (I) and at the same time acquire the second format of the data from an agent

service (A). The communication between the agent (A) and the instrument happens internally

in the ION on a separate private session.

6.6. A Service Oriented Usecase 213

Instrument Agent User

s2[i][a1]!〈rd〉

s1[a1][u]!〈pd1〉

s2[a1][i]!〈ack〉

s1[i][u]!〈pd2〉

Usecase 1

Instrument Agent1 Agent2 User

s2[i][a1]!〈rd〉

s1[a1][u]!〈pd1〉

s2[a1][i]!〈ack〉

s2[i][a2]!〈rd〉

s1[a2][u]!〈pd2〉

s2[a2][i]!〈ack〉

Usecase 2

Instrument Agent1 Agent2 User

Usecase 3

s2[i][a1]!〈rd〉

s2[i][a2]!〈rd〉

s1[a1][u]!〈pd1〉

s1[a2][u]!〈pd2〉

s2[a1][i]!〈ack〉

s2[a2][i]!〈ack〉

Figure 6.15: Three usecases from UC.R2.13 “Acquire Data From Instrument” in [OOI]

• A new session connection s1 is established between (U), (I) and (A).

• A new session connection s2 is established between (A) and (I).

• (I) sends raw data through s2 to (A).

• (A) sends processed data (format 1) through s1 to (U).

• (A) sends acknowledgement through s2 to (I).

• (I) sends processed data (format 2) through s1 to (U).

The above scenario is implemented as follows:

I0 | A |U

214 Chapter 6. Multiparty Session Types Behavioural Theory

where

I0 = a[i0](s1).b[i0](s2).s2[i0][a1]!〈rd〉;s2[i0][a1]?(x);s1[i0][u]!〈pd〉;0

A = a[a1](s1).b[a1](s2).s2[a1][i0]?(x);s1[a1][u]!〈pd〉;s2[a1][i0]!〈ack〉;0

U = a[u](s1).s1[u][a1]?(x);s1[u][i0]?(y);0

and i is the instrument role, a1 is the agent role and u is the user role.

6.6.2 Usecase scenario 2

Use case scenario 1 implementation requires from the instrument program to process raw

data in a particular format (format 2) before sending them to the user program. In a more

modular and fine-grain implementation, the instrument program should only send raw data to

the ION interface for processing and forwarding to the user. A separate session between the

instrument and the ION interface and a separate session between the ION interface and the

user make a distinction into different logical and processing levels.

To capture the above implementation we assume a scenario with the user program (U), the

instrument (I) and agents (A1) and (A2):

• A new session connection s1 is established between (U), (A1) and (A2).

• A new session connection s2 is established between (A1, A2) and (I).

• (I) sends raw data through s2 to (A1).

• (A1) sends processed data (format 1) through s1 to (U).

• (A1) sends acknowledgement through s2 to (I).

• (I) sends raw data through s2 to (A2).

6.6. A Service Oriented Usecase 215

• (A2) sends processed data (format 2) through s1 to (U).

• (A2) sends acknowledgement through s2 to (I).

The above scenario is implemented as follows:

I1 | A1 | A2 |U

where

I1 = b[i](s2).s2[i][a1]!〈rd〉;s2[i][a1]?(x);s2[i][a2]!〈rd〉;s2[i][a1]?(x);0

A1 = a[a1](s1).b[a1](s2).s2[a1][i]?(x);s1[a1][u]!〈pd〉;s2[a1][i]!〈ack〉;0

A2 = a[a2](s1).b[a2](s2).s2[a2][i]?(x);s1[a2][u]!〈pd〉;s2[a2][i]!〈ack〉;0

U = a[u](s1).s1[u][a1]?(x);s1[u][a2]?(y);0

and i is the instrument role, a1 and a2 are the agent roles and u is the user role. Furthermore

for session s1 we have that role i0 (from scenario 1) = a2, since we want to maintain the

session s1 as it is defined in the scenario 1.

6.6.3 Usecase scenario 3

A step further is to enhance the performance of usecase scenario 2 if the instrument (I) code

in usecase scenario 2 can have a different implementation, where raw data are sent to both

agents (A1, A2) before any acknowledgement is received. ION agents can process data in

parallel resulting in an optimised implementation.

• A new session connection s1 is established between (U), (A1) and (A2).

• A new session connection s2 is established between (A1, A2) and (I).

216 Chapter 6. Multiparty Session Types Behavioural Theory

• (I) sends raw data through s2 to (A1).

• (I) sends raw data through s2 to (A2).

• (A1) sends processed data (format 1) through s1 to (U).

• (A1) sends acknowledgement through s2 to (I).

• (A2) sends processed data (format 2) through s1 to (U).

• (A2) sends acknowledgement through s2 to (I).

• A new session connection s1 is established between (U), (A1) and (A2).

The process is now refined as

I2 | A1 | A2 |U

where

I2 = b[i](s2).s2[i][a1]!〈rd〉;s2[i][a2]!〈rd〉;s2[i][a1]?(x);s2[i][a1]?(x);0

and i implements the instrument role, a1 and a2 are the agent roles and u is the user role.

6.6.4 Behavioural Equivalence

The main concern of the three scenarios is to implement the Integrated Ocean Network inter-

face respecting the multiparty communication protocols.

Having the user process as the observer we can see that typed processes for Usecase scenario 1

6.6. A Service Oriented Usecase 217

and Usecase scenario 2:

Γ ` I0 | A.∆0

Γ ` I1 | A1 | A2 .∆1

are bisimilar (using≈). We give the bisimulation closure that characterises the two processes.

Recall that i0= a2. Let:

Γ ` I0 | A.∆0
a[s](a1,a2)−→ Γ ` P1 .∆01

τ−→ Γ ` P2 .∆02

τ−→ Γ ` P3 .∆03
s1[a1][u]!〈pd〉−→ Γ ` P4 .∆04

τ−→ Γ ` P5 .∆05
s1[i0][u]!〈pd〉−→ Γ ` P6 .∆06

Γ ` I1 | A1 | A2 .∆1
a[s](a1,a2)−→ Γ ` Q1 .∆11

τ−→ Γ ` Q2 .∆12

τ−→ Γ ` Q3 .∆13
s1[a1][u]!〈pd〉−→ Γ ` Q4 .∆14

τ−→ Γ ` Q5 .∆15
τ−→ Γ ` Q6 .∆16

s1[a2][u]!〈pd〉−→ Γ ` P7 .∆17
τ−→ Γ ` Q8 .∆18

The bisimulation closure is:

R = {(Γ ` I0 | A.∆0,Γ ` I1 | A1 | A2 .∆1),(Γ ` P1 .∆01,Γ ` Q1 .∆11)

(Γ ` P2 .∆02,Γ ` Q2 .∆12),(Γ ` P3 .∆03,Γ ` Q3 .∆13)

(Γ ` P4 .∆04,Γ ` Q4 .∆14),(Γ ` P5 .∆05,Γ ` Q5 .∆15)

(Γ ` P5 .∆05,Γ ` Q6 .∆16),(Γ ` P6 .∆06,Γ ` Q7 .∆17)

(Γ ` P6 .∆06,Γ ` Q8 .∆18)}

The two implementations (scenario 1 and scenario 2) are completely interchangeable with

respect to ≈.

If we proceed with the case of the scenario 3 we can see that typed process Γ ` I2 | A1 | A2 .∆2

218 Chapter 6. Multiparty Session Types Behavioural Theory

cannot be simulated (using ≈) by scenarios 1 and 2, since we can observe the execution:

Γ ` I1 | A1 | A2 .∆1
τ−→ a[s](a1,a2)−→ s1[a2][u]!〈pd〉−→

By changing the communication ordering in the ION private session s2 we changed the com-

munication behaviour on the external session channel s1. Nevertheless, the communication

behaviour remains the same if we take into account the global multiparty protocol of s1 and

the way it governs the behaviour of the three usecase scenarios.

Hence we use ≈s
g. The definition of the global environment is as follows:

E = s1 : a1→ u : 〈PD〉.a2→ u : 〈PD〉.

The global protocol governs processes I1 | A1 | A2 (similarly I0 | A) and I2 | A1 | A2 to always

observe action
s1[a2][u]!〈pd〉−→ after action

s1[a1][u]!〈pd〉−→ for both processes.

Also note that the global protocol for s2 is not present in the global environment, because

s2 is restricted. The specification and implementation of session s2 are abstracted from the

behaviour of session s1.

Part III

219

Chapter 7

Conclusion

This is the concluding chapter of this dissertation, in which we include an extended compar-

ison of the different aspects of this work with related works. The dissertation ends with a

concluding remark.

7.1 Related Work

Confluence: The confluence theory for session types is based on the confluence theory for

the π-calculus initially proposed in [PW97], which presents a theory of constructing confluent

and determinate processes in the general case of π-calculus transitions. We use the ideas and

definitions from that work to prove that session channels construct confluent systems and to

reason about concurrent systems (see the Lauer-Needham transform in § 5.5).

Although we use the main intuitions and definitions from [PW97] to construct confluent pro-

cesses, we follow a session oriented approach to the subject of confluence, rather than a

general approach to confluence for typed π-calculi. This work investigates the confluent

behaviour of a typed restricted labelled transition system in the presence of asynchronous

input/output queues. We reason about systems based on the confluence property of partial

221

222 Chapter 7. Conclusion

transitions (i.e. the confluence property on session transitions). For example, when reasoning

about the Lauer-Needham transform in § 5.5 we need to show that non-session transitions are

also confluent. We use assumptions in the construction of event-driven confluent processes,

because event-driven transitions are not confluent in the presence of the arrive-predicate

(see example in § 5.1).

Expressiveness: There is a number of works on expressiveness that are directly or indirectly

related with the work in this thesis.

The work [BPV08] examines the encodability of various messaging media in the asynchronous

π-calculus [HT91a]. Specifically, it shows that a message bag (no ordering) medium is encod-

able in the asynchronous π-calculus, while stack media (LIFO policy) and message queues

(FIFO policy) are impossible to be encoded. The impossibility in encoding message queues

implies the impossibility of encoding the asynchronous calculi developed in this dissertation

in terms of the asynchronous π-calculus. Furthermore it does not study the effects of typed

transitions and event-driven programming on encodings.

In [DH11] the linear types for the asynchronous π-calculus are studied in the presence of

subtyping to provide a fully abstract encoding of the synchronous binary session types, that is

proved based on the may and must barbed equivalences. The linear typed π-calculus is based

on [HT91a] and uses no message queues for communication. Furthermore it is interested in

the encodings between different calculi, in contrast to this work that encodes a program in

the same calculus. It would also be interesting to see the extensions of linear types to en-

code multiparty and asynchronous session types and as well the use of the typed behavioural

techniques developed in this dissertation as the behavioural basis for proving full abstraction.

The relations between a session type system and linear logic [Gir87] are studied in [CP10,

Wad12]. Both papers present a strict subset of session typed calculi that are in correspondence

with different forms of sequent calculi, with the intention to be typed under a session type sys-

tem with direct correspondence to linear logic. The attempt is to prove a Curry-Howard like

7.1. Related Work 223

correspondence between the π-calculus, session types and linear logic, with the reductions

of the π-calculus corresponding to cut-eliminated proof steps in linear logic. The results of

these two papers have a deep impact to our understanding of sessions.

A subsequent paper [PCPT12] of [CP10] extends the above intuitions. To be more specific,

the work in [CP10] proposes the session typed πDILL calculus, with DILL standing for dual in-

tuitionistic linear logic and shows the correspondence between πDILL and the DILL calculus.

The work in [PCPT12] develops a theory for the study of termination and liveness properties

and proposes an observational theory based on the typed context bisimilarity. Termination

and liveness are important in the context of session types and are the main intuition for the

development of multiparty session types. In this work we propose a uniform behavioural the-

ory for session types, which in correlation with the above works gives further intuitions about

the relation of asynchronous and multiparty session types with linear logic and creates new

perspectives for understanding the behavioural theory of types in terms of linear logic.

The expressiveness and encodability results for programming constructs that can test the pres-

ence of actions or events have been studied in the context of the Linda language [BGZ00] and

CSP [Low09, Low10].

The work in [BGZ00] compares the expressive powers between three variants of asynchronous

Linda-like calculi, with a construct for inspecting the presence of messages in the tuple space

(i.e. the message medium that defines asynchronous communication), which is reminiscent of

the inp predicate of Linda. The first calculus (called instantaneous) corresponds to the asyn-

chronous π-calculus [HT91a], the second calculus (called ordered) formalises emissions of

messages to the tuple spaces, and the third one (called unordered) models unordered outputs

in the tuple space by decomposing one messaging into two stages — emission from an output

process and rendering from the tuple space.

The semantics for message inspecting in the three Linda-like calculi assume the observation

of labels on inspection transitions, in contrast to this work which treats arrive-inspection

224 Chapter 7. Conclusion

as internal expression evaluation. Based on the labelled transition semantics developed the

authors define a behavioural theory based on barbed bisimulation.

A study of the expressiveness of the semantics shows that the instantaneous and ordered

calculi are Turing powerful, while the unordered calculus is not.

The work in [Low09] uses the term availability to describe whether a channel is ready to input

a message. The work extends CSP with a construct that checks if a parallel process is available

to perform an output action on a given channel. The construct is similar to the arrive-

predicate in the sense that it uses the if ready a then P else Q to test for the availability

of channel a. It studies operational and denotational semantics, demonstrating the interest

to investigate event primitives using process calculi. A subsequent work [Low10] studies

the expressiveness of the calculus defined in [Low09] and the pure CSP (i.e. the calculus

in [Low09] without the if ready a then P else Q predicate) that is extended to describe

availability tests through its semantics. The latter work focusses on trace equivalence and

proves the full abstraction of the two approaches.

A contrast between the session typed π-calculi developed in this dissertation and the calculi

in [BGZ00, Low09, Low10] is difficult to make, due to the differences in the base calculi

(Linda-like calculus and CSP in contrast to the π-calculus). Nevertheless, we should mention

the lack of FIFO queues as communication mediums and the absence of a typing system in the

related work. Linda-like calculi defines asynchrony based on the notion of tuple-space, while

CSP does not address the issue of asynchrony. The behavioural theory in [Low09, Low10] is

based on denotational semantics and trace equivalence. Furthermore, there is no study of a

large application to demonstrate the applicative aspects of the constructs under consideration.

Session typed formalisms: A number of session type-based systems that guarantee ad-

vanced progress properties in the context of Web services have been proposed recently [C+09,

CV10, CP09, B+08]. In [C+09] the authors study a foundational approach on session types,

7.1. Related Work 225

that is concerned with the development of the algorithms for a sound and safe session type

system. Caires and Viera propose in [CV10] conversation types as a type discipline for a

service-oriented π-calculus called the conversation calculus [VCS08]. Another service ori-

ented approach is found in [CP09] where services are implemented in the π-calculus and are

typed under the contract type system. In [B+08] the authors develop a multiparty session type

system for implementing multiparty web applications.

The techniques for type-safe and dynamic event inspection that were developed in this thesis

cannot be found in the above bibliography. These techniques can be used for the construction

of type-safe services with a reactive control flow that results in optimised service implemen-

tations. In the presence of multiparty session types this thesis develops a set of modular and

extensible calculi for that can be used for the development of multiparty network applica-

tions. In fact Part 3 of this work extends in an elegant way the work in [B+08]. Furthermore,

it develops the behavioural theory for reasoning in each different calculi and studies general

properties of the event-driven framework with the study of the Lauer-Needham transform. In

contrast none of the above work studies neither the behavioural theory (bisimulation) nor the

applications in eventful programming.

Dynamic types. An important contribution of this dissertation is the ability to statically

type programs with dynamic control flow. We attack this problem by reducing the notion of

dynamic control flow to a type-driven control flow and we use constructs from the literature

of the λ -calculus to type such a program.

Static analysis for a dynamic flow of control for the λ -calculus was studied in [ACPP89,

ACPR95], where (i) the typecase construct is applied for general expressions e; (ii) the type

of e can be matched against type patterns with free variables; and (iii) the default case is

selected if there is no matching (motivated by the use of untyped input/output). In this work

we use the typecase construct to match the runtime type of a session with sessions closed

session types (in contrast to open type patterns for λ -expressions). We impose a stronger

226 Chapter 7. Conclusion

constraint on the typecase construct with the use of session set types, dispensing with the

default case. Finally we use subtyping to keep session duality in a consistent state.

Implementation. The event-driven ideas developed in this work were implemented as an

extension of Java with session types [HKP+10], based on Session Java [HYH08]. The work

considers both programming abstraction and performance aspects of the ESP in practice and

provides programmers a typed session event selector API (a session-typed extension of the

standard java.nio.channels.Selector API) for registering and selecting session endpoints

(instances of a session-typed extension of java.net.Socket). The type checker of the ex-

isting Session Java [HYH08] compiler was extended to handle the above constructs together

with session set types, with the adoption of the presented type system to Java expressions and

statement control flow to ensure communication and event-handling safety for event-driven

Session Java programs. The Eventful Session Java Runtime is designed to uniformly incorpo-

rate a variety of transports, including TCP, HTTP and shared memory, under the Session Java

session abstraction; this means a single Session Java selector instance is capable of monitor-

ing sessions running over heterogeneous transports as well as being of heterogeneous types.

Eventful Session Java was used to implement an event-driven SMTP server and a client as a

real-world application use case [HKP+10]. The server is interoperable with standard, non-

Session Java (i.e. not session-typed) SMTP clients such as Outlook, Thunderbird and Apple

Mail (and likewise for the Session Java client). While the Session Java implementations

are, of course, checked to be session type-safe by the Session Java compiler, the Session

Java Runtime also performs run-time monitoring of the (SMTP) session to ensure that non-

session-typed peers indeed conform to the same protocol.

Performance and scalability benchmarks for the Eventful SJ Runtime [HKP+10, SJ10] demon-

strate the feasibility of integrating session types and event-driven programming, and affirm the

application of the Lauer-Needham transform in practice. The benchmarks include basic multi-

threaded and event-driven implementations in standard Java as base cases. Micro-benchmarks

7.2. Conclusion 227

and a macro-benchmark using the SMTP server show that thread-eliminated Eventful SJ pro-

grams exhibit higher average throughput and better response-time than the multi-threaded

versions as the server is loaded by an increasing number of concurrent clients.

7.2 Conclusion

This dissertation presents a bisimulation theory for session typed calculi in both the binary

and multiparty session types.

