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Abstract Suppose that the agents of a matching market contact each other ran-
domly and form new pairs if is in their interest. Does such a process always converge
to a stable matching if one exists? If so, how quickly? Are some stable matchings
more likely to be obtained by this process than others? In this paper we are going to
provide answers to these and similar questions, posed by economists and computer
scientists. In the first part of the paper we give an alternative proof for the theorems
by Diamantoudi et al. and Inarra et al., which imply that the corresponding stochastic
processes are absorbing Markov chains. The second part of the paper proposes new
techniques to analyse the behaviour of matching markets. We introduce the Stable
Marriage and Stable Roommates Automaton and show how the probabilistic model
checking tool PRISM may be used to predict the outcomes of stochastic interactions
between myopic agents. In particular, we demonstrate how one can calculate the prob-
abilities of reaching different matchings in a decentralised market and determine the
expected convergence time of the stochastic process concerned. We illustrate the usage
of this technique by studying some well-known marriage and roommates instances
and randomly generated instances.
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1 Introduction

The Stable Roommates problem (SR) is a classical combinatorial problem that has
been studied extensively in the literature, see e.g. Gusfield and Irving (1989). An
instance [ of SR contains an undirected graph G(V, E), where V = {vy, ..., v,} and
m = |E(G)|. We refer to G as the underlying graph of I, and we interchangeably
refer to the vertices of G as the agents. If (v;, v;) is an edge in E(G), then we say
that v; and v; find each other acceptable. A matching is a set of independent edges in
the graph.! Each agent v; has a linear order >,, over her acceptable partners, where
v >,; v; means that v; prefers vy to v;. Let M (v;) denote the partner of v; in a given
matching M. An edge (v;, v;) is said to be blocking with respect to M if (i) either v; is
unmatched in M or prefers v; to M (v;), and (ii) either v; is unmatched in M or prefers
v; to M (v;). A matching is called stable if it admits no blocking edge. If G is bipartite,
then the problem of finding a stable matching is called the Stable Marriage problem
(SM). In this case, if the graph is G(U, W, E), then we refer to U={m, ..., m,, } and
W ={wy, ..., wy,} as the sets of men and women, respectively.

Note that both the Stable Roommates and the Stable Marriage problems can be seen
as NTU-games (hedonic coalition formation games, in particular), since for any SR or
SM instance the set of stable matchings coincide with the core of the corresponding
game. Fur further details, see for example the celebrated book by Roth and Sotomayor
(1990).

Gale and Shapley (1962) give a linear time algorithm that finds a stable matching
for any instance of SM, while also illustrating an instance of SR that does not admit
a stable matching (i.e., which is not solvable). Irving (1985) gives a linear time algo-
rithm that, for any instance of SR, finds a stable matching or reports that none exists.
Both algorithms assume that the preference lists are complete (i.e., the graph G is
complete), although it is straightforward to extend the algorithms to incomplete lists
Gusfield and Irving (1989).

Suppose that we are given a SR instance / with underlying graph G. For a match-
ing M, if a pair (v;, v;) is blocking, then we may satisfy this blocking pair and get
a new matching M %)), where (v;, v;) € MWi-¥) and for each w € {v;, v;}, if w
is matched in M, then M (w) is unmatched in M ®i-%;). Roth and Vande Vate (1990)
prove that, given an instance of SM, starting from any unstable matching we can always
obtain a stable matching by successively satisfying blocking pairs.” Diamantoudi et al.
(2004) show that a similar result holds for the roommates problem, namely, for a given
instance of SR that admits a stable matching and starting from any unstable match-
ing, one can obtain a stable matching by successively satisfying blocking pairs. This

! Note that by this definition of matching we restrict our attention to the individually rational matchings.

2 Note that this question was originally proposed by Knuth et al. (1976) (Problem 8 from his twelve famous
research problems) in a slightly different setting. In his case, the set of possible matchings was restricted to
the complete matchings (as all the preference lists were supposed to be complete), and whenever a blocking
pair was satisfied the left-alone agents formed a new pair immediately. The above described transition from
a complete matching to another one was called an interchange. Knuth asked whether, given an instance
of SM and a starting matching M, there always exist a sequence of interchanges from M to some stable
matching? Tamura (1993), and independently Tan and Su (1995), answered this question negatively by
giving counterexamples.
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Stochastic matching markets

essentially means that the corresponding stochastic processes (to be defined in Sect. 3)
are absorbing Markov chains [for more details of these stochastic processes see, e.g.
Chapter 3 of Kemeny and Snell (1960)]. Since there are only finitely many match-
ings in any instance, the result of Roth and Vande Vate implies that, starting from an
arbitrary matching, the process of allowing randomly chosen blocking pairs to match
will converge to a stable matching with probability one.