We initially investigate the possibility of developing an asynchronous version for session

types based on the asynchronous π-calculus [HT91b, Bou92]. The asynchronous π-calculus

allows for unordered delivery of messages, which is counter-intuitive with session types,

since session types are based on the sequentiality of send/receive actions. To overcome this

problem without compromising the order-preserving property of session types, we propose

the semantic definition of intermediate FIFO session queues as processes with fine-grained

communication semantics, that are used to store sent messages until their final reception. In

the case of shared name interactions we use the asynchronous π-calculus approach together

with an intermediate queue for the unordered delivery of session initiation messages. The

resulting calculus is called the Asynchronous Session π-calculus (ASP) and it is used as the

core calculus for studying bisimulation and equivalence theory in the context of session types.

The importance of the ASP is shown by its capabilities to model network communication.

Networks use a series of intermediate buffers to store a message until its final delivery to the

receiving application. The unordered delivery of session initiation messages correspond to

asynchronous connection initiation in network protocols, such as the TCP. The buffered and

ordered delivery inside a session corresponds to reliable network communication.

The session type system for pure ASP terms (i.e. terms with no session queues) is based on

the classic systems [HVK98, YV07] for session types. We type session queues with the use

228 Chapter 7. Conclusion

of a session type system for messages, where the FIFO ordering of each queue ensures the

sequentiality of session messages.

The basic insight for a bisimulation theory for session types, comes from the fact that a session

environment can control the observables of a process, so that its behaviour will conform to

session type properties. We develop a typed bisimulation theory for the ASP, based on the

labelled transition system for untyped processes and a labelled transition system for typing

environments. We prove that the derived (weak) bisimilarity on closed session typed terms, is

the maximum reduction-closed congruence that preserves observation, making two bisimilar

processes indistinguishable under any observer.

Concerning the bisimulation theory we take a further step to study the confluence and de-

terminacy properties of session transitions. Confluence is a property that is inherited by the

communication structure of systems and it is used to reason about the correctness of large

applications. Due to the session linearity that is enforced by the typing system, session tran-

sitions are confluent and determinate.

We follow asynchrony in the context of event-driven programming. Event-driven program-

ming is one of the major frameworks that utilise asynchronous programming. Events are

characterised by detectability, in the sense that event-driven computation can detect the pres-

ence of an event as a message in the communication medium. Event types may also drive

the flow of the computation. The latter fact introduces a dynamic and reactive control flow in

processes, where static analysis is obfuscated and non-trivial without the aid of type-oriented

programming constructs.

We capture the event-driven framework in an extension of the ASP called the Eventful Session

π-calculus. We use the event-driven paradigm to enhance our theory in numerous ways. From

a theoretical point of view we are interested in the typing of processes with a reactive control

flow. From an applied aspect, we believe that our eventful theory gives the basic primitives to

implement the different event-driven programming models in a typed setting.

7.2. Conclusion 229

We chose to extend ASP with two key process terms: i) the arrive-predicate, which is

used as an expression to check for the existence of messages in message buffers; and ii) the

typecase process that type-checks the runtime type of session channels and proceeds with

the computation accordingly. The arrive-predicate is typed as a Boolean expression. For

the typecase process we propose the session set type, which is the set of the possible session

types that are implemented by a typecase process. The session set type is transparent up-to

subtyping with respect to the ASP session type syntax.

The bisimulation properties studied for the ASP continue to hold for the ESP, since ESP is

a rather straightforward and transparent up-to subtyping extension of ASP. Specifically we

prove that (weak) bisimilarity is the maximum reduction-closed congruence that preserves

observation. The confluence and determinacy properties continue to hold for session tran-

sitions and the typecase transition. Transitions on the arrive-predicate though, are not

confluent as we show with a simple counterexample.

We demonstrate the applicability of the event-driven theory with the encoding of basic event-

driven constructs and routines. A basic event-driven routine is the event-loop, which is a

single threaded flow of control that reacts to events (i.e. message arrivals) and proceeds with

an event processing routine. After its completion the event-handling routine returns the con-

trol to the event-loop for the selection of the next ready event. The event-loop can be build

on top of the selector programming construct. The selector registers in its structure a list of

channels and iterates through them to check whether they have data for processing (message

arrival). We define a set of session semantics for the selector construct to extend ESP to

ESP+. We next show that the selector semantics are encodable in the terms of ESP and prove

the type and behavioural invariance of the encodings. We then construct a general event-loop

using the encoded selector. We prove that the order of the registered channels on the struc-

ture of the selector is invariant with respect to the behaviour of the corresponding event-loop,

provided that the event-handling routines of the event-loop are confluent and determinate.

The observation made by Lauer and Needham in [LN79] argues about the duality of the

230 Chapter 7. Conclusion

two main approaches for concurrent programming: i) thread-based programming; and the ii)

event-driven paradigm. The authors define a set of thread programming primitives and a set

of event-driven programming primitives and make their argument by providing encodings for

expressing one set in terms of the other. However there is no known result that studies the

equivalence and meta-theoretic properties of such encodings.

In this dissertation we assume a threaded ESP server that spawns a parallel thread to service

each client from an unbounded number of clients. We then define a transformation from the

threaded server to a single thread event-loop server. We use the behavioural invariance result

for the selector to prove that our transformation is type and semantic preserving, under the

hypothesis that the threaded server handles clients in a non-recursive, sequential and con-

fluent way. The assumption of a sequential and non-recursive handling of a client by each

server thread is made to achieve an easier and less detailed proof of the main theorem (The-

orem 5.5.1). Nevertheless the structure of the proof gives a strong intuition that the main

theorem (Theorem 5.5.1) holds in the general case where the threaded server handles each

client in a confluent way.

In the last part of the thesis we develop a behavioural theory for multiparty session types

[HYC08, B+08], based on the theory developed for binary session types. Multiparty session

types were developed to overcome the limitations presented by binary session types. Binary

session types are not powerful enough to enforce the sequentiality and linearity properties in a

set of more than two communication participants. A global multiparty protocol is a structure

that describes communication for all participants. The local projection of a global protocol

results in a set of local types for all participants, that enforces session types properties in a

concurrent computation.

We initially develop the theory for a synchronous multiparty session calculus, that serves as

a core calculus to define family of asynchronous multiparty session calculi, each of them

following a different approach on asynchronous buffered communication. Specifically we

use intermediate FIFO buffers to define an asynchronous MSP calculus with output localised

7.2. Conclusion 231

endpoints, i.e. we store output messages in a local endpoint until their delivery. Similarly we

define an asynchronous calculus with input localised endpoints, where messages are accu-

mulated in a localised input buffer before reception. A third asynchronous calculus uses the

approach developed for the ASP calculus where we use both input and output intermediate

endpoints to achieve fine-grained communication. The session type systems for all cases are

shown to be sound via the corresponding subject reduction theorems.

We follow the principles developed in the ASP case, to define a (weak) bisimulation relation

for each one of the MSP calculi. We use the untyped labelled transition system together

with a labelled transition system on local session types to define a local typed transition

relation on session typed processes. Based on the typed transition relation we define a (weak)

bisimulation relation for every MSP calculus. We show that all bisimulation relations coincide

to the corresponding reduction closed and barb preserving congruences.

The intuition that a type environment can control a process transition has led to the develop-

ment of semantics for global multiparty protocols. We use the above semantics to define a

(weak) bisimulation relation which is controlled by the global multiparty protocol instead of

the local session type. We call such a bisimulation globally governed bisimulation, which is

coarser than the bisimulation defined using the local session type. We prove that the globally

governed bisimulation, for each calculus, is a reduction closed and barb preserving congru-

ence.

The final results relate the locally defined session bisimulation with the globally governed

bisimulation. The elegant extension of the synchronous MSP to the asynchronous MSP cal-

culi allow for a uniform framework to define all four calculi. Based on the uniform framework

we show the inclusion relations between the four locally defined session bisimulations.

Throughout the thesis we have different definitions for session type calculi both for the bi-

nary and multiparty session types. In the case of binary session types we work with an

asynchronous definition in contrast with the multiparty case where we define a synchronous

232 Chapter 7. Conclusion

calculus as a reference calculus to define a family of asynchronous multiparty session seman-

tics. A first question on this observation would be about the possibility of defining a family

of calculi for the binary case similar to the family of calculi for the multiparty case. The

answer to this question comes from the multiparty theory itself (i.e. the theory developed in

Chapter 6) since it gives strong evidence about a possible structure and behaviour for binary

session types. A second intuition about the behaviour of different models of binary session

types comes from the work done in Section 5.2 where we compare the behaviour of the ASP

with other known π-calculi.

An important result on the behaviour of asynchronous semantics is the fact that process be-

haviour differs between different asynchronous models (see Chapter 6, Theorem 6.5.2 and

Section 5.2). A question that arises here is whether we can define a different set of asyn-

chronous session type calculi and classify their behavioural relations. A suggestion towards

this direction is to define a calculus with an intermediate buffer between the input and output

endpoints. A generalisation of this suggestion would be to define such an intermediate buffer

as an agent and use it to define a calculi that allows a finite and variable number of intermedi-

ate message mediums. The latter approach can be used to resemble and study the behaviour

of actual networks and actual network communication.

The results of this dissertation intend to have an impact on the behaviour analysis of typed

processes. Besides the purely mathematical interest on the bisimulation frameworks for ses-

sion, we are interested in the application of the behavioural theory on real systems, since

session types is a typing system that deals with the desired communication properties of such

a system. It is an intention that the theory developed in this thesis will be used as a reference

for developing behavioural frameworks and for specifying and verifying correct distributed

applications.

Bibliography

[ACPP89] M. Abadi, L. Cardelli, B. Pierce, and G. Plotkin, Dynamic typing in a

statically-typed language, Proceedings of the 16th ACM SIGPLAN-SIGACT

symposium on Principles of programming languages (New York, NY, USA),

POPL ’89, ACM, 1989, pp. 213–227.

[ACPR95] Martı́n Abadi, Luca Cardelli, Benjamin C. Pierce, and Didier Rémy, Dynamic

typing in polymorphic languages, J. Funct. Program. 5 (1995), no. 1, 111–130.

[ACS98] Roberto M. Amadio, Ilaria Castellani, and Davide Sangiorgi, On bisimulations

for the asynchronous pi-calculus, TCS 195 (1998), no. 2, 291–324.

[Agh86] Gul Agha, Actors: a model of concurrent computation in distributed systems,

MIT Press, Cambridge, MA, USA, 1986.

[AHT+02] Atul Adya, Jon Howell, Marvin Theimer, William J. Bolosky, and John R.

Douceur, Cooperative task management without manual stack management or,

event-driven programming is not the opposite of threaded programming, In

Proceedings of the 2002 Usenix ATC, 2002.

[B+08] Lorenzo Bettini et al., Global progress in dynamically interleaved multiparty

sessions, CONCUR, LNCS, vol. 5201, Springer, 2008, pp. 418–433.

233

234 BIBLIOGRAPHY

[BDM98] Gaurav Banga, Peter Druschel, and Jeffrey C. Mogul, Better operating sys-

tem features for faster network servers, SIGMETRICS Performance Evalua-

tion Review 26 (1998), no. 3, 23–30.

[BGZ00] Nadia Busi, Roberto Gorrieri, and Gianluigi Zavattaro, Comparing three se-

mantics for linda-like languages, Theor. Comput. Sci. 240 (2000), no. 1, 49–

90.

[BH13] G. Bernardi and M. Hennessy, Using higher-order contracts to model session

types, ArXiv e-prints (2013).

[Bou92] Gerard Boudol, Asynchrony and the pi-calculus, Tech. Report 1702, INRIA,

1992.

[BPV08] Romain Beauxis, Catuscia Palamidessi, and Frank D. Valencia, On the asyn-

chronous nature of the asynchronous pi-calculus, Concurrency, Graphs and

Models, LNCS, vol. 5065, Springer, 2008, pp. 473–492.

[C+09] Giuseppe Castagna et al., Foundations of session types, PPDP’09, ACM, 2009,

pp. 219–230.

[CDCY07] Mario Coppo, Mariangiola Dezani-Ciancaglini, and Nobuko Yoshida, Asyn-

chronous Session Types and Progress for Object-Oriented Languages,

FMOODS’07, LNCS, vol. 4468, 2007, pp. 1–31.

[CK05] Ryan Cunningham and Eddie Kohler, Making events less slippery with eel,

HOTOS’05, 2005, pp. 3–3.

[Cli81] William D Clinger, Foundations of actor semantics, Tech. report, Mas-

sachusetts Institute of Technology, Cambridge, MA, USA, 1981.

[CP09] G. Castagna and L. Padovani, Contracts for mobile processes, CONCUR 2009,

LNCS, no. 5710, 2009, pp. 211–228.

BIBLIOGRAPHY 235

[CP10] Luı́s Caires and Frank Pfenning, Session types as intuitionistic linear proposi-

tions, Proceedings of the 21st international conference on Concurrency theory

(Berlin, Heidelberg), CONCUR’10, Springer-Verlag, 2010, pp. 222–236.

[CV10] Luı́s Caires and Hugo Torres Vieira, Conversation types, Theor. Comput. Sci.

411 (2010), no. 51-52, 4399–4440.

[DCMYD06] Mariangiola Dezani-Ciancaglini, Dimitris Mostrous, Nobuko Yoshida,

and Sophia Drossopoulou, Session Types for Object-Oriented Languages,

ECOOP’06, LNCS, vol. 4067, 2006, pp. 328–352.

[DGS12] Ornela Dardha, Elena Giachino, and Davide Sangiorgi, Session types revisited,

Proceedings of the 14th symposium on Principles and practice of declarative

programming (New York, NY, USA), PPDP ’12, ACM, 2012, pp. 139–150.

[DH11] Romain Demangeon and Kohei Honda, Full abstraction in a subtyped pi-

calculus with linear types, CONCUR, 2011, pp. 280–296.

[DY11] Pierre-Malo Deniélou and Nobuko Yoshida, Dynamic multirole session types,

POPL, 2011, pp. 435–446.

[DY12] , Multiparty session types meet communicating automata, ESOP, 2012,

pp. 194–213.

[EJ09] Patrick Eugster and K. R. Jayaram, Eventjava: An extension of Java for event

correlation, ECOOP, LNCS, vol. 5653, Springer, 2009, pp. 570–594.

[GH05] Simon Gay and Malcolm Hole, Subtyping for Session Types in the Pi-Calculus,

Acta Informatica 42 (2005), no. 2/3, 191–225.

[Gir87] Jean-Yves Girard, Linear logic, TCS 50 (1987), 1–102.

[GV10] Simon Gay and Vasco T. Vasconcelos, Linear type theory for asynchronous

session types, J. Funct. Program. 20 (2010), no. 1, 19–50.

236 BIBLIOGRAPHY

[HBS73] Carl Hewitt, Peter Bishop, and Richard Steiger, A universal modular actor

formalism for artificial intelligence, IJCAI, 1973, pp. 235–245.

[Hen07] Matthew Hennessy, A Distributed Pi-calculus, CUP, 2007.

[HKP+10] Raymond Hu, Dimitrios Kouzapas, Olivier Pernet, Nobuko Yoshida, and Ko-

hei Honda, Type-safe eventful sessions in Java, ECOOP’10, LNCS, vol. 6183,

Springer-Verlag, 2010, pp. 329–353.

[HO08] Philipp Haller and Martin Odersky, Scala actors: Unifying thread-based and

event-based programming, Theoretical Computer Science (2008).

[Hon93] Kohei Honda, Types for Dyadic Interaction, CONCUR’93 (Eike Best, ed.),

LNCS, vol. 715, Springer-Verlag, 1993, pp. 509–523.

[HR04] Matthew Hennessy and Julian Rathke, Typed behavioural equivalences for

processes in the presence of subtyping, Mathematical. Structures in Comp. Sci.

14 (2004), no. 5, 651–684.

[HT91a] Kohei Honda and Mario Tokoro, An object calculus for asynchronous commu-

nication, ECOOP’91, LNCS, vol. 512, 1991, pp. 133–147.

[HT91b] , On asynchronous communication semantics, Object-Based Concur-

rent Computing, 1991, pp. 21–51.

[HVK98] Kohei Honda, Vasco T. Vasconcelos, and Makoto Kubo, Language primi-

tives and type disciplines for structured communication-based programming,

ESOP’98, LNCS, vol. 1381, Springer, 1998, pp. 22–138.

[HY95] Kohei Honda and Nobuko Yoshida, On reduction-based process semantics,

TCS 151 (1995), no. 2, 437–486.

[HY07] , A uniform type structure for secure information flow, ACM Trans.

Program. Lang. Syst. 29 (2007), no. 6.

BIBLIOGRAPHY 237

[HYC08] Kohei Honda, Nobuko Yoshida, and Marco Carbone, Multiparty Asynchronous

Session Types, POPL’08, ACM, 2008, pp. 273–284.

[HYH08] Raymond Hu, Nobuko Yoshida, and Kohei Honda, Session-Based Distributed

Programming in Java, ECOOP’08, LNCS, vol. 5142, Springer, 2008, pp. 516–

541.

[KH11] Vasileios Koutavas and Matthew Hennessy, A testing theory for a higher-order

cryptographic language, Proceedings of the 20th European conference on Pro-

gramming languages and systems: part of the joint European conferences on

theory and practice of software (Berlin, Heidelberg), ESOP’11/ETAPS’11,

Springer-Verlag, 2011, pp. 358–377.

[KKK07] Maxwell Krohn, Eddie Kohler, and M. Frans Kaashoek, Events can make

sense, ATC’07, USENIX Association, 2007, pp. 1–14.

[Kou09] Dimitrios Kouzapas, A session type discipline for event driven pro-

gramming models, Master’s thesis, Imperial College London, 2009,

http://www.doc.ic.ac.uk/teaching/distinguished-projects/2010/d.kouzapas.pdf.

[KPT99] Naoki Kobayashi, Benjamin C. Pierce, and David N. Turner, Linearity and the

Pi-Calculus, ACM TOPLAS 21 (1999), no. 5, 914–947.

[Kro04] Maxwell Krohn, Building secure high-performance web services with OKWS,

ATEC’04, USENIX Association, 2004, pp. 15–15.

[Lea03] Doug Lea, Scalable IO in Java, http://gee.cs.oswego.edu/dl/

cpjslides/nio.pdf, November 2003.

[LN79] Hugh C. Lauer and Roger M. Needham, On the duality of operating system

structures, SIGOPS Oper. Syst. Rev. 13 (1979), no. 2, 3–19.

[Low09] Gavin Lowe, Extending CSP with tests for availability, CPA, 2009, pp. 325–

347.

http://gee.cs.oswego.edu/dl/cpjslides/nio.pdf
http://gee.cs.oswego.edu/dl/cpjslides/nio.pdf

238 BIBLIOGRAPHY

[Low10] , Models for CSP with availability information, EXPRESS’10, 2010,

pp. 91–105.

[LY99] Tim Lindholm and Frank Yellin, Java virtual machine specification, 2nd ed.,

Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1999.

[LZ07] Peng Li and Steve Zdancewic, Combining events and threads for scalable net-

work services implementation and evaluation of monadic, application-level

concurrency primitives, SIGPLAN Not. 42 (2007), no. 6, 189–199.

[Mil80] Robin Milner, A calculus of communicating systems, Lecture Notes in Com-

puter Science, vol. 92, Springer, Berlin, 1980.

[Mil89] Robin Milner, Communication and concurrency, Prentice Hall, 1989.

[Mil92] , The polyadic π-calculus: A tutorial, Proceedings of the International

Summer School on Logic Algebra of Specification, Marktoberdorf, 1992.

[MPW92] Robin Milner, Joachim Parrow, and David Walker, A calculus of mobile pro-

cesses, I, Inf. Comput. 100 (1992), no. 1, 1–40.

[MY07] Dimitris Mostrous and Nobuko Yoshida, Two session typing systems for

higher-order mobile processes, TLCA’07, LNCS, vol. 4583, Springer, 2007,

pp. 321–335.

[MY09] Dimitris Mostrous and Nobuko Yoshida, Session-based communication op-

timisation for higher-order mobile processes, TLCA’09, LNCS, vol. 5608,

Springer, 2009, pp. 203–218.

[NIO] New i/o apis, http://java.sun.com/j2se/1.4.2/docs/guide/nio/.

[OAC+06] Martin Odersky, Philippe Altherr, Vincent Cremet, Iulian Dragos, Gilles Dubo-

chet, Burak Emir, Sean McDirmid, Stphane Micheloud, Nikolay Mihaylov,

Michel Schinz, Lex Spoon, Erik Stenman, and Matthias Zenger, An Overview

http://java.sun.com/j2se/1.4.2/docs/guide/nio/

BIBLIOGRAPHY 239

of the Scala Programming Language (2. edition), Tech. report, EPFL Lau-

sanne, Switzerland, 2006.

[OOI] Ocean Observatories Initiative (OOI), http://www.oceanobservatories.

org/.

[Ous96] John Ousterhout, Why threads are a bad idea (for most pur-

poses), http://www.cs.utah.edu/˜regehr/research/ouster.pdf,

http://home.pacbell.net/ouster/threads.ppt, January 1996.

[Par81] David Park, Concurrency and automata on infinite sequences, Proceedings of

the 5th GI-Conference on Theoretical Computer Science (London, UK, UK),

Springer-Verlag, 1981, pp. 167–183.

[PCPT12] Jorge A. Pérez, Luı́s Caires, Frank Pfenning, and Bernardo Toninho, Linear

logical relations for session-based concurrency, ESOP, 2012, pp. 539–558.

[Pie02] Benjamin C. Pierce, Types and programming languages, MIT Press, 2002.

[PS96] B. Pierce and D. Sangiorgi, Typing and subtyping for mobile processes, MSCS

6 (1996), no. 5, 409–454.

[PW97] Anna Philippou and David Walker, On confluence in the pi-calculus,

ICALP’97, Lecture Notes in Computer Science, vol. 1256, Springer, 1997,

pp. 314–324.

[San92] Davide Sangiorgi, Expressing mobility in process algebras: First-order and

higher order paradigms, Ph.D. thesis, University of Edinburgh, 1992.

[San09] Davide Sangiorgi, On the origins of bisimulation and coinduction, ACM Trans.

Program. Lang. Syst. 31 (2009), no. 4, 15:1–15:41.

[SJ10] SJ, SJ homepage, http://www.doc.ic.ac.uk/˜rhu/sessionj.html, 2010.

http://www.oceanobservatories.org/
http://www.oceanobservatories.org/
http://www.cs.utah.edu/~regehr/research/ouster.pdf
http://home.pacbell.net/ouster/threads.ppt
http://www.doc.ic.ac.uk/~rhu/sessionj.html

240 BIBLIOGRAPHY

[SKS11] Davide Sangiorgi, Naoki Kobayashi, and Eijiro Sumii, Environmental bisim-

ulations for higher-order languages, ACM Trans. Program. Lang. Syst. 33

(2011), no. 1, 5:1–5:69.

[SMI11] Sun Microsystems Inc., New IO APIs, http://java.sun.com/j2se/1.4.2/

docs/guide/nio/index.html, 2011.

[SW01] Davide Sangiorgi and David Walker, Pi-calculus: A theory of mobile pro-

cesses, Cambridge University Press, New York, NY, USA, 2001.

[THK94] Kaku Takeuchi, Kohei Honda, and Makoto Kubo, An Interaction-based Lan-

guage and its Typing System, PARLE’94, LNCS, vol. 817, 1994, pp. 398–413.

[vB+03] Rob von Behren et al., Capriccio: scalable threads for internet services, SOSP

’03, ACM, 2003, pp. 268–281.

[vBCB03] Rob von Behren, Jeremy Condit, and Eric Brewer, Why events are a bad

idea (for high-concurrency servers), Proceedings of the 9th conference on Hot

Topics in Operating Systems - Volume 9 (Berkeley, CA, USA), HOTOS’03,

USENIX Association, 2003, pp. 4–4.

[VCS08] Hugo T. Vieira, Lus Caires, and Joo C. Seco, The conversation calculus: a

model of service oriented computation, In Proc. of ESOP08, LNCS, Springer,

2008.

[VWW96] Robert Virding, Claes Wikström, and Mike Williams, Concurrent program-

ming in ERLANG (2nd ed.), Prentice Hall International (UK) Ltd., Hertford-

shire, UK, UK, 1996.

[Wad12] Philip Wadler, Propositions as sessions, ICFP, 2012, pp. 273–286.

[WCB01] Matt Welsh, David E. Culler, and Eric A. Brewer, SEDA: An Architecture for

Well-Conditioned, Scalable Internet Services, SOSP’01, ACM Press, 2001,

pp. 230–243.

http://java.sun.com/j2se/1.4.2/docs/guide/nio/index.html
http://java.sun.com/j2se/1.4.2/docs/guide/nio/index.html

BIBLIOGRAPHY 241

[YDBH10] Nobuko Yoshida, Pierre-Malo Deniélou, Andi Bejleri, and Raymond Hu, Pa-

rameterised multiparty session types, FOSSACS, 2010, pp. 128–145.

[YV07] Nobuko Yoshida and Vasco Thudichum Vasconcelos, Language primitives and

type discipline for structured communication-based programming revisited:

Two systems for higher-order session communication, Electr. Notes Theor.

Comput. Sci. 171 (2007), no. 4, 73–93.

242

Appendix A

Appendix for the Eventful Session

π-calculus

A.1 Properties of Subtyping

Proposition A.1.1 (Subtyping Properties). The set of composable types of a session type S is

defined as: comp(S) = {S′ | S′ ≤ S}.

(i) ≤ is a preorder.

(ii) (semantics of ≤) S1 ≤ S2 if and only if comp(S2)⊆ comp(S1).

Proof. Part (i). Transitivity and reflexivity are proved following [Pie02, Theorems 21.3.6–7].

We demonstrate the main cases for session set types.

For transitivity, a relation R ⊆ T ×T is transitive if closed under the monotone function

TR(R) = {(x,y) | ∃z ∈ T .{(x,z),(z,y)} ⊆R}. We note that if TR(F (R))⊆F (TR(R)),

then the greatest fixed point of F is transitive, and show TR(F (R))⊆F (TR(R)) by taking

243

244 Appendix A. Appendix for the Eventful Session π-calculus

(T,T ′) ∈ TR(F (R)). By definition of TR, there exists a T ′′ such that (T,T ′′),(T ′′,T ′) ∈

F (R), and we proceed by cases on T ′′ to show (T,T ′) ∈F (TR(R)).

Case: T ′′ = {S′′k}k∈K

By definition of F , (T,T ′′) ∈F (R) implies T = {Si}i∈I , ∀k ∈ K,∃i ∈ I.(Si,S′′k) ∈R. There

are two subcases for (T ′′,T ′) ∈F (R). First, T ′ = {S′j} j∈J , ∀ j ∈ J,∃k ∈ K.(S′′k ,S
′
j) ∈R. By

definition of TR, ∀ j∈ J,∃i∈ I.(Si,S′j)∈TR(R). Hence, by definition of F , ({Si}i∈I,{S′j} j∈J)∈

F (TR(R)). Second, T ′ = S′, |K| = 1,(S′′1 ,S
′) ∈ R. By definition of TR, ∃i ∈ I.(Si,S′) ∈

TR(R). Hence, by definition of F , ({Si}i∈I,S′) ∈F (TR(R)).

The other cases are standard, with similar treatment of the subcases where T has the shape

{Si}i∈I .

For reflexivity, let the identity relation I = {(T,T) | T ∈ T }, and R ⊆ T ×T is F -

consistent if R ⊆ F (R). By the principle of coinduction, if I is F -consistent, then the

greatest fixed point of F contains I . To show I is F -consistent, we take (T,T) ∈I and

proceed by cases on T to show (T,T) ∈F (I).

Case: T = {Si}i∈I

By definition of I , ∀I ∈ I.(Si,Si)∈I . Hence, by defintion of F , ({Si}i∈I,{Si}i∈I)∈F (I),

since the condition ∀ j ∈ J,∃i ∈ I.(Si,S j) ∈I is trivially satisfied when I = J.

The remaining cases are standard.

Part (ii). By Lemma 4.2.1, S1 ≤ S2 iff S1 ≥ S2. But by definition S1 ≥ S2 iff comp(S2) ⊆

comp(S1), as required.

A.2. Subject Reduction and Communication and Event Handling Safety 245

A.2 Subject Reduction and Communication and Event Han-

dling Safety

This Appendix relates to the proof of subject reduction for the asynchronous session types

typing system, and the communication and event-handling safety.

A.2.1 Weakening and Strengthening

Lemma A.2.1 (Weakening Lemma). Let Γ ` P.∆.

(i) If X /∈ dom(Γ), then Γ ·X : ∆′ ` P.∆.

(ii) If u /∈ dom(Γ), then Γ ·u : U ` P.∆.

(iii) If k /∈ dom(∆) then Γ ` P.∆ · k : end.

Proof. Part (i):

For part (i) we apply induction on the definition of ESP process syntax. The base cases are

trivial.

We demonstrate the inductive step. Let

P = u(x : S).P1

Γ ` P1 .∆ · x : S

From the induction hypothesis we have that

Γ ·X : ∆
′ ` P1 .∆ · x : S

246 Appendix A. Appendix for the Eventful Session π-calculus

and x /∈ Γ. We can now easily conclude that Γ ·X : ∆′ ` P.∆.

We demonstrate the case for the typecase process.

P = typecase k of {(xi : Si) : Pi}i∈I

From the induction hypothesis we get that for each i ∈ I,Γ ·X : ∆′ ` Pi .∆i and X /∈ Γ. It easy

to conclude that Γ ·X : ∆′ ` P.∆.

The rest of the induction step cases are similar.

Part (ii):

Part (ii) is similar to part (i).

Part (iii):

For part (iii) we again use induction on the structure of ESP process syntax. It is easy to see

the basic step for process 0, where we get Γ ` 0. k : end, from typing rule [Inact].

For the induction step we do a case analysis. Let P = u(x : S).P1. From the induction hy-

pothesis we get that Γ ` P .∆k : end with k /∈ dom(∆). We can now easily conclude that

Γ ` P.∆k : end.

The rest of the cases are similar.

Lemma A.2.2 (Strengthening Lemma).

(i) If X /∈ fpv(P), then Γ ·X : ∆′ ` P.∆ implies Γ ` P.∆.

(ii) If u /∈ fn(P)∪fv(P), then Γ ·u : U ` P.∆ implies Γ ` P.∆.

(iii) If k /∈ fn(P)∪fv(P) then Γ ` P.∆ · k : end implies Γ ` P.∆.

A.2. Subject Reduction and Communication and Event Handling Safety 247

Proof. Part (i):

For part (i) we apply induction on the definition of ESP process syntax. The base cases are

trivial.

We demonstrate the inductive step. Let

P = u(x : S).P1

Γ ·X : ∆
′ ` P1 .∆ · x : S

From the induction hypothesis we have that

Γ ` P1 .∆ · x : S

We can now easily conclude that Γ ` P.∆.

Let

P = typecase k of {(xi : Si) : Pi}i∈I

and for each i ∈ I,Γ ·X : ∆′ ` Pi .∆i. From the induction hypothesis we get that for each

i ∈ I,Γ ` Pi .∆i and X /∈ Γ. It easy to conclude that Γ· ` P.∆.

The rest of the induction step cases are similar.

Parts (ii) and (iii):

Parts (ii) and (iii) are similar to part (i).

Lemma A.2.3 (Substitution Lemma).

(i) If Γ · x : U,∆ ` e : U ′ and Γ ` v.U , then Γ,∆ ` e{v/x} : U ′.

(ii) If Γ,∆ · x : T ` e : U and s fresh, then Γ,∆ · s : S ` e{s/x} : U .

248 Appendix A. Appendix for the Eventful Session π-calculus

(iii) If Γ · x : U ` P.∆ and Γ ` v.U , then Γ ` P{v/x}.∆.

(iv) If Γ ` P.∆ · k : T , then Γ ` P{s/k}.∆ · s : T .

Proof. Parts (i) and (ii):

Parts (i) and (ii) are proved with a simple induction on the structure of expressions e.

Part (iii):

We apply induction on the definition of ESP process syntax. The base cases are trivial. We

demonstrate the inductive step. For

P = u(x : S).P1

we have that

Γ · x : U ` P1 .∆

From the induction hypothesis we have that Γ · v : U ` P1 .∆. We can now easily conclude

that Γ · v : U ` P.∆.

For the typecase case let

P = typecase k of {(xi : Si) : Pi}i∈I

From the induction hypothesis we get that for each i ∈ I,Γ · x : U ` Pi .∆i and Γ ` v : U . It is

easy to see that Γ ` P{v/x}.∆.

The rest of the cases are similar.

Part (iv):

For part (iv) we demonstrate the interesting case for the typecase construct.

A.2. Subject Reduction and Communication and Event Handling Safety 249

Let

Γ ` typecase k of {(xi : Si) : Pi}i∈I .∆ · k′ : T

From the induction hypothesis we get that for each i ∈ I,Γ ` Pi{s/k′}.∆ · s : T . From typing

rule [Typecase] we conclude that Γ ` typecase k of {(xi : Si) : Pi}i∈I{s/k′} .∆ · s : T . Note

that the same results holds if k′ = k.

The rest of the cases are trivial.

A.2.2 Subject Reduction

Theorem A.2.1 (Subject Congruence and Reduction). (Theorem 4.2.1)

(i) If Γ ` P.∆ and P≡ Q, then Γ ` Q.∆.

(ii) If Γ ` P .∆ with ∆ well-configured and P −→ Q, then we have Γ ` Q .∆′ such that

∆→→ ∆′ and ∆′ is well-configured.

Proof. Part (i):

The proof for (i) subject congruence uses a case analysis on the structural congruence rule

and it is standard. We demonstrate one basic case with the rest being similar. Let Γ ` P |Q.∆

and P | Q ≡ Q | P. From typing rule [Cong] we have that ∆ = ∆1 ∪∆2 with Γ ` P .∆1 and

Γ ` Q.∆2. It is trivial to see that Γ ` Q | P.∆ because ∆1∪∆2 = ∆2 = ∆1. Rest of the cases

are trivial.

Part (ii):

For (ii) subject reduction, we prove by induction on the reduction relation.

Case: [Request1]

Γ ` a(x).P . ∆ −→ (ν s)(P{s/x} | a〈s〉 | s[i : ε,o : ε]) . ∆′. By rule (Req), we have that

250 Appendix A. Appendix for the Eventful Session π-calculus

Γ ` P.∆ ·x : S. By rules (InQ, OutQ), we obtain that Γ ` s[i : ε,o : ε]. /0. Then by rule (Areq),

we have Γ ` a〈s〉 . s : S. We now apply rule (Conc) to obtain Γ ` P{s/x} | a〈s〉 | s[i : ε,o :

ε].∆ · s : S · s : S. Rule (Sres) gives us Γ ` (ν s)(P{s/x} | a〈s〉 | s[i : ε,o : ε]).∆, as required.

Case: [Request2]

Γ ` a〈s〉 | a[~s].~s :~S · s : S−→ a[~s · s].~s :~S · s : S. We type the processes that compose the left

hand side process using typing rules (Queue), (Areq). By rule (Conc) and the definition of ∗

we obtain the typing~s :~S ·s : S. The right hand side is typed using typing rule (Areq) to obtain

the same result.

Case: [Accept]

Γ ` a(x).P | a[s ·~s].∆ ·~s : ~S · s : S −→ P{s/x} | a[~s].∆ ·~s : ~S · s : S. For the left hand side, we

use rules (Queue), (Acc) and (Conc), to get the typing result. From rule (Acc) we have that

Γ ` P{s/x}.∆. From here is easy to find the same typing for the right hand side.

Case: [Send] (Value)

Γ ` s!〈v〉;P | s[S1,o :~h] .∆ · s : S · s[S1] −→ P | s[S2,o : v ·~h] .∆ · s : S · s[S2], where Γ `~h :

~T ,Γ ` v : T . For the left hand side we type Γ ` s!〈v〉;P.∆ · s : !〈T 〉;S′ and Γ ` s[!〈T 〉;S′1,o :

~h] . s : O · s[!〈T 〉;S′1]. Using (Conc) we get !〈T 〉;S′ ∗ O = S. Now if we type the right hand

side we get Γ ` s!〈v〉;P.∆ · s : S′ and Γ ` s[S′1,o : v ·~h]. s :!〈T 〉;O · s[S′1]. We compose to get

S′ ∗ !〈T 〉;O =!〈T 〉;S′ ∗ O = S and S′1 = S2.