The proof of Roth and Vande Vate is based on the following idea. Suppose that we
have a stable matching for an instance of SM and we add a new agent to the market,
then there is a natural proposal-rejection sequence (described in Sect. 3) that leads
to a stable matching for the extended instance. If, we start with the empty matching
and run this incremental algorithm, then the resulting stable matching will depend on
the order in which the agents arrive. This is called the random order mechanism. By
assuming that each order is equally likely, we may calculate the probability of each
stable matching being obtained. Ma (1996) carried out this calculation for an instance,
originally suggested by Knuth et al. (1976), and observed that not all stable match-
ings can be reached by this mechanism and there is a higher probability of reaching
some stable matchings over others [although his calculation was not entirely correct
as Klaus and Klijn (2007b) pointed out].> In this paper we will also study this instance
(Example 2 in Sect. 3) with respect to a different stochastic process.

We may suppose that all agents are present in the market and, starting with the empty
matching, the blocking pairs to be satisfied are chosen randomly (with equal proba-
bility in each step). In this case, every stable matching can be reached with positive
probability (since we may satisfy all pairs involved in this matching at the beginning
of the process), but still, as we will illustrate in Sect. 3, some stable matchings can be
more likely to occur than others.

There is also a growing literature concerning stable roommates problems that may
not admit stable solutions. Tan (1991) shows that a stable half-matching always exists
for any given instance of SR. A half-matching is a weight function & : E(G) —
{0, % 1} such that Zv,-e . h(e) =< 1 for each vertex v;. A half-matching is said to
be stable if, for each edge (v;,v;) € E(G), one of its vertices, say v; satisfies
z(vi,vk):vkzui v h((vi, vr)) = 1, (otherwise the edge (v;, v;) is said to be blocking).*

Note that if 4 : E(G) — {0, 1} is stable, then & corresponds to a stable matching.’

3 An explanation for the first observation is the result of Blum and Rothblum (2002) which demonstrates
that, when using the Roth—Vande Vate algorithm, the last agent to arrive always gets their best stable part-
ner. (This observation directly follows from the results of Blum et al. (1997). An alternative proof and an
extension of that result for roommates problems was given by Bir6 et al. (2008).) Hence, a stable matching
in which nobody gets their best partner cannot be obtained by this mechanism.

4 The weight of an edge in a half-matching can be seen as the intensity of a cooperation between the two
corresponding agents. The notion of half-matching means that each agent can be involved in at most one
cooperation with full intensity or in at most two cooperations with half intensities. Stability means that for
each pair whose members are not cooperating with full intensity, either of the agents is not interested in
increasing the intensity of this cooperation, as she must have filled her capacity with better partners.

5 The existence of a half-matching may be proved by the Lemma of Scarf (1967), as Aharoni and Fleiner
(2003) demonstrate. The notion of stable fractional matching (or fractional core) is an extension of stable
half-matching that may be defined for more general matching problems (or NTU-games) as well, see more
on this theory in a recent paper by Bir6 and Fleiner (2010).
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Tan (1991) showed that a stable half-matching must consist of half-weighted cycles
and one-weighted independent edges. Moreover, the set of half-weighted cycles of
odd length (that we sometime just refer to as half-weighted odd cycles) and the set
of unmatched agents are the same in every stable half-matching for a given instance
of SR. Tan and Hsueh give a polynomial time algorithm to find a stable half-matching.
This algorithm is, in fact, a generalised version of the algorithm of Roth and Vande
Vate (a detailed description of this is given in Sect. 3). Further descriptions on stable
half-matchings and the Tan—Hsueh algorithm can be found in Biré et al. (2008).

Inarra et al. (2008) define an h-stable matching M relative to a stable half-matching
h as follows.® Let M contain every edge that has weight 1 in &, every second edge
from each even half-weighted cycle of & (if there were any half-weighted cycle of even
length), and k (disjoint) edges from each half-weighted odd cycle of length 2k + 1
in 4.7 They show that, starting from an arbitrary matching, one can get an h-stable
matching by successively satisfying blocking pairs for a given instance of SR. Note
that for every solvable instance of SR the set of /-stable matchings is equivalent to the
set of stable matchings, thus the above result generalises the theorem of Diamantoudi
et al. (2004). In Sect. 2, we give an alternative short proof for the theorem of Inarra
et al. (2008) by using the Tan—Hsueh algorithm.