Case: [Receive] (Value)

Γ ` s?(x);P | s[S1,i : v ·~h] .∆ · s : S · s[S1] −→ P{v/x} | s[S2,i :~s] .∆ · s : S · s[S2]. For the

left hand side we have Γ ` s?(x);P .∆ · s :?(T);S′ and Γ ` s[?(T);S′1,i : v ·~h] . s :?(T); I ·

s[?(T);S′1,i :]. We compose and get ?(T);S′ ∗ ?(T); I = S′ ∗ I = S. For the right hand side

we have Γ ` P.∆ · s : S′ and Γ ` s[S2,i :~h]. s : I · s[S2,i :]. By composition we get S′ ∗ I = S

and S′1 = S2.

Case: [Receive] (Delegation)

Γ ` s?(x);P | s[S1,i : s′ ·~h].∆ ·s : S ·s′ : S′ ·s[S1]−→ P{s′/x} | s[S2,i :~h].∆ ·s : S ·s′ : S′ ·s[S2].

A.2. Subject Reduction and Communication and Event Handling Safety 251

We have Γ ` s?(x);P .∆ · s :?(S′);S′′, Γ ` s[S1,i : s′ ·~h] . s :?(S′); I · s′ : S′ · s[?(S′);S′1] and

∆ · s :?(S′);S′′ ∗ s :?(S′); I · s′ : S′ · s[?(S′);S′1] = ∆ · s :?(S′);S · s′ : S′ · s[?(S′);S′1]. For the right

hand side we have Γ ` P{s′/x}.∆ · s : S′′ · s′ : S′, Γ ` s[S2,i :~h]. s : I · s[S′1] and ∆ · s : S′′ · s′ :

S′ ∗ s : I · s[S′1] = ∆ · s :?(S′);S · s′ : S′ · s[S′1].

Case: [Send] (Delegation)

Similar to the above case.

Case: [Sel]

Γ ` s⊕v;P | s[S1,o :~h].∆ ·s : S ·s[S1]−→ P | s[S2,o : l ·~h].∆ ·s : S ·s[S2]. The proof is similar

to [Send] case.

Case: [Bra]

Γ ` s&{li : Pi}i∈I | s[S1,i : lk ·~h] .∆ · s : S′ · s[S1] −→ Pk | s[S2,i :~s] .∆ · s : S′ · s[S2] where

S′ = Sk ∗ Mi and Γ ` s[S1,i :~s]. s : Mi · s[S1]. The proof is similar to the (Receive) case.

Case: [Comm]

Γ ` P | s[S1,o :~h · v] | s[S2,i : ~h′]ε .∆1 −→ P | s[S1,o :~h] | s[S2,i : ~h′ · v] .∆1. Γ ` P .∆ · s :

S1 · s : S2 with Γ ` P | s[!〈T 〉;S1,o :~h · v] | s[?(T);S2,i : ~h′].∆ · s :!〈T 〉;S · s :?(T);S from the

induction hypothesis. If we type the right hand side we have that Γ ` P | s[S1,o :~h] | s[S2,i :

~h′ · v].∆ · s : S · s : S as required.

Case: [Typecase]

Γ ` typecase s of {Si : Pi}i∈I | s[Sk,i :~h,o : ~h′].∆1 −→ Pk | s[Sk,i :~h,o : ~h′].∆2.

Γ ` typecase s of {Si : Pi}i∈I | s[Sk,i :~h,o : ~h′].∆ · s : {Si}i∈I . From the right hand side of

the reduction, we have Γ ` Pk | s[Sk,i :~h,o : ~h′].∆ · s : Sk. Since Sk ≤ {Si}i∈I , we use [Subs]

to obtain ∆1 = ∆2 and ∆2 well-configured from the induction hypothesis.

Case: [arrive]

Γ ` if arrive s then P else Q | s[i :~h].∆ · s : T ∗ s : M −→ P | s[i :~h].∆′ · s : T ∗ s : M.

Γ ` if arrive s then P else Q . ∆ · s : T . From [If] we have that Γ ` P . ∆ · s : T and

Γ,∆ ` arrive s.bool so, Γ ` P | s[i :~s].∆ · s : T ∗ s : M and thus ∆ = ∆′ as required.

252 Appendix A. Appendix for the Eventful Session π-calculus

A.2.3 Communication Safety

Theorem A.2.2 (Communication and Event-Handling Safety). (Theorem 4.2.2) If P is a

well-typed process, then P never reduces to an error.

Proof. Communication safety follows as a corollary from subject reduction (Theorem 4.2.1).

Assuming the reduction of a typable process to an error (page 101), we show that the error

is not typable, thus leading to a contradiction. We demonstrate key cases for typecase and

arrive, corresponding to cases (h) and (f) in the definition of s-redexes (page 101). These

cases ensure that a well-typed process does not reduce to a stuck typecase term where the

current active type of the session cannot be matched to any of the specified type cases, nor a

term in which the arrive predicate is used to check the arrival of a message of an unexpected

type.

Assume a process P −→ P′, where Γ ` P .∆ and ∆ is well-configured. By Theorem 4.2.1,

Γ ` P′ .∆′, ∆ −→ ∆′ and ∆′ is well-configured. Say P′ is an error. Then P′ contains, up

to structural congruence, a term Q that is the parallel composition of two s-processes that

do not form an s-redex. Note that the definition of the ∗ operator and (QConc) implicitly

prevent the parallel composition of two s-processes from being well-typed unless one term

is an s-configuration and the other is either an s-configuration or an s-process that is not a

configuration. We proceed by cases to show Q, and thus P′, is not typable.

Case: Q = typecase s of {(si : Si) : Pi}i∈I | s[S] where @i ∈ I.Si ≤ S.

To type Q, rule (QConc) must compose for ∆′(s) some S′, where {Si}i∈I ≤ S′, and M [S],

where M is message type of the s-configuration. By definition of ∗ composition of linear

environments, S′ = S, contradicting @i ∈ I.Si ≤ S.

Case: Q = E[arrive s v] | s[?(U);S,i :~h] with v of type U , and~h = v′ ·~h′, v′ not of type U .

Consider the subcase where the E-context is the if-term (the others are similar). By (If) and

(AVal), the type of s is of the shape ?(U);S′. However, to type Q, rule (QConc) must compose

A.2. Subject Reduction and Communication and Event Handling Safety 253

for ∆′(s) some ?(U);S′′, where S′ ≤ S′′, and ?(U ′);Mi [?(U);S], where U ′ 6=U , in which case

the ∗ operator is not defined.

Before we proceed, note that:

Lemma A.2.4. Let P = Q | s[i : ε,o : ε] and Γ ` P . ∆ with ∆ well-configured. Then if

P−→∗ Q′ | s[i : ~h1,o : ~h2] then ~h1 = ε or ~h2 = ε .

The above lemma means one of queues is always empty during executions.

Proof. The proof is by induction on the length of →→. The basic step is trivial. For the

inductive step we three cases:

(i) Γ ` P2 | s[i : ε,o : ε].∆.

(ii) Γ ` P2 | s[i : ~h1,o : ε].∆.

(iii) Γ ` P2 | s[i : ε,o : ~h1].∆.

with ∆ well-configured in all three cases (Subject Reduction Theorem 4.2.1) and |~h1| ≥ 1.

We prove part (ii), with parts (i) and (iii) being similar.

Part (ii):

Let

P2 | s[i : ~h1,o : ε]−→ P′2 | s[i : ~h1,o : v]

This implies that P2 = (ν ~n)(P3 | s!〈v〉;P4) or P2 = (ν ~n)(P3 | s⊕ l;P4) with s /∈~n. Because the

input queue is non-empty, the induction hypothesis reduction would be:

P1 | s[i : ε,o : ε]→→ P′1 = (ν ~n′)(Q1 | s!〈w〉;Q2 | s!〈v〉;P4 | s[i :~h′1,o : ε])

254 Appendix A. Appendix for the Eventful Session π-calculus

The above is further reduced to:

P′1→→ P2 = (ν ~n)(Q1 | Q2 | s!〈v〉;P4 | s[i : ~h1,o : v])

with P3 = Q1 | Q2. Obviously such P′1 is untypable since the endpoints of s do not have dual

types. This leads to a contradiction. The rest of the cases rely on the untypability of reduction

→→ to prove the case by contradiction.

A.3 Bisimulation Properties

A.3.1 Proof for Theorem 4.3.1

Theorem (Coincidence): ≈ and ∼= coincide.

The above theorem requires to show the equality into two directions.

Lemma A.3.1 (Soundness). P≈ Q implies P∼= Q.

Proof. Reduction closeness and barb observation properties are easy to be verified. The only

remaining property is showing that ≈ is a congruence.

Congruence for the output prefix, restriction construct, if /else construct and recursion

construct are easy to be verified. Input congruence is similar to output congruence, since we

are dealing with programs, which are processes without free variables. We give the result for

congruence of the parallel operator.

A.3. Bisimulation Properties 255

Parallel Congruence

Assume the relation:

S = {((ν ã, s̃)(P | R),(ν ã, s̃)(Q | R)) | P≈ Q,∀R ·P | R,Q | R are typable,∀ã, s̃} (A.1)

We show that S is a typed relation.

Since P≈ Q we have that Γ ` P.∆ and Γ ` Q.∆′ with ∆
 ∆′. Since P,Q are localised and

R is localised and P | R,Q | R are typable then dom(∆)∩dom(∆′) = /0. We Use [Conc] and the

∗ definition, we obtain the result.

We show that S is a bisimulation. There are three cases:

Case (1) Suppose Γ ` P | R.∆1
`−→ P′ | R.∆′1. Then Γ ` P.∆P

`−→ P′ .∆′P.

By the definition of S , we have that Γ `Q.∆Q
`

=⇒Q′.∆′Q. Thus we have Γ `Q | R.∆2
`

=⇒

Q′ | R.∆′2.

Case (2) Suppose Γ ` P | R.∆1
`−→ P | R′ .∆′1. Then Γ ` R.∆R

`−→ R′ .∆′R.

By the above, we have that Γ ` Q | R . ∆2
`−→ Q | R′ . ∆′2. By ∆′1
 ∆′2, we conclude

P | R≈ Q | R as required.

Case (3) Suppose Γ ` P | R.∆1 −→ (ν ã, s̃)(P′ | R′).∆′1. Then we have

Γ ` P.∆P
`−→ P′ .∆

′
P (A.2)

By the definition of S, we have:

Γ ` Q.∆Q =⇒ `−→=⇒ Q′ .∆
′
Q (A.3)

256 Appendix A. Appendix for the Eventful Session π-calculus

By (A.3), we have that Γ ` Q | R .∆2 =⇒ (ν ã, s̃)(Q′ | R′) .∆′2. Then by ∆′1
 ∆′2, we have

P | R≈ Q | R, as required.

The proof for the completeness direction follows the technique shown in [Hen07]. However

we need to adapt it to session and input/output configurations.

Definition A.3.1 (definability). An external action ` is definable if for a set of names N and

action succ, /∈N there is a testing process T 〈N,succ, `〉with the property that for every process

P and fn(P)⊆ N:

• Γ ` P.∆1
`−→ P′ .∆′1 implies that

Γ ` T 〈N,succ, `〉 | P.∆→→ (ν bn(`),b)(succ[o : bn(`)] | R | P′).∆′.

• Γ ` T 〈N,succ, `〉 | P.∆→→ Q.∆′, where Q ⇓succ implies that

Q = (ν bn(`),b)(succ[o : bn(`)] | R | P′) where Γ ` P.∆1
`

=⇒ P′ .∆′1.

where R = b(x).R′ or R = 0.

Note that b(x).R is used to keep the composition P | T 〈N,succ, `〉 typable. Also R 6 `−→ either

due to the restriction of b, or because R = 0.

Lemma A.3.2. Every external action is definable.

Proof. The input action cases are straightforward:

1. If Γ ` P.∆
a〈s〉−→ P′ .∆′ then T 〈 /0,succ,a〈s〉〉= a(x).R | succ[o : tt].

2. If Γ ` P.∆
s?〈v〉−→ P′ .∆′ then T 〈 /0,succ,s?〈v〉〉= (ν b)(s!〈v〉;b(x).R) | succ[o : tt].

3. If Γ ` P.∆
s&l−→ P′ .∆′ then T 〈 /0,succ,s&l〉= (ν b)(s⊕ l;b(x).R) | succ[o : tt].

A.3. Bisimulation Properties 257

The requirements of Definition A.3.1 can be verified with simple transitions.

Output actions cases:

1. If Γ ` P.∆
a〈s〉−→ P′ .∆′ then we have:

T 〈{s},succ,a〈s〉〉 = (ν b)(a(x).(if x = s then succ!〈x〉;R else b(x).succ!〈x〉;R)) |

succ[i : ε,o : ε] | a[ε]

2. If Γ ` P.∆
s!〈b〉−→ P′ .∆′ then we have that

T 〈{b},succ,s!〈b〉〉 = (ν b)(s?(x);(if x = b then succ!〈x〉;b(x).R else b(x).

(succ!〈x〉;R)) | succ[i : ε,o : ε]

3. If Γ ` P.∆
s!(b)−→ P′ .∆′ then we have that:

T 〈{b},succ,s!(b)〉 = (ν b)(s?(x);(if x = b then succ!〈x〉;b(x).R else b(x).

(succ!〈x〉;R)) | succ[i : ε,o : ε]

4. If Γ ` P.∆
s⊕lk−→ P′ .∆′ then we have that:

T 〈 /0,succ,s⊕ lk〉 = (ν b)(s&{lk : succ!〈tt〉;R, li : b(x).R}i∈I),1≤ i≤ n

Again the requirements of Definition A.3.1 can be verified by simple transitions for each

case.

Lemma A.3.3. If succ is fresh, b ∈~a ·~s and

Γ ` (ν~a,~s,b)(P | succ[o : a′] | b[x](R).).∆1 ∼= (ν~a,~s,b)(Q | succ[o : a′] | b[x](R).).∆2 (A.4)

258 Appendix A. Appendix for the Eventful Session π-calculus

then

Γ ` P.∆P ∼= Q.∆Q (A.5)

Proof. Let relation

S = {(Γ ` P.∆P,Γ ` Q.∆Q) |

Γ ` (ν~a,~s,b)(P | succ[o : a′] | b[x](R).).∆1

∼= (ν~a,~s,b)(Q | succ[o : a′] | b[x](R).).∆2, succ is fresh}

We will show that the contextual properties hold in S .

Typing: It should hold that S is a typed relation. From the definition of S , we have that:

Γ ` (ν ã, s̃,b)(P | succ[o : a′] | b(x).R).∆≈ (ν ã, s̃,b)(Q | succ[o : a′] | b(x).R).∆′, ∆
 ∆′.

From here, by using typing rules (Nres),(Sres),(Conc), we get the required result.

Reduction Closedness: S is reduction closed by the freshness of succ. We cannot observe

a reduction on succ or on b(x).R, so we conclude that if

Γ ` (ν ã, s̃,b)(P | succ[o : a′] | b(x).R).∆→→ (ν ã, s̃,b)(P′ | succ[o : a′] | b(x).R).∆′ implies

Γ ` (ν ã, s̃,b)(Q | succ[o : a′] | b(x).R).∆→→ (ν ã, s̃)(Q′ | succ[o : a′] | b(x).R).∆′ then

Γ ` P.∆1→→ P′ .∆P implies Γ ` Q.∆1→→ Q′ .∆Q

Preserve Observation: We do a case analysis on the cases where P ↓m.

If P ↓m, m /∈ ã · s̃ and (ν ã, s̃,b)(P | succ[o : a′] | b(x).R) ↓m then (ν ã, s̃,b)(Q | succ[o :

a] | b(x).R) ⇓m. From the definition of S and the freshness of succ, we conclude Q ⇓m.

A.3. Bisimulation Properties 259

If P ↓m, m /∈ ã · s̃ and (ν ã, s̃,b)(P | succ[o : a′] | b(x).R) 6↓m then by the environment typ-

ing transition we have that m is a session occurring free in succ[o : a′] | b(x).R, and also

(ν ã, s̃,b)(Q | succ[o : a] | b(x).R) 6⇓m. The case where Q 6⇓m does not hold, because it would

be possible to have (ν ã, s̃,b)(Q | succ[o : a] | b(x).R) | Q′ with Q′ having as a free name ses-

sion m and have a typable process. But composition (ν ã, s̃,b)(P | succ[o : a′] | b(x).R) |Q′ is

untypable because P ↓m, thus breaking reduction congruence. This results to the conclusion

that Q ↓m.

Context Property: The interesting case is the parallel composition. We will show that if

Γ`P.∆PS Γ`Q.∆Q. Then for arbitrary process R we have that Γ`P |P1.∆′P S Q |P1.∆′Q

To show this, it is enough to show that

Γ ` (ν ã, s̃,b)(P | P1 | succ′[o : a′] | R).∆′′P
∼= (ν ã, s̃,b)(Q | P1 | succ′[o : a′] | R).∆′′Q, consid-

ering that succ may occur in P1 and succ′ is fresh.

To prove this assume the process T 〈 /0,succ′, `〉= succ?(x);(succ′!〈x〉;0 |P′1) | succ′[i : ε,o : ε],

where P1 = P1{a′/x}.

From the contextual property of the theorem’s assumption and simple reductions, we have

that:

Γ ` (ν ã, s̃,b)(P | P1 | succ′[o : a′] | R).∆1 ∼= Γ ` (ν ã, s̃,b)(Q | P1 | succ′[o : a′] | R).∆′1.

We need to verify that

Γ ` (ν ã, s̃,b)(P | P1 | succ′[o : a′] | R).∆1 ≈ (ν ã, s̃,b)(P | P1 | succ′[o : a′] | R).∆′1, which is

simple because R≈ 0. By using Lemma A.3.1 we get the result.

We are know ready to prove the completeness direction.

260 Appendix A. Appendix for the Eventful Session π-calculus

Lemma A.3.4 (Completness). P∼= Q implies P≈ Q

Proof. For the proof we show that if

Γ ` P.∆P ∼= Q.∆Q and (A.6)

Γ ` P.∆P
`−→ P′ .∆

′
P (A.7)

then Γ ` Q.∆Q
`

=⇒ Q′ .∆′Q and Γ ` P′ .∆′P
∼= Q′ .∆′Q

Suppose (A.6) and (A.7). Then there are two cases.

If `= τ then by reduction closeness of ∼= the result follows.

In the case where ` is an external action we can do a definability test for P by choosing the

appropriate test T 〈N,succ, l〉.

Because ∼= is context preserving we have that Γ ` P | T 〈N,succ, l〉.∆PT ∼= Q | T 〈N,succ, l〉.

∆QT . By Lemma A.3.2 we have that Γ ` P | T 〈N,succ, l〉 . ∆PT =⇒ (ν bn(`))(succ[o :

bn(`)]|P′).∆ thus by the definition of∼= (Definition 4.3.2), we have that Γ` T 〈N,succ, l〉 |Q.

∆QT =⇒ R.∆′. According to the second part of the Definition A.3.1, we can write:

Γ ` Q′ = Γ ` (ν bn(`))(succ[o : bn(`)] | b(x).R | Q′′).∆
′′ (A.8)

Γ ` Q.∆Q
`

=⇒ Q′ .∆
′
Q (A.9)

Now we can derive

Γ` (ν bn(`),b)(succ[o : bn(`)] | b(x).R |P′).∼=(ν bn(`),b)(succ[o : bn(`)] | b(x).R |Q′).∆′′.

By Lemma A.3.3 we conclude that:

Γ ` P′ .∆
′
P
∼= Q′ .∆

′
Q (A.10)

A.4. Determinacy and Confluence 261

We began with the assumption that Γ ` P .∆P ∼= Γ ` Q .∆Q and we concluded to (A.9) and

(A.10). Thus ∼= implies ≈.

A.4 Determinacy and Confluence

A.4.1 Proof for Lemma 3.3.1

Before we proceed with the proof of Lemma 3.3.1 we prove the following useful Lemma.

Lemma A.4.1.

• If Γ`P.∆−→ `−→ Γ`P′.∆′ and ` is an input action then Γ`P.∆
`−→−→ Γ`P′.∆′.

• If Γ ` P .∆
`−→−→ Γ ` P′ .∆′ and ` is an output action then Γ ` P .∆ −→ `−→ Γ `

P′ .∆′.

Proof. For the first part there are two cases

Case (1) P has the form P = R | a[~s]. Γ ` R | a[~s].∆−→ R′ | a[~s′].∆′
a?〈s〉−→ R′ | a[~s′ ·s].∆′ Now

we can observe Γ ` R | a[~s].∆
a?〈s〉−→ Γ ` R | a[~s · s].∆−→ R′ | a[~s′ · s].∆′ to conclude.

Case (2) Input communication takes place on a session channel. It is similar using a session

queue.

For the second there are two cases.

Case (1) The action happens on a shared name. Γ ` P | a〈s〉.∆
a!〈s〉−→ P.∆′ −→ P′ .∆′′.

From this we can always conclude that Γ ` Pa〈s〉 .∆ −→ P′ | a〈s〉 .∆′′′
a!〈s〉−→ P′ .∆′′. Hence

we conclude the case.

262 Appendix A. Appendix for the Eventful Session π-calculus

Case (2) Output communication takes place on a session channel. Similar arguments by using

a session queue.

We are now ready to prove Lemma 3.3.1.

Proof. The proof in both parts is done by induction on the length of the silent transition. The

base case is trivial.

For the first part of Lemma 3.3.1 we have:

Γ ` P .∆ =⇒−→ `−→=⇒ P′ .∆′. We use the first part of Lemma A.4.1 to permute actions

−→ and `−→ and get Γ ` P .∆ =⇒ `−→−→=⇒ P′ .∆′. Then by the use of the induction

hypothesis we get Γ ` P.∆
`−→=⇒−→=⇒ P′ .∆′ as required.

The second part of the Lemma 3.3.1 follows similar arguments: Γ ` P .∆ =⇒ `−→−→=⇒

P′ .∆′. We use the second part of Lemma A.4.1 and then the induction hypothesis to permute

as required: Γ ` P.∆ =⇒−→=⇒ `−→ P′ .∆′.

A.4.2 Proof for Lemma 4.3.2

Proof. The proof considers induction on the length of =⇒s transition. The basic step is

trivial. For the induction step we do a case analysis on −→s transition.

Case: Receive.

By the typability of P, we have that P′= s?(x);Q | s[i : v ·~h] |R−→s P′′=Q{v/x} | s[i :~h] |R.

From the induction step, we have that P≈ P′. To show that P≈ P′′ we need to show that P′ ≈

P′′. We will use the fact that bisimulation is a congruence. Consider R≈ R and s?(x);Q | s[i :

v ·~h] ≈ Q{v/x} | s[i :~h]. Due to s /∈ fn(R) we can compose bisimilar processes in parallel

and get that P′ ≈ P′′ as required.

The rest of the cases follow similar arguments.

A.4. Determinacy and Confluence 263

A.4.3 Proof for Lemma 4.3.3

Proof. The result is an easy case analysis on all the possible combinations of `1, `2.

We give an interesting case. Let (ν a)(P | s1[o : ~h1 ·a] | s2[o : ~h2 ·a])
s1!(a)−→ P | s1[o : ~h1] | s2[o :

~h2 ·a] and (ν a)(P | s1[o : ~h1 ·a] | s2[o : ~h2 ·a])
s2!(a)−→ P | s1[o : ~h1 ·a] | s2[o : ~h2]. Now it is easy

to see that P | s1[o : ~h1] | s2[o : ~h2 ·a]
s2!〈a〉−→ P | s1[o : ~h1] | s2[o : ~h2] and P | s1[o : ~h1 ·a] | s2[o :

~h2]
s1!〈a〉−→ P | s1[o : ~h1] | s2[o : ~h2] as required.

A.4.4 Proof for Lemma 4.3.4

Proof. There are two cases:

Case: τ:

Follow Lemma 4.3.2 to get P≈ P′ and P≈ P′′. The result then follows.

Case: `:

Suppose that P `−→s P′ and P `
=⇒s P′′ implies P=⇒s P1

`−→s P2 =⇒s P′′. From Lemma 4.3.2,

we can conclude that P ≈ P1 and because of the bisimulation definition, we have P′ ≈ P2 to

complete we call upon Lemma 4.3.2 once more to get P′ ≈ P′′ as required.

A.4.5 Proof for Lemma 4.3.5

Proof. The proof considers a case analysis on the combination of `1, `2.

Case: `1 = s1!〈v1〉, `2 = s2?〈v2〉

264 Appendix A. Appendix for the Eventful Session π-calculus

P | s1[o : ~h1 · v1] | s2[i : ~h2]
`1−→s P1 | s1[o : ~h1] | s2[i : ~h2] =⇒s P′1 | s1[o : ~h′1] | s2[i : ~h′2]
`2−→s P′1 | s1[o : ~h′1] | s2[i : ~h′2 · v2] =⇒s P′ | s1[o : ~h′′1] | s2[i : ~h′′2]

P | s1[o : ~h1 · v1] | s2[i : ~h2] =⇒s P0 | s1[o : ~h0 · v1] | s2[i : ~h′0]
`2−→s P′0 | s1[o : ~h0 · v1] | s2[i : ~h′0 · v2]

=⇒s P2 | s1[o : ~h′2 · v1] | s2[i : ~h′′2 · v2] =⇒s P′2 | s1[o : ~h3 · v1] | s2[i : ~h′3]
`2−→s P′2 | s1[o : ~h4] | s2[i : ~h′4] =⇒s P′′ | s1[o : ~h′] | s2[i : ~h′′]

By using Lemma 3.3.1, we have that P | s1[o : ~h1 ·v1] | s2[i : ~h2] =⇒s
`1−→s

`2−→s=⇒s P′ | s1[o :

~h′′1] | s2[i : ~h′′2] and P | s1[o : ~h1 · v1] | s2[i : ~h2]
`2−→s=⇒s

`1−→s P′′ | s1[o : ~h′] | s2[i : ~h′′]. We use

Lemmas 4.3.3 and 3.3.1 to get P | s1[o : ~h1 · v1] | s2[i : ~h2]
`2−→s=⇒s

`1−→s P′ | s1[o : ~h′′1] | s2[i :

~h′′2].

The rest of the proof is similar to Lemma 4.3.2.

Appendix B

Appendix for the Applications of the ESP

B.1 Comparison with Asynchronous/Synchronous Calculi

B.1.1 Proofs for Section 5.2

We prove the results in Section 5.2 for the two asynchronous session typed π-calculi, by either

giving the bisimulation closures when a bisimulation holds or giving the counterexample

when bisimulation does not hold. The results for the synchronous and asynchronous π-calculi

are well-known, hence we omit.

1. Case: s!〈v〉;s!〈w〉;P | s[o : ε] 6≈ s!〈w〉;s!〈v〉;P | s[o : ε]

On the left hand side process we can observe a τ transition and get s!〈w〉;P | s[o : v]
s!〈v〉−→

s!〈w〉;P | s[o : ε] but s!〈w〉;s!〈v〉;P | s[o : ε] 6s!〈v〉
=⇒ as required.

2. Case: s1!〈v〉;s2!〈w〉;P | s1[o : ε] | s2[o : ε]≈ s2!〈w〉;s1!〈v〉;P | s1[o : ε] | s2[o : ε]

265

266 Appendix B. Appendix for the Applications of the ESP

Relation:

R = { (s1!〈v〉;s2!〈w〉;P | s1[o : ε] | s2[o : ε],s2!〈w〉;s1!〈v〉;P | s1[o : ε] | s2[o : ε]),

(s2!〈w〉;P | s1[o : v] | s2[o : ε],P | s1[o : v] | s2[o : w]),

(P | s1[o : v] | s2[o : w],s1!〈v〉;P | s1[o : ε] | s2[o : w]),

(P | s1[o : v] | s2[o : w],P | s1[o : v] | s2[o : w]),

(s2!〈w〉;P | s1[o : ε] | s2[o : ε],P | s1[o : ε] | s2[o : w]),

(P | s1[o : ε] | s2[o : ε],P | s1[o : ε] | s2[o : ε]),

(P | s1[o : ε] | s2[o : w],P | s1[o : ε] | s2[o : w]),

(P | s1[o : v] | s2[o : ε],P | s1[o : v] | s2[o : ε])}

gives the result.

3. Case: s?(x);s?(y);P | s[i : ε] 6≈ s?(y);s?(x);P | s[i : ε]

On both processes we can observe a s?〈v〉 transition and get s?(x);s?(y);P | s[i : v] τ−→

s?(y);P{v/x} | s[i : ε] and s?(w);s?(v);P | s[i : v] τ−→ s?(x);P{v/y} | s[i : ε]. From the

substitution, we have that both processes are not bisimilar.

4. Case: s1?(x);s2?(y);P | s1[i : ε] | s2[i : ε]≈ s2?(y);s1?(x);P | s1[i : ε] | s2[i : ε]

B.2. Selector Properties 267

Relation

R = { (s1?(x);s2?(y);P | s1[i : ε] | s2[i : ε],s2?(y);s1?(x);P | s1[i : ε] | s2[i : ε]),

(s1?(x);s2?(y);P | s1[i : v] | s2[i : ε],s2?(y);s1?(x);P | s1[i : v] | s2[i : ε]),

(s1?(x);s2?(y);P | s1[i : ε] | s2[i : w],s2?(y);s1?(x);P | s1[i : ε] | s2[i : w]),

(s1?(x);s2?(y);P | s1[i : v] | s2[i : w],s2?(y);s1?(x);P | s1[i : v] | s2[i : w]),

(s2?(y);P | s1[i : ε] | s2[i : ε],s2?(y);s1?(x);P | s1[i : v] | s2[i : ε]),

(s1?(x);s2?(y);P | s1[i : ε] | s2[i : w],s1?(x);P | s1[i : ε] | s2[i : ε]),

(s2?(y);P | s1[i : ε] | s2[i : w],P | s1[i : ε] | s2[i : ε]),

(P | s1[i : ε] | s2[i : ε],s1?(x);P | s1[i : v] | s2[i : ε]),

(s2?(y);P | s1[i : ε] | s2[i : w],s2?(y);s1?(x);P | s1[i : v] | s2[i : w]),

(s1?(x);s2?(y);P | s1[i : v] | s2[i : w],s1?(x);P | s1[i : v] | s2[i : ε]),

(P | s1[i : ε] | s2[i : ε],P | s1[i : ε] | s2[i : ε])}

gives the result.

B.2 Selector Properties

B.2.1 Proof for Proposition 5.3.1 (1)

Proof. We type left and right hand side of the selectors mapping.

Γ ` P.∆ · xr : S · xr : S
Γ ` b(xr).P.∆ · xr : S
Γ ` b(xr).b(xr).P.∆

Γ ` b(xr).b(xr).P | b[ε].∆ ·b
Γ ` (ν b)(b(xr).b(xr).P | b[ε]).∆

The above result agrees with the typing rule [Selector].

268 Appendix B. Appendix for the Applications of the ESP

Γ ` P.∆ · s : S · r : µX .?(S);X · r : µX .!〈S〉;X
Γ ` r!〈s〉;P.∆ · r : µX .?(S);X · r : µX .!〈S〉;X

The above result conisides with the typing rule [Reg].

Γ ` P.∆ · s : S · r : µX .?(S);X · r : µX .!〈S〉;X
Γ ` if arrive x then P else r!〈x〉;Select .∆ · r : µX .?(S);X · r : µX .!〈S〉;X

Γ ` r?(x);if arrive x then P else r!〈x〉;Select .∆ · r : µX .?(S);X · r : µX .!〈S〉;X
Γ ` µSelect.r?(x);if arrive x then P else r!〈x〉;Select .∆ · r : µX .?(S);X · r : µX .!〈S〉;X

The above result conisides with the typing rule [Select].

B.2.2 Selector Properties

For the following proofs, we let Bi = si[i : hi,o : h′i].

Definition B.2.1. s[i : ~h′i ·~hi,o : ~ho] � s[i : ~hi,o : ~h′o · ~ho] where ∃P ·Γ ` P | Bi .∆ =⇒ Γ `

Q | B j .∆

Lemma B.2.1. Let Bi� B j and assume ` is a visible action. Then Γ ` P | Bi.∆
`−→ P′ | B′i.∆′

iff Γ ` P | B′j .∆
`−→ P′ | B′j .∆′.

Proof. The lemma is proved by the definitions of the label transition system and environment

transition.

Definition B.2.2.

IfSelni = def X1 = if arrive s1 then C1[X2] else X2

...

Xn = if arrive sn then Cn[X1] else X1 in Xi

B.2. Selector Properties 269

with Ci = typecase si of {(xi : Si) : Ri j;−}1≤i≤n,1≤ j≤m where Ri j{si/xi} is a blocking pre-

fixed sequential series of actions with no blocking terms other than its prefix. Furthermore

Ri j{si/xi} is session determinate.

The next definition is used in the proofs.

Definition B.2.3. We define IfSel
′n
i | ∏1≤i≤n B′i and Sel

′n
i | ∏1≤i≤n B′i as

1. Γ ` IfSelni | ∏1≤i≤n Bi .∆ =⇒ IfSel
′n
i | ∏1≤i≤n B′i .∆′ =⇒ IfSelni+1 | ∏1≤i≤n B′′i .∆′′

2. Γ ` Selni | ∏1≤i≤n Bi .∆ =⇒ Sel
′n
i | ∏1≤i≤n B′i .∆′ =⇒ Selni+1 | ∏1≤i≤n B′′i .∆′′.

Lemma B.2.2. IfSelni | ∏1≤i≤n Bi ≈ Selni | ∏1≤i≤n Bi

Proof. By unfolding Selni n times we can see the bisimulation relation between the two pro-

cesses. Consider relation R, such that:

R = {(P,Q) | P = IfSelni | ∏1≤i≤n Bi, Q = Selni | ∏1≤i≤n Bi

P = IfSel
′n
i | ∏1≤i≤n B′i, Q = Selni+1 | ∏1≤i≤n Bi,

P = IfSelni+1 | ∏1≤i≤n Bi, Q = Sel
′n
i ∏1≤i≤n B′i}

where Bi � B′i. For visible actions, ` 6= τ we can use part 1 of Lemma B.2.1 to obtain

Γ ` IfSelni | ∏1≤i≤n Bi .∆i f
`−→ IfSelni | B1 | . . . | B′j | . . . | Bn .∆′i f if and only if

Γ ` Selni | ∏1≤i≤n Bi .∆sel
`−→ Selni | B1 | . . . | B′j | . . . | Bn .∆′sel and the resulting pair of

procesess to be in R as required.

The result is the same for the other two defining pairs of R.

For ` = τ we obtain if Γ ` IfSel
′n
i | ∏1≤i≤n B′i . ∆i f

τ−→ IfSel
′′n
i | ∏1≤i≤n B′′i . ∆′i f then Γ `

Selni | ∏1≤i≤n Bi .∆sel =⇒ Selni+1 | ∏1≤i≤n Bi .∆sel and the resulting pair of procesess to be in

R as required.

270 Appendix B. Appendix for the Applications of the ESP

For the symmetric direction, we obtain if Γ` Selni | ∏1≤i≤n Bi.∆sel
τ−→ Sel

′n
i | ∏1≤i≤n B′i.∆sel

then Γ` IfSel′i ∏1≤i≤n B′i.∆i f
τ

=⇒ IfSelni+1 | ∏1≤i≤n B′′i .∆′i f and the resulting pair of procesess

to be in R as required.

The result is the same for the other two defining pairs of R.

The selectors enjoy the confluence property.

Lemma B.2.3. 1. IfSelni | B1 | . . . | Bn is confluent.

2. Selni | B1 | . . . | Bn is confluent.

Proof. We prove the first part. The second part is a direct consequence from Lemma B.2.2

and the fact that bisimulation preserves confluence.

We apply the confluence definition on IfSelni | B1 | . . . | Bn on all possible pairs of `1 and `2.

Then we have: Γ` IfSelni | ∏1≤i≤n Bi.∆
`1−→`̂2b`1

=⇒ IfSel
′n
j | ∏1≤i≤n B′i.∆′ and Γ` IfSelni | ∏1≤i≤n Bi.

∆
`2=⇒`̂1b`2

=⇒ IfSel
′n
k | ∏1≤i≤n B′′i .∆′′.

Hence we need to show that IfSel
′n
j | ∏1≤i≤n B′i ≈ IfSel

′n
k | ∏1≤i≤n B′′i .

Consider relation R = S ∪{(IfSel′nj | ∏1≤i≤n B′i, IfSel
′n
k | ∏1≤i≤n B′′i)}, where

S = {(P,Q),(Q,P) | P = IfSel
′n
i | ∏1≤i≤n B′i,Q = IfSeln1 | ∏1≤i≤n Bi, Bi � B′i}

If Γ ` IfSel′ni | ∏1≤i≤n B′i .∆′
`−→ IfSel

′′n
i | ∏1≤i≤n B′′i .∆′′ then Γ ` IfSeln1 | ∏1≤i≤n Bi .∆

ˆ̀
=⇒

IfSeln1 | ∏1≤i≤n B′′′i .∆′′′ and the resulting process are related by S .

For the symmetric case, Γ ` IfSeln1 | ∏1≤i≤n Bi . ∆
`−→ IfSel

′n
1 | ∏1≤i≤n B′′′i . ∆′′′ then Γ `

IfSel
′n
i | ∏1≤i≤n B′i .∆′

`
=⇒ IfSeln1 | ∏1≤i≤n B′′i .∆′′ and the resulting process are related by S .

B.2. Selector Properties 271

B.2.3 Proof of Lemma 5.4.1

Proof. By Lemma B.2.2, consider the equivalences,

IfSelnk | ∏1≤i≤n Bi ≈ Selnk | ∏1≤i≤n Bi and PermIfSelnk | ∏1≤i≤n Bi ≈ PermSelnk | ∏1≤i≤n Bi.

We will show that IfSelnk | ∏1≤i≤n Bi ≈ PermIfSelnk | ∏1≤i≤n Bi, by exploiting Lemma B.2.3

to build a confluent up-to relation.

Consider the relation R = S ∪{(IfSelnk | ∏1≤i≤n Bi,PermIfSelnk | ∏1≤i≤n Bi)} such that S =

{(IfSeln1 | ∏1≤i≤n Bi,PermIfSeln1 | ∏1≤i≤n Bi)}.

If Γ ` IfSeln1 | ∏1≤i≤n Bi .∆
`−→=⇒ IfSeln1 | ∏1≤i≤n B′i .∆′ then Γ ` PermIfSeln1 | ∏1≤i≤n Bi .

∆
`

=⇒ IfSeln1 | ∏1≤i≤n B′i .∆′ and both resulting processes are in S .

The symmetric case is similar. Then the proof is complete with Lemma B.2.2.

B.2.4 Proof of Lemma 5.4.2

First by the similar technique as the static selector, we prove:

Lemma B.2.4. DSelni | a[~s] | ∏1≤i≤n Bi is confluent.

Then the rest is proved by constructing the up to relation of

R = S ∪{DSelnk | a[~s] | ∏
1≤i≤n

Bi, PermDSelnk | a[~s] | ∏
1≤i≤n

Bi}

where S = {(DSeln1 | a[~s] | ∏1≤i≤n Bi, PermDSeln1 | a[~s] | ∏1≤i≤n Bi}, using a similar conflu-

ence property as done in the proof of Lemma 5.4.1.

272 Appendix B. Appendix for the Applications of the ESP

B.3 Thread Elimination Transform Properties

In this section of the Appendix we prove Theorem 5.5.1. We first use some auxiliary lemmas

that i) establish equivalence replicated and recursive definitions, ii) prove the confluence of

the Lauer-Needham transform LN[[∗a(x).P | a[ε]]] and, iii) prove the selector permutation on

the Lauer-Needham transform. We finally prove the main result.

We establish an equivalence result between recursive and the replicated processes.

Lemma B.3.1. def X =C[X] in X ≈ ∗(c.C[c]) | c, where C does not contain X .

Proof. ∗P is defined to be µY.(P | Y), so we rewrite ∗c.C[c] to µY.(c.C[c] | Y). µY.P is

defined as def Y def
= P in Y . So µY.(c.C[c] | Y) can be written as def Y def

= c.C[c] | Y in Y .

We can build a bisimulation relation on the transitions of context C.

R = {(P,Q),(Q,P) |

P = def X def
= C[X] in C′[X],Q = def Y def

= c.C[c] | Y in C′[c] | Y

P = def X def
= C[X] in X ,Q = def Y def

= c.C[c] | Y in Y | c}

If def X =C[X] inC′[X]
`−→ def X =C[X] inC′′[X] then defY = c.C[c] |Y inC′[c] |Y

ˆ̀
−→

def Y = c.C[c] | Y in C′′[c] | Y .

For the second pair the transition is obvious.

A usefull definition is that of the LN-transform in recursive programming style.

B.3. Thread Elimination Transform Properties 273

Definition B.3.1 (LN transform-recursive programming style).

LNR[[∗a(x).P]] def
= (ν q)(Loop〈q〉 | q〈(sd,a, /0)〉)

Loop〈q〉 def
= select (xs,xa,y) from q in if xa = a then new env y in B[[∗a(x).P]] else

typecase x of {x1 : S1 : B[[P1]], . . .xn−m : Sn−m : B[[Pn−m]]}

B[[∗a(x).P]] def
= a(w).update (y,w,w′) in register (xa,a, /0) to q in [[P,y]]

B[[x(i)?(z : T);Q]]
def
= x′?(z′);update (y,z,z′) in update (y,x,x′) in [[Q,y]]

B[[x(i)&{l j : Q j} j]]
def
= x′&{l j : update (y,x,x′) in [[Q j,y]]} j

[[Q,y]] def
= let x′ = [[x]]y in register (x′,shd,y) to q in Loop〈q〉 (Q is blocking at x(i))

[[0,y]] def
= Loop〈q〉

Lemma B.3.2. LN[[∗(a(x).P) | a[ε]]]≈ LNR[[∗(a(x).P) | a[ε]]]

Proof. The proof is an application of lemma B.3.1. Since definition LNR[[∗(a(x).P) | a[ε]]]

uses process variable using lemma B.3.1 we can substitute process variables with names ci

and their definition with ∗ci... to get LN[[∗(a(x).P) | a[ε]]].

The LN-transformed process is essentially a sequential process with session endpoints com-

posed in parallel. Hence we can also establish:

Lemma B.3.3. LN[[∗(a(x).P) | a[ε]]] is confluent.

Proof. We use lemma B.2.4 to show that LNR[[∗(a(x).P) | a[ε]]] is confluent then by lemma

B.3.2 and the fact that bisimulation preserves confluence, we get the required result.

We can know study the behaviour of the LN-transform.

Lemma B.3.4 (Event Server Permutation). Let

P1 = (ν ~cor)(Loop〈o,q〉 | CodeBlocks〈a,o,q,~c〉 | q〈. . . ,(si,ai,yi,ci),(s j,ai,y j,c j), . . .〉 |

a[~s] | ∏m∈I sm[i : ~him,o : ~hom])

274 Appendix B. Appendix for the Applications of the ESP

and

P2 = (ν ~cor)(Loop〈o,q〉 | CodeBlocks〈a,o,q,~c〉 | q〈. . . ,(s j,aiy j,c j),(si,ai,yi,ci), . . .〉 |

a[~s] | ∏m∈I sm[i : ~him,o : ~hom])

Then P1 ≈ P2.

Proof. The first step is by Definition B.3.1. We then apply Lemmas 5.4.2 and B.3.2.

We finaly prove our main theorem (Theorem 5.5.1).

Proof. Since both processes are confluent we can develop a confluent up-to relation along

with lemma B.3.4 to prove bisimulation closure.

Let relation R such that

R = {(P1,P2),(P2,P1) | P1 = ∗a(x).P | ∏1≤i≤n Ri | ∏1≤i≤n Bi | a[~s]

R1, . . . ,Rn blocking subterms of P

P2 = Loop〈o,q〉 | CodeBlocks〈a,o,q,~c〉 |

r〈s j, . . . ,s j−1〉 | ∏1≤i≤n Bi | a[~s]}

Then we prove that R is a bisimulation up-to confluence. For observable actions, the bisim-

ulation holds trivially since if P1
`−→ P′1 then P2

`−→ P′2 and P′1RP′2.

Let P2 −→ Q′ | CodeBlocks〈a,o,q,~c〉 | r〈s j, . . . ,s j−1〉 | ∏1≤i≤n Bi | a[~s] then

P1 =⇒∗a(x).P | R1 | . . . | R′j | . . . | Rn | ∏1≤i≤n Bi | a[~s], where R j =⇒ R′j and R′j is a blocking

server subterm of P and Q′ | CodeBlocks〈a,o,q,~c〉 | r〈s j, . . . ,s j−1〉 | ∏1≤i≤n Bi | a[~s] =⇒

Loop〈o,q〉 | CodeBlocks〈a,o,q,~c〉 | r〈s j+1, . . . ,s j〉 | ∏1≤i≤n Bi | a[~s].

For the symmetric case, if P1 −→ ∗a(x).P | R1 | . . . | R′i | . . . | Rn | ∏1≤i≤n Bi | a[~s] then we

choose a processe P′2 ≈ P2 (from Lemma 5.4.2) such that

P′2 = Loop〈o,q〉 | CodeBlocks〈a,o,q,~c〉 | r〈si,s j . . . ,s j+1〉 | ∏1≤i≤n Bi | a[~s].

B.3. Thread Elimination Transform Properties 275

Now we can observe P′2 =⇒ Loop〈o,q〉 | CodeBlocks〈a,o,q,~c〉 | r〈s j, . . . ,si〉 | ∏1≤i≤n Bi | a[~s]

and

∗a(x).P |R1 | . . . |R′i | . . . |Rn | ∏1≤i≤n Bi | a[~s] =⇒∗a(x).P |R1 | . . . |R′′i | . . . |Rn | ∏1≤i≤n Bi | a[~s]

where R′′i is a blocking subterm of P.

This completes the proof.

276

Appendix C

Apendix for the MSP

C.1 Global Types

C.1.1 Proof for Lemma 6.2.1

Proof. The proof uses induction on the syntax of the global type G. For G = end,G = t the

proof is trivial.

For the induction step we do a case analysis on the definition of the syntax of G. Let G =

p→ q : 〈U〉.G′. Then:

(p→ q : 〈U〉.G′dp)dq = (G′dp)dq

(p→ q : 〈U〉.G′dq)dp = (G′dq)dp

From the induction hypothesis we know that

(G′dp)dq= (G′dq)dp

This is enough to complete the proof.

277

278 Appendix C. Apendix for the MSP

The rest of the cases are similar to the above.

C.2 Subject Reduction

C.2.1 Proof for Theorem 6.2.1

Proof. We apply induction on the length of the reduction →→. Induction is done by a case

analysis on the reduction rules. We present some cases, since the methodology is similar for

the rest.

Case: [Link]

Let

P = a[p](x1).P1 | . . . | a[n](x).Pn

We apply the typing rules [Accept], [Request], [Conc] to get Γ ` P.∆ with co(∆). Assume that

P−→ P′ = (ν s)(P1{s[1]/x1} | . . . | Pn{s[n]/xn})

From rule [Conc] we get that

Γ ` (ν s)(P1{s[1]/x1} | . . . | Pn{s[n]/xn}).∆ · s[1] : T1 . . .s[n] : Tn

We apply rule [SRes] to get Γ ` P′ .∆ as required.

Case: [Comm]

Let

P = s[p][q]!〈v〉;P1 | s[q][p]?(x);P2

We apply typing rules [Send], [Rcv], [Conc] to get that Γ ` P.∆ with

∆ = ∆1 · s[p] : [q]!〈U〉;Tp · s[q] : [p]?(U);Tq

C.2. Subject Reduction 279

and co(∆). From the coherency of ∆ we get that co(∆1) and Tpdq= Tqdp.

Let P−→ P′ = P1 | P2{v/x} and Γ ` P′ .∆′ with

∆
′ = ∆1 · s[p] : Tp · s[q] : Tq

From the coherency of ∆ we get that ∆′ is also coherent.

C.2.2 Proof for Theorem 6.3.1

We use the next Lemma to prove Theorem 6.3.1:

Lemma C.2.1. If co(∆ · s[p] : [q]!〈U〉;T) and s[q] /∈ dom(∆) then co(∆ · s[p] : T).

Proof. Let q′ 6= q and s[q′] : Tq′ ∈ ∆. Then [q]!〈U〉;Tdq′ = Tdq′. Since s[q] /∈ dom(∆) then for

all s[q′] ∈ dom(∆) [q]!〈U〉;Tdq′ = Tdq′, so co(∆ · s[p] : T).

Proof for Theorem 6.3.1:

Proof. For each of the asynchronous MSP calculi, we use induction on the length of→→.

Output Asynchronous MSP:

Case: [Link]

Let

P = a[p](x1).P1 | . . . | a[n](x).Pn

We apply typing rules [Accept], [Request], [Conc] to get Γ ` P.∆ with co(∗(∆)).

Assume

P−→ P′ = (ν s)(P1{s[1]/x1} | . . . | Pn{s[n]/xn} | s[1][o : ε] | . . . | s[n][o : ε])

280 Appendix C. Apendix for the MSP

We apply typing rules [Accept], [Request],(QEmp), [Conc] to get

Γ ` P′ .∆ · s[1] : T1 . . .s[n] : Tn · so[1] : /0 · . . . · so[n] : /0

We apply (SRes) to get Γ ` P′ .∆ as required.

Case: [Send]

Let

P = s[p][q]!〈v〉;P1 | s[p][o : h]

We type to get Γ ` P.∆ with

∆ = ∆1 · s[p] : [q]!〈U〉;T · so[p] : M

∗(∆) = ∗(∆1)∪{s[p] : M ∗ [q]!〈U〉;T}

Assume that

P−→ P′ = P1 | s[p][o : [q](v) ·h]

with Γ ` P′ .∆′ with

∆
′ = ∆1 · s[p] : T · so[p] : [q]!U ;M

∗(∆′) = ∗(∆1)∪{s[p] : M ∗ [q]!〈U〉;T}= ∗(∆)

as required.

Input Asynchronous MSP:

Case: [Link]

Similar justification with Case: [Link] for Output Asynchronous MSP.

Case: [Send]

C.2. Subject Reduction 281

Let

P = s[p][q]!〈v〉;P1 | s[q][i : h] | P2

We type to get Γ ` P.∆ with

∆ = ∆1 · s[p] : [q]!〈U〉;T · si[q] : M

and co(∗(∆)).

Assume

P−→ P′ = P1 | s[q][i : [q](v) ·h]

with Γ ` P′ .∆′ with

∆
′ = ∆1 · s[p] : T · si[q] : [q]!U ;M

and ∗(∆′) coherent from lemma C.2.1.

I/O Asynchrony MSP:

Case: [Link]

Similar justification with Case: [Link] for Output Asynchronous MSP.

Case: [Send]

Similar argumentation with Case: [Send] for Output Asynchronous MSP.

Case: [Comm]

Let

P = s[p][o :~h ·h] | s[q][i : ~h′]

We type to get Γ ` P.∆ with

∆ = so[p] : M; [q]!U · si[q] : M′

with trivialy co(∗(∆)).

282 Appendix C. Apendix for the MSP

Assume

P−→ P′ = s[p][o :~h] | s[q][i : h ·~h′]

and Γ ` P′ .∆′ with

∆ = so[p] : M · si[q] : [p]?U ;M′

with trivialy co(∗(∆′)).

C.3 Proofs for Bisimulation Properties

C.3.1 Parallel Observer Property

Lemma C.3.1. If Γ ` P1 .∆1,Γ ` P2 .∆2 and E,Γ ` P1 | P2 .∆ then

1. ∆ = ∆1∪∆2, ∆1∩∆2 = /0

2. E,Γ ` P1 .∆1 and E,Γ ` P2 .∆2

Proof. Part 1 is obtain from typing rule [Conc]. Part 2 is immediate from part 1, since ∆⊆ ∆1

(resp. ∆⊆ ∆2).

C.3.2 Proof for Lemma 6.5.1

Proof. We use a coinduction method which is implied by the bisimilarity definition.

Assume that for Γ ` P1 .∆1 ≈ P2 .∆2, we have ∆1
 ∆2. Then by the definition of
, there

exists ∆ such that

∆1→→ ∆ and ∆2→→ ∆ (C.1)

C.3. Proofs for Bisimulation Properties 283

Now assume that Γ ` P1 . ∆1
`−→ P′1 . ∆′1 then, Γ ` P2 . ∆2

`
=⇒ P′2 . ∆′2 and by the typed

transition definition we get (Γ,∆1)
`−→ (Γ,∆′1), (Γ,∆2)

`
=⇒ (Γ,∆′2). We need to show that

∆′1
 ∆′2.

We prove by a case analysis on the transition `−→ on (Γ,∆1) and (Γ,∆2).

• Case `= τ: The proof is trivial.

Case `= a[p](s) or `= a[p](s): Then

(Γ,∆1)
`−→ (Γ,∆1 · s[p] : Tp · . . . · s[q] : Tq)

and

(Γ,∆2) =⇒
`−→=⇒ (Γ,∆′′2 · s[p] : Tp · . . . · s[q] : Tq)

We set

∆
′ = ∆ · s[p] : Tp · . . . · s[q] : Tq

to obtain ∆′1→→ ∆′ and ∆′2→→ ∆′, by the coinduction hypothesis (C.1).

• Case `= s[p][q]!〈v〉:

For synchronous and input asynchronous multiparty session π-calculus, we know from

the definition of environment transition, that s[q] /∈ dom(∆1) and s[q] /∈ dom(∆2), thus

s[q] /∈ dom(∆) for the synchronous case and si[q] /∈ dom(∆1) and si[q] /∈ dom(∆2), thus

si[q] /∈ dom(∆) for the input asynchronous case. We set

∆1 = s[p] : [q]!〈v〉;T ·∆′′1

and

∆2 = s[p] : [q]!〈v〉;T ·∆′′2

284 Appendix C. Apendix for the MSP

so

∆ = s[p] : [q]!〈v〉;T ·∆′′

by (C.1). We set ∆′ = s[p] : T ·∆′′ to obtain ∆′1→→ ∆′ and ∆′2→→ ∆′.

For output and input/output asynchronous multiparty session π-calculus, we know

from the definition of environment transition, that s[q] /∈ dom(∆1) and s[q] /∈ dom(∆2),

thus s[q] /∈ dom(∆) for the output asynchrony case and si[q] /∈ dom(∆1) and si[q] /∈

dom(∆2), thus si[q] /∈ dom(∆) for the input/output asynchronous case. Then

∆1 = so[p] : M; [q]!v ·∆′′1

and

∆2 = so[p] : M; [q]!v ·∆′′2

so

∆ = so[p] : M; [q]!v ·∆′′

by (C.1). We set ∆′ = so[p] : M ·∆′′ to obtain ∆′1→→ ∆′ and ∆′2→→ ∆′.

• Case `= s[p][q]!(s′[p′]):

For synchronous and input asynchronous multiparty session π-calculus, we know from

the definition of environment transition, that for the synchronous case, s[q] /∈ dom(∆1)

and s[q] /∈ dom(∆2), thus s[q] /∈ dom(∆). And for the input asynchronous case si[q] /∈

dom(∆1) and si[q] /∈ dom(∆2), thus si[q] /∈ dom(∆). We set

∆1 = s[p] : [q]!〈T ′〉;T ·∆′′1

C.3. Proofs for Bisimulation Properties 285

and

∆2 = s[p] : [q]!〈T ′〉;T ·∆′′2

so

∆ = s[p] : [q]!〈v〉;T ·∆′′

by (C.1). We set ∆′ = s[p] : T ·∆′′ · {s[pi] : Ti} to obtain ∆′1→→ ∆′ and ∆′2→→ ∆′.

For output and input/output asynchronous multiparty session π-calculus, we know

from the definition of environment transition, that s[q] /∈ dom(∆1) and s[q] /∈ dom(∆2),

thus s[q] /∈ dom(∆) for the output asynchrony case and si[q] /∈ dom(∆1) and si[q] /∈

dom(∆2), thus si[q] /∈ dom(∆) for the input/output asynchronous case. Then s[q] /∈

dom(∆1) and s[q] /∈ dom(∆2), thus s[q] /∈ dom(∆) and

∆1 = so[p] : M; [q]!T ′ ·∆′′1

and

∆2 = so[p] : M; [q]!T ′ ·∆′′2

so

∆ = so[p] : M; [q]!v ·∆′′

by (C.1). We set ∆′ = so[p] : M ·∆′′ · {s[pi] : Ti} to obtain ∆′1→→ ∆′ and ∆′2→→ ∆′.

• The remaining cases on session channel actions are similar.

286 Appendix C. Apendix for the MSP

C.3.3 Configuration Transition Properties

Lemma C.3.2.

• If E
s:p→q:U−→ E ′ then {s[p] : [q]!〈U〉;Tp,s[q] : [p]?(U);Tq} ⊆ proj(E) and {s[p] : Tp,s[q] :

Tq} ⊆ proj(E ′).

• If E
s:p→q:l−→ E ′ then {s[p] : [q]⊕{li : Tip},s[q] : [p]&{li : Tiq}} ⊆ proj(E) and {s[p] :

Tkp,s[q] : Tkq} ⊆ proj(E ′)

Proof. Part 1: We apply induction on the definition structure of s : p→ q : U . The base case

{s : p→ q : 〈U〉.G} s:p→q:U−→ {s : G}

is easy since

{s[p] : (p→ q : 〈U〉.G)dp,s[q] : (p→ q : 〈U〉.G)dq}=

{s[p] : [q]!〈U〉;Tp,s[q] : [p]?(U);Tq} ⊆ proj(s : p→ q : 〈U〉.G)

and

{s[p] : Gdp,s[q] : Gdq}= {s[p] : Tp,s[q] : Tq} ⊆ proj(s : G)

The main induction rule concludes that:

{s : p′→ q′ : 〈U〉.G} s:p→q:U−→ {s : G′}

C.3. Proofs for Bisimulation Properties 287

if p 6= p′ and q 6= q′ and {s : G} s:p→q:U−→ {s : G′}. From the induction hypothesis we know that:

{s[p] : [q]!〈U〉;Tp,s[q] : [p]?(U);Tq} ⊆ proj(s : G)

{s[p] : Tp,s[q] : Tq} ⊆ proj(s : G′)

to conclude that:

{s[p] : (p′→ q′ : 〈U〉.G)dp,s[q] : (p′→ q′ : 〈U〉.G)dq}=

{s[p] : Gdp,s[q] : Gdq}=

{s[p] : [q]!〈U〉;Tp,s[q] : [p]?(U);Tq} ⊆ proj(s : G)

and

{s[p] : (p′→ q′ : 〈U〉.G′)dp,s[q] : (p′→ q′ : 〈U〉.G′)dq}=

{s[p] : G′dp,s[q] : G′dq}=

{s[p] : Tp,s[q] : Tq} ⊆ proj(s : G)

as required.

Part 2: Similar.

Proof for Proposition 6.4.1

Proof. (1) We apply induction on the definition structure of `−→.

Basic Step:

Case: `= a[s](A).

288 Appendix C. Apendix for the MSP

From rule [Acc] we get

(E1,Γ1,∆1)
`−→ (E1 · s : G,Γ1,∆1 · {s[pi] : sdpi}pi∈A)

From the environment configuration definition we get that

∃E ′1 ·E1 −→∗ E ′1,proj(E
′
1)⊇ ∗(∆1)

We also get that proj(s : G)⊇ {s[pi] : sdpi}i∈A. So we can safely conclude that

E1 · s : G−→∗ E ′1 · s : G,proj(E1 · s : G)⊇ ∆1 · {s[pi] : sdpi}pi∈A

Case: `= a[s](A). Similar as above.

Case: `= s[p][q]!〈v〉.

From rule [Out] we get

(E1,Γ,∆ · s[p] : [q]!〈U〉;T) `−→ (E2,Γ,∆ · s[p] : T) (C.2)

proj(E1) ⊇ ∆ · s[p] : [q]!〈U〉;T (C.3)

E1
s:p→q:U−→ E2 (C.4)

From C.3 we get proj(E1)⊇ ∆ ·{s[p] : [q]!〈U〉;T ·s[q] : [p]?(U);T ′} and from C.4 and lemma

C.3.2 we get that proj(E2)⊇ ∆ · {s[p] : T · s[q] : T ′}. The result is then implied.

C.3. Proofs for Bisimulation Properties 289

Case: `= s[p][q]!(s′[p′]).

(E1,Γ,∆ · s[p] : [q]!〈Tp′〉;T) `−→ (E2 · s : G,Γ,∆ · s[p] : T · {s[pi] : sdpi}) (C.5)

proj(E1) ⊇ ∆ · s[p] : [q]!〈T ′p〉;T (C.6)

E1
s:p→q:T ′p−→ E2 (C.7)

proj(s : G) ⊇ {s[pi] : sdpi} (C.8)

From C.6 we get proj(E1)⊇ ∆ ·{s[p] : [q]!〈U〉;T ·s[q] : [p]?(U);T ′} and from C.7 and lemma

C.3.2 we get that proj(E2) ⊇ ∆ · {s[p] : T · s[q] : T ′} ⊃ ∆ · s[p] : T . From C.8 we get that

proj(E2 · s : G)⊇ ∆ · s[p] : T · {s[pi] : sdpi} as required.

The rest of the base cases are similar.

Inductive Step:

The inductive rule for environment configuration is [Inv]. (E1,Γ1,∆1)
`−→ (E2,Γ2,∆2). From

rule [Inv] we get

E1 −→∗ E ′1 (C.9)

(E ′1,Γ1,∆1)
`−→ (E ′2,Γ2,∆2) (C.10)

E2 −→∗ E ′2 (C.11)

From the inductive hypothesis we know that for C.10 ∃E3 ·E ′2 −→∗ E3. By C.11 we get that

E2 −→∗ E ′2 −→∗ E3 as required.

Lemma C.3.3.

1. If (E,Γ,∆1)
`−→ (E ′,Γ′,∆2) then (Γ,∆1)

`−→ (Γ′,∆2)

2. If (E,Γ,∆1)
`−→ (E ′,Γ′,∆′1) and ∆1
 ∆2 then (E,Γ,∆2)

`
=⇒ (E ′,Γ′,∆′2)

290 Appendix C. Apendix for the MSP

3. If (Γ,∆1)
`−→ (Γ′,∆2) then there exists E such that (E,Γ,∆) `−→ (E ′,Γ′,∆2)

4. If (E,Γ,∆ · s[p] : Tp)
`−→ (E ′,Γ,∆′ · s[p] : Tp) then (E,Γ,∆) `−→ (E ′,Γ,∆′)

5. If (E,Γ,∆1)
`−→ (E ′,Γ,∆2) then (E,Γ,∆1 ·∆)

`−→ (E ′,Γ,∆2 ·∆)

provided that if (E,Γ,∆) `′−→ (E,Γ,∆′) then ` 6� `′

Proof. Part 1:

The proof for part 1 is easy to be implied by a case analysis on the configuration transition

definition with respect to environment transition definition.

Part 2:

By the case analysis on `.

Case `= τ: The result is trivial.

Case `= a[p](s) or `= a[p](s): The result comes from a simple transition.

Case ` = s[p][q]!〈v〉: ∆1
 ∆2 implies ∆1→→ ∆ and ∆2→→ ∆ for some ∆ and ∆ = ∆′ · s[p] :

[q]!〈U〉;T for synchronous and input asynchronous MSP and ∆ = ∆′ · s[p] : M; [q]!U . for

output and input/output asynchronous MSP.

(E,Γ,∆2) =⇒ (E,Γ,∆) `−→ as required.

Case `= s[p][q]!(s′[p′]): ∆1
 ∆2 implies ∆1→→ ∆ and ∆2→→ ∆ for some ∆ and ∆ = ∆′ ·s[p] :

[q]!〈T ′〉;T for synchronous and input asynchronous MSP and ∆ = ∆′ · s[p] : M; [q]!T ′. for

output and input/output asynchronous MSP.

(E,Γ,∆2) =⇒ (E,Γ,∆) `−→ as required.

The remaining cases are similar.

Part 3:

C.3. Proofs for Bisimulation Properties 291

We do a case analysis on `.

Cases `= τ, `= a[p](s), `= a[p](s): The result holds for any E.

Case ` = s[p][q]!〈v〉 : ∆1 = ∆′1 ·∆′′1 with ∆′′1 = s[p] : [q]!〈U〉;Tp · . . . · s[r] : Tr for synchronous

and input asynchronous MSP. Choose E = E ′ · s : G with ∗(∆′′1) ⊆ proj(s : G) and s[q] :

[p]?(U);Tq ∈ proj(s : G) and ∗(∆)1 ⊆ proj(E) By the definition of configuration transition

relation, we obtain (E,Γ,∆) `−→ (E,Γ′,∆2), as required.

∆1 = ∆′1 ·∆′′1 with ∆′′1 = s[p] : Tp · so[p] : M; [q]!U · . . . · s[r] : Tr for output and input/output

asynchronous MSP. Choose E = E ′ · s : G with ∗(De′′1)⊆ proj(s : G) and s[q] : [p]?(U);Tq ∈

proj(s : G) and ∗(∆)1 ⊆ proj(E) By the definition of configuration transition relation, we

obtain (E,Γ,∆) `−→ (E,Γ′,∆2), as required.

Remaining cases are similar.

Part 4:

(E,Γ,∆ ·s[p] : Tp)
`−→ (E ′,Γ,∆′ ·s[p] : Tp) implies that s[p] /∈ subj(`). The result then follows

from the definition of configuration transition.

Part 5:

Case ` = τ, ` = a[p](s), ` = a[p](s): The result holds by definition of the configuration tran-

sition.

Case `= s[p][q]!〈U〉: For synchronous and input asynchronous MSP we have that ∆1 = ∆′1 ·

s[p] : [q]!〈U〉;T and E
s:p→q:U−→ E ′. For synchronous MSP assume s[q] ∈ ∆, then by definition

of weak configuration pair we have ∆ = ∆′′ · s[q] : q[U][T]?() ; and (E,Γ,∆)
s[q][p]?〈U〉−→ . But

this contradicts with the assumption ` 6� `′, so s[q] /∈ ∆. By the definition of configuration

pair transition we get that (E,Γ,∆1 ·∆)
s[p][q]!〈U〉−→ (E,Γ,∆2 ·∆). For input asynchronous MSP

assume that si[q]∈ ∆, then by definition of weak configuration pair we have ∆ = ∆′′ ·si[q] : M

292 Appendix C. Apendix for the MSP

and (E,Γ,∆)
si[q][p]?〈U〉−→ . But this contradicts with the assumption ` 6� `′, so si[q] /∈ ∆. By the

definition of configuration pair transition we get the result.

For output and input/output asynchronous MSP we have ∆1 = ∆′1 · so[p] : M; [q]!〈U〉; and

E
s:p→q:U−→ E ′. For output asynchronous MSP assume s[q]∈∆, then we would have (E,Γ,∆)

s[q][p]?〈U〉−→

which contradicts with ` 6� `′ and s[q] /∈ ∆ to get the required result by the configuration

pair definition. For input/output asynchronous MSP assume si[q] ∈ ∆, then we would have

(E,Γ,∆)
si[q][p]?〈U〉−→ which contradicts with ` 6� `′ and si[q] /∈ ∆ to get the required result by

the configuration pair definition.

Remaining cases are similar.

C.3.4 Proof for Lemma A.3.1

Proof. Since we are dealing with closed processes, the interesting case is parallel compo-

sition. We need to show that if E,Γ ` P . ∆1 ≈g Q . ∆2 then for all R such that E,Γ `

P | R.∆3,E,Γ ` Q | R.∆4 then E,Γ ` P | R.∆3 ≈g Q | R.∆4.

Let
S = {(E,Γ ` P | R.∆3, E,Γ ` Q | R.∆4) |

E,Γ ` P.∆1 ≈g Q.∆2,

∀R ·E,Γ ` P | R.∆3,E,Γ ` Q | R.∆4}

Before we proceed to a case analysis, we extract general results. Let Γ`P.∆1,Γ`Q.∆2,Γ`

C.3. Proofs for Bisimulation Properties 293

R.∆5,Γ ` P | R.∆3,Γ ` Q | R.∆4 then from typing rule [Conc] we get

∆3 = ∆1∪∆5 (C.12)

∆4 = ∆2∪∆5 (C.13)

∆1∩∆5 = /0 (C.14)

∆2∩∆5 = /0 (C.15)

We prove that S is a bisimulation. There are three cases:

Case: E,Γ ` P | R.∆3
`−→ E ′,Γ ` P′ | R.∆′3

From typed transition definition we have that:

P | R `−→ P′ | R (C.16)

(E,Γ,∆3)
`−→ (E ′,Γ,∆′3) (C.17)

Transition (C.16) and rule 〈Par〉 (LTS for MSP calculi in Figure 6.9) imply:

P `−→ P′ (C.18)

From (C.12), transition (C.17) can be written as (E,Γ,∆1∪∆5)
`−→ (E ′,Γ,∆′1∪∆5), to con-

clude from Lemma C.3.3 part 4, that:

(E,Γ,∆1)
`−→ (E ′,Γ,∆′1) (C.19)

subj(`) /∈ dom(∆5) (C.20)

294 Appendix C. Apendix for the MSP

Transitions C.18 and C.19 imply E,Γ ` P.∆1
`−→ E ′,Γ ` P′ .∆′1. From the definition of set

S we get that E,Γ ` Q.∆2
`

=⇒ E ′,Γ ` Q′ .∆′2.

From the typed transition definition we have that:

Q `
=⇒ Q′ (C.21)

(E,Γ,∆2)
`

=⇒ (E ′,Γ,∆′2) (C.22)

From C.20 and part 5 of Lemma C.3.3 we can write: (E,Γ,∆2∪∆5)
`

=⇒ (E ′,Γ,∆′2∪∆5), to

imply from C.21 that E,Γ ` P | R.∆4
`

=⇒ E ′,Γ ` P′ | R.∆′4 as required.

Case: 2

E,Γ ` P | R.∆3
τ−→ E ′ ` P′ | R′ .∆

′
3

From the typed transition definition we have that:

P | R τ−→ P′ | R′ (C.23)

(E,Γ,∆3)
τ−→ (E,Γ,∆′3) (C.24)

From C.23 and rule 〈Tau〉 we get

P `−→ P′ (C.25)

R `′−→ R′ (C.26)

C.3. Proofs for Bisimulation Properties 295

From C.12 transition C.24 can be written (E,Γ,∆1∪∆5)
τ−→ (E,Γ,∆′1∪∆′5), to conclude that

(E,Γ,∆1)
`−→ (E,Γ,∆′1) (C.27)

(E,Γ,∆5)
`′−→ (E,Γ,∆′5) (C.28)

From C.25 and C.27 we conclude that E,Γ ` P .∆1
`−→ E,Γ ` P′ .∆′1 and from C.26 and

C.28 E,Γ ` R.∆5
`−→ E,Γ ` R′ .∆′5.

From the definition of set S we get that E,Γ ` Q.∆2
`

=⇒ E,Γ ` Q′ .∆′2, implies

Q `
=⇒ Q′ (C.29)

(E,Γ,∆2)
`

=⇒ (E,Γ,∆′2) (C.30)

From C.26 we get that Q | R τ
=⇒ Q′ | R′ and (E,Γ,∆2∪∆5)

τ
=⇒ (E,Γ,∆′2∪∆′5), implies

E,Γ ` Q | R.∆4
τ

=⇒ E ′ ` Q′ | R′ .∆
′
4

Case: 3

E,Γ ` P | R.∆3
`−→ E ′ ` P | R′ .∆

′
3

296 Appendix C. Apendix for the MSP

C.3.5 Proof for Lemma 6.5.5

Proof. We take into advantage the fact that bisimulation has a stratifying definition.

• ≈g0 is the union of all configuration relations, E,Γ ` P.∆1 R Q.∆2.

• E,Γ ` P.∆1≈gnQ.∆2 if

– E,Γ ` P.∆1
`−→ E ′,Γ ` P′ .∆′1 then E,Γ ` Q.∆2

`
=⇒ E ′,Γ ` Q.∆′2 and E ′,Γ `

P′ .∆′1≈gn−1Q′ .∆′2

– The symmetric case.

• ≈g
ω

n =
⋂

0≤i≤n≈gi

From coinduction theory, we know that (
⋂
∀n≈gn) =≈g.

To this purpose we define a set of tests T 〈N, ~̀n〉 to inductively show that:

If E,Γ ` P1 .∆1 ∼=g P2 .∆2 implies

E,Γ ` P1 | T 〈N, ~̀n〉.∆1 ∼=g P2 | T 〈N, ~̀n〉.∆2 implies

∀n, E,Γ ` P1 .∆1≈gnP2 .∆2 implies

E,Γ ` P1 .∆1≈gP2 .∆2

We give the definition for T 〈N, ~̀n〉:

T 〈N,succ, ~̀n〉= Q〈N,n,~̀i〉 | . . . | Q〈N,n,~̀i〉

where

1. i ∈ I

2.
⋃

i∈I
~̀i = ~̀n

C.3. Proofs for Bisimulation Properties 297

3. n ::= s[p] | a.

and let

• Bs〈s[p]〉= 0

• Bi〈s[p]〉= s[p][i : /0]

• Bo〈s[p]〉= s[p][o : /0]

• Bio〈s[p]〉= s[p][i : /0] | s[p][o : /0]

to define

• Q〈N,a,a[A](s) · ~̀n〉= a[n](x).Q〈N,s[n],~̀i〉 | . . . | a[p](x).Q〈N,s[p],~̀i〉, i ∈ I.

• Q〈N,s[q],s[p][q]?〈v〉 · ~̀n〉= s[q][p]!〈v〉;Q〈N,s[q], ~̀n〉 | B〈s[q]〉.

• Q〈N,s[q],s[p][q]&l · ~̀n〉= s[q][p]⊕ l;Q〈N,s[q], ~̀n〉 | B〈s[q]〉.

• Q〈N,a,a[A](s) · ~̀n〉= a[q](x).Q〈N,s[q],~̀i〉 | . . . | a[p](x).Q〈N,s[p],~̀i〉, i ∈ I.

• Q〈N,s[q],s[p][q]!〈v〉 · ~̀n〉=

s[q][p]?(x);if x ∈ N then Q〈N,s[q], ~̀n〉 else (ν b)(b[1](x).Q〈N,s[q], ~̀n〉) | B〈s[q]〉.

• Q〈N,s[q],s[p][q]!〈s′[p′]〉 · ~̀n〉=

s[q][p]?(x);if x ∈ N then Q〈N,s[q], ~̀n〉 else (ν b)(b[1](x).Q〈N,s[q], ~̀n〉) | B〈s[q]〉.

• Q〈N,s[q],s[p][q]⊕ lk · ~̀n〉=

s[q][p]&{lk : Q〈N,s[q], ~̀n〉, li : (ν b)(b[1](x).Q〈N,s[q], ~̀n〉)} | B〈s[q]〉.

• Q〈N,n, /0〉= R.

298 Appendix C. Apendix for the MSP

where R = (ν b)(b[1](x).R′) or R = 0. R completes the session type on session channel n and

is used to keep processes typed.

From the definition of T 〈N, ~̀n〉 we can show that ∀T 〈N, ` · ~̀n〉,T 〈N, ` · ~̀n〉
`′

=⇒ T ′〈N, ~̀n〉, `�

`′.

We prove the required result inductively:

E,Γ ` P1 .∆3 ∼=g P2 .∆4 implies

∀` · ~̀n choose T 〈N, ` · ~̀n〉,E,Γ ` P1 | T 〈N, ` · ~̀n〉.∆1 ∼=g P2 | T 〈N, ` · ~̀n〉.∆2 implies

E,Γ ` P1 | T 〈N, ` · ~̀n〉.∆1→→ P′1 | T 〈N, ~̀n〉.∆′1,

E,Γ ` P2 | T 〈N, ~̀n〉.∆2→→ P′2 | T 〈N, ~̀n〉.∆′2 then by induction hypothesis

P′1≈gnP′2 implies

∀n,E,Γ ` P1 .∆1≈gnP2 .∆2 implies

E,Γ ` P1 .∆1 ≈g P2 .∆2

We need to show that if

E,Γ ` P1 | T 〈N, ` · ~̀n〉.∆1 ∼=g P2 | T 〈N, ` · ~̀n〉.∆2

then

E,Γ ` P1 | T 〈N, ` · ~̀n〉.∆1→→ P′1 | T 〈N, ~̀n〉.∆
′
1,E,Γ ` P2 | T 〈N, ~̀n〉.∆2→→ P′2 | T 〈N, ~̀n〉.∆

′
2

We perform a case analysis on E,Γ ` P1 .∆3
`−→ P1 .∆′3:

• E,Γ ` P1 .∆3
s[p][q]?〈v〉−→ P1 .∆′3 implies, E,Γ ` P1 | T 〈N,s[p][q]?〈v〉 · ~̀n〉 .∆1 = E,Γ `

P1 |Q〈N,s[p],s[p][q]?〈v〉·~̀i〉 | . . . |Q〈N,n,~̀i〉.∆1−→P′1 |Q〈N,s[p],~̀i〉 | . . . |Q〈N,n,~̀i〉.

C.3. Proofs for Bisimulation Properties 299

∆1.

E,Γ`P2 |T 〈N,s[p][q]?〈v〉·~̀n〉.∆2 needs to match the reduction, E,Γ`P2 |T 〈N,s[p][q]?〈v〉·

~̀n〉 .∆2 →→ E,Γ ` P′′′2 | T 〈N,s[p][q]?〈v〉 · ~̀n〉 .∆′′′2 −→ E,Γ ` P′′2 | T ′〈N, ~̀n〉 .∆′′2 →→

E,Γ ` P′2 | T ′〈N, ~̀n〉.∆′2

• E,Γ`P1.∆3
a[A](s)−→ P1 `∆′3. implies, E,Γ`P1 |T 〈N,a[A](s)·~̀n〉.∆1 =E,Γ`P1 |Q〈N,a,a[A](s)·

~̀i〉 | . . . | Q〈N,n,~̀i〉.∆1 −→ P′1 | Q〈N,a,~̀i〉 | . . . | Q〈N,n,~̀i〉 ` ∆1..

E,Γ ` P2 | T 〈N,a[A](s) · ~̀n〉.∆2 needs to match the reduction E,Γ ` P2 | T 〈N,a[A](s) ·

~̀n〉.∆2→→ E,Γ ` P′′′2 | T 〈N,a[A](s) · ~̀n〉.∆′′′2 −→ E,Γ ` P′′2 | T ′〈N, ~̀n〉.∆′′2→→ E,Γ `

P′2 | T ′〈N, ~̀n〉.∆′2

• E,Γ ` P1 .∆3
s[p][q]!〈v〉−→ P1 ` ∆′3. implies, E,Γ ` P1 | T 〈N,s[p][q]!〈v〉 · ~̀n〉 .∆1 = E,Γ `

P1 |Q〈N,s[p],s[p][q]!〈v〉·~̀i〉 | . . . |Q〈N,n,~̀i〉.∆1→→P′1 |Q〈N,s[p],~̀i〉 | . . . |Q〈N,n,~̀i〉 `

∆1..

E,Γ`P2 |T 〈N,s[p][q]!〈v〉·~̀n〉.∆2 needs to match the reduction, E,Γ`P2 |T 〈N,s[p][q]!〈v〉·

~̀n〉 . ∆2 →→ E,Γ ` P′′′2 | T 〈N,s[p][q]!〈v〉 · ~̀n〉 . ∆′′′2 →→ E,Γ ` P′′2 | T ′〈N, ~̀n〉 . ∆′′2 →→

E,Γ ` P′2 | T ′〈N, ~̀n〉.∆′2

C.3.6 Proof for Theorem 6.5.2

We first show that session actions are closed inside the bisimularity relation.

Lemma C.3.4 (Session endpoint linearity). If Γ ` P1 .∆1 =⇒b Γ ` P2 .∆2 then Γ ` P1 .∆1 ≈

Γ ` P2 .∆2.

300 Appendix C. Apendix for the MSP

Proof. We are based on the fact that −→s is a linear transition. We define the relation S =

{(Γ ` P1 .∆1,Γ ` P2 .∆2)} ∪R where R is the reflexive relation on the derivatives of Γ `

P2 .∆2.

Because =⇒s is linear we can easily show that S is a bisimulation.

Proof for Theorem 6.5.2

Proof. We use lemma C.3.4 to achieve the required result.

Case: α = s,α ′ = i

Let

S = {(P1,P2) | P1 ≈s P2}

We can show that if P1 S P2

1. Γ ` P1 .∆1
`−→ Γ ` P′′1 .∆′′1 then Γ ` P2 .∆2

`
=⇒ Γ ` P′2 .∆′2 and Γ ` P′′1 .∆′′1 =⇒b Γ `

P′1 .∆′1 S Γ ` P′2 .∆′2.

2. The symmetric case.

From lemma C.3.4 we get that relation S is a bisimulation up-to =⇒b.

Case: α = s,α ′ = o

Let

S = {(P1,P2) | P1 ≈s P2}

We can show that if P1 S P2

1. Γ ` P1 .∆1 =⇒s
`−→ Γ ` P′1 .∆′1 then Γ ` P2 .∆2

`
=⇒ Γ ` P′2 .∆′2 and Γ ` P′1 .∆′1 S Γ `

P′2 .∆′2.

C.3. Proofs for Bisimulation Properties 301

2. The symmetric case.

From lemma C.3.4 we get that relation S a bisimulation up-to =⇒b.

Case: α ′ = io

We rely on similar arguments to prove that Γ ` P1 .∆1 =⇒b
`−→=⇒b Γ ` P′1 .∆′1 results in a

closed up-to =⇒b bisimulation relation.

For the second part of the theorem we provide the proper counter-examples.

Let processes

P1 = s1[p][q]!〈v〉;s2[p][q]!〈w〉;0 | s1[i : ε,o : ε] | s2[i : ε,o : ε]

P2 = s2[p][q]!〈w〉;s1[p][q]!〈v〉;0 | s1[i : ε,o : ε] | s2[i : ε,o : ε]

and
E,Γ ` P1 .∆

E,Γ ` P2 .∆

with

E = s1 : p→ q : 〈V 〉.end · s2 : p→ q : 〈W 〉.end

If we consider the input asynchronous MSP semantics we can observe the action

E,Γ ` P1 .∆
s1[p][q]!〈v〉−→

The same action cannot be observed for the typed process:

E,Γ ` P2 .∆ 6s1[p][q]!〈v〉−→

302 Appendix C. Apendix for the MSP

If we consider the output asynchronous MSP semantics we can build a bisimulation closure

R on E,Γ ` P1 .∆ and E,Γ ` P1 .∆ as follows:

R = {(E,Γ ` P1 .∆,E,Γ ` P2 .∆)

(s2[p][q]!〈w〉;0 | s1[i : ε,o : v] | s2[i : ε,o : ε],0 | s1[i : ε,o : v] | s2[i : ε,o : w])

(0 | s1[i : ε,o : v] | s2[i : ε,o : w],s1[p][q]!〈v〉;0 | s1[i : ε,o : ε] | s2[i : ε,o : w])

(0 | s1[i : ε,o : v] | s2[i : ε,o : w],0 | s1[i : ε,o : v] | s2[i : ε,o : w])

(0 | s1[i : ε,o : ε] | s2[i : ε,o : w],0 | s1[i : ε,o : ε] | s2[i : ε,o : w])

(0 | s1[i : ε,o : v] | s2[i : ε,o : ε]0 | s1[i : ε,o : v] | s2[i : ε,o : ε])

(0 | s1[i : ε,o : ε] | s2[i : ε,o : ε]0 | s1[i : ε,o : ε] | s2[i : ε,o : ε])

}

This concludes that ≈i
g and ≈o

g are incompatible.

C.3.7 Proof for Lemma 6.5.4

Proof. We prove direction if ∀E,E,Γ ` P1 .∆1 ≈g P2 .∆2 then Γ ` P1 .∆1 ≈ Γ ` P2 .∆2.

If Γ ` P1 .∆1
`−→ P′1 .∆′1 then P1

`−→ P′1 and (Γ,∆1)
`−→ (Γ′,∆′1).

From part 3 of Lemma C.3.3 we choose E such that (E,Γ,∆1)
`−→ (E ′,Γ′,∆′1). Since ∀E,E,Γ`

P1 . ∆1 ≈g P2 . ∆2 it can now be implied that, E,Γ ` P1 . ∆1
`−→ E ′,Γ ` P′1 . ∆′1 implies,

E,Γ ` P2 .∆2
`

=⇒ E ′,Γ ` P′2 .∆′2 implies, P2
`

=⇒ P′2 and (E,Γ,∆2)
`

=⇒ (E ′,Γ′,∆′2).

From part 1 of Lemma C.3.3 we get (Γ,∆2)
`

=⇒ (Γ′,∆′2) implies Γ ` P2 .∆2
`

=⇒ P′2 .∆′2 as

required.

We prove direction if Γ ` P1 .∆1 ≈ Γ ` P2 .∆2 then ∀E,E,Γ ` P1 .∆1 ≈g P2 .∆2.

C.3. Proofs for Bisimulation Properties 303

Let E,Γ ` P1 .∆1
`−→ P′1 .∆′1 then

P1
`−→ P′1 (C.31)

(E,Γ,∆1)
`−→ (E ′,Γ′,∆′1) (C.32)

If Γ ` P1 .∆1
`−→ P′1 .∆′1 then P1

`−→ P′1,(Γ,∆1)
`−→ (Γ′,∆′1),Γ ` P2 .∆2

`−→ P′2 .∆′2

From the last implication we get

P2
`

=⇒ P′2 (C.33)

(Γ,∆2)
`

=⇒ (Γ′,∆′2) (C.34)

∆1
 ∆2 (C.35)

We apply part 2 of Lemma C.3.3 to C.32 and C.35 to get (E,Γ,∆2)
`

=⇒ (E ′,Γ′,∆′2). From the

last result and C.33 we get E,Γ ` P2 .∆2
`

=⇒ E ′,Γ ` P′2 .∆′2.

C.3.8 Proof for theorem 6.5.5

Proof. If Γ ` P1 .∆1
`−→ Γ ` P′1 .∆′1 and P1 is simple then

(Γ,∆1)
`−→ (Γ,∆′1)

P1
`−→ P′1

We follow the requirement of part 3 of Lemma C.3.3 to get that there ∃E1 ·E1,Γ ` P1 .∆1
`−→

E1,Γ ` P′1 .∆′1. From here we can get that E1
`−→ E2. But since P1 is simple then E `−→

E ′,∀E ·E,Γ ` P1 .∆1.

From that point on we apply part 2 of Lemma C.3.3 to get that If P1 and P2 are simple and

304 Appendix C. Apendix for the MSP

∃E ·E,Γ ` P1 .∆1 ≈s
g P2 .∆2 then ∀E,E,Γ ` P1 .∆1 ≈s

g P2 .∆2. By applying Lemma 6.5.4

we are done.

	Table of Contents
	List of Figures
	Introduction
	Introductory Notions
	Aim and Motivation
	Contribution
	Publications and Detailed Contribution
	Chapter Outline

	Background
	Session Types
	Session Types Semantics

	Bisimulation Theory for the -calculus
	The -calculus
	The Asynchronous -calculus
	Type Systems and Advanced Behavioural Theory for the -Calculus

	Event Driven Programming

	I
	Asynchronous Session Types Behavioural Theory
	A Core Process Model for Asynchronous Sessions
	Syntax of the Asynchronous Session -Calculus
	Operational Semantics of the Asynchronous Session -Calculus

	Types for Asynchronous Session Processes
	Type Syntax
	Session Subtyping
	Type System for Programs
	Type System for Run-time Syntax
	Subject Reduction

	Asynchronous Session Bisimulation and its Properties
	Labelled Transition Semantics
	Bisimulation
	Properties of Asynchronous Session Bisimilarity

	Eventful Session Types Behavioural Theory
	A Calculus for Eventful Sessions
	Syntax of the Eventful Session -Calculus
	Structural Congruence
	Operational Semantics of the Eventful Session Calculus

	Types for Eventful Session Processes
	Syntax
	Session Subtyping
	Type System for Programs
	Type System for Run-time Syntax
	Subject Reduction

	Eventful Session Bisimulation and its Properties
	Labelled Transition Semantics
	Bisimulation
	Properties of Asynchronous Session Bisimilarity

	Applications of the Eventful Behavioural Theory
	Properties of the ESP Behavioural Theory
	Comparisons with Asynchronous and Synchronous -calculi
	Synchronous and Asynchronous -calculi in the presence of arrive

	Representing High-level Event Constructs in ESP
	A Basic Event Loop
	Selector semantics
	From ESP + to ESP
	Typing Event Selectors

	Behavioural Properties of the Selector
	Lauer-Needham Transform
	Multithreaded Server Process
	The Transform

	II
	Multiparty Session Types Behavioural Theory
	Intuition for the Multiparty Behavioural Theory
	Synchronous Multiparty Session -Calculus as a Core Calculus
	Syntax and Operational Semantics
	Session Types for Synchronous Multiparty Session -calculus
	Typing System and its Properties
	Type soundness
	Labelled Transition System

	Asynchronous Multiparty Session Calculus
	Syntax and Operational Semantics
	Typing for Asynchronous Multiparty Session -calculus
	Runtime Typing for Asynchronous Multiparty Session -calculus
	Type Soundness
	Labelled Transition System

	Global Environment Semantics
	Global Environments
	Global Configurations

	Multiparty Session -calculus Behavioural Theory
	Local Multiparty Behavioural Theory
	Globally Governed Multiparty Behavioural Theory

	A Service Oriented Usecase
	Usecase Scenario 1
	Usecase scenario 2
	Usecase scenario 3
	Behavioural Equivalence

	III
	Conclusion
	Related Work
	Conclusion

	Bibliography
	Appendix for the Eventful Session -calculus
	Properties of Subtyping
	Subject Reduction and Communication and Event Handling Safety
	Weakening and Strengthening
	Subject Reduction
	Communication Safety

	Bisimulation Properties
	Proof for Theorem 4.3.1

	Determinacy and Confluence
	Proof for Lemma 3.3.1
	Proof for Lemma 4.3.2
	Proof for Lemma 4.3.3
	Proof for Lemma 4.3.4
	Proof for Lemma 4.3.5

	Appendix for the Applications of the ESP
	Comparison with Asynchronous/Synchronous Calculi
	Proofs for Section 5.2

	Selector Properties
	Proof for Proposition 5.3.1 (1)
	Selector Properties
	Proof of Lemma 5.4.1
	Proof of Lemma 5.4.2

	Thread Elimination Transform Properties

	Apendix for the MSP
	Global Types
	Proof for Lemma 6.2.1

	Subject Reduction
	Proof for Theorem 6.2.1
	Proof for Theorem 6.3.1

	Proofs for Bisimulation Properties
	Parallel Observer Property
	Proof for Lemma 6.5.1
	Configuration Transition Properties
	Proof for Lemma A.3.1
	Proof for Lemma 6.5.5
	Proof for Theorem 6.5.2
	Proof for Lemma 6.5.4
	Proof for theorem 6.5.5