In another paper, Inarra et al. (2008) define the absorbing sets for an instance
of SR as follows. Each absorbing set consists of matchings that are reachable from
one another by successively satisfying blocking edges, but no other matching can be
reached from this set by satisfying a blocking edge. These are in fact the ergodic sets
of the corresponding Markov chain (see e.g. Kemeny and Snell 1960), and a matching
M is in an ergodic set if and only if the limit probability of M, starting from the empty
matching, is positive. Moreover, Klaus et al. (2010) prove that the absorbing sets con-
sist of exactly those matchings that have positive probabilities in the limit distribution
of a stochastic process where, starting from any matching, the agents make mistakes
with small probabilities in their myopic blocking decisions. They called this process
perturbed blocking dynamics. Similar stochastic systems have been studied for the
Stable Marriage problem in the context of network formations by Jackson and Watts
(2002).

Ackermann et al. (2008) study the convergence time of the stochastic processes
occurring from stable marriage problems. They refer to the stochastic process, where
in each step a blocking pair is chosen uniformly at random and satisfied, as the random
better response dynamics. They demonstrate that, although the process converges to
a stable matching, the expected convergence time is exponential for a family of SM
instances. Our experiments conducted for the above family of instances confirm this
finding, as we describe in Sect. 3. However, we also demonstrate that this behaviour

6 As Tan (1990, 1991) referred to stable half-matchings as stable partitions, Inarra et al. (2008) also used
this terminology, and so instead of h-stable matchings they called the same notion P-stable matchings,
relative to a stable partition P. We decided to change the original terminology because we believe that the
concept of half-matchings is well-known in graph theory, see more explanation about this issue in Bir6
et al. (2008).

7 This concept was originally proposed by Tan (1990) as a method to find a matching as large as possible
that is stable for the matched agents in an unsolvable instance.
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is unexpected in an average market, since for the randomly generated instances the
expected convergence time is significantly smaller.

The dynamics of matching markets have also been in focus in some recent engi-
neering papers on P2P systems, see, e.g, Mathieu (2010) for an overview. In particular,
Lebedev et al. (2007) show that the convergence is fast for systems, modelled with
SR instances, where the preferences are acyclic, i.e., the preferences are derived from
some global rank function on the pairs. This is a realistic assumption in the case of
some real P2P networks. Finally, Arcaute and Vassilvitskii (2009) and Hoefer (2011)
studied similar stochastic market processes with the extra feature of an underlying
social network that dynamically determine the accessible partners and the so-called
locally stable matchings.

In our analysis we also suppose that the stochastic process follows the random
better response dynamics. Does this model give a good description of decentralised
matching markets? There are two very recent experimental studies that provide some
positive evidence for that. Echenique and Yariv (2011) conducted experimental tests
with students who were allowed to make and accept proposals in a decentralised man-
ner. Most of the outcomes in these games were stable matchings and when several
stable matchings were possible then they recorded their distribution as outcomes.
In particular, they found that, when the market had three stable matchings, then the
median one emerged as the modal empirical outcome. They showed with simulations
(Echenique and Yariv 2011, Section 7.1) that this distribution of stable matchings was
relatively close to those that the stochastic model with random better responses would
predict. Pais et al. (2011) received similar results regarding the likeliness of obtaining
the median stable matching in their experiments.

Boudreau has also studied the random better response dynamics (referred to as ran-
domized tdatonnement process) in several recent papers Boudreau (2008, 2011, 2012).
In Boudreau (2011) he showed that the median stable matching is not necessarily
the most likely one for every market, which is in contrast with the above mentioned
experimental results (Echenique and Yariv 2011; Pais et al. 2011). While, in Boudreau
(2008) Boudreau studied the effect of intercorrelated preferences on the expected con-
vergence time. His simulations show that if preferences are negatively intercorrelated
(i.e., agents prefer those on other side of the market who do not prefer them) then
the path to stability tend to be (exponentially) long. This finding back the theoreti-
cal results of Ackermann et al. (2008) on the exponential expected convergence time
of ‘uncoordinated’ instances, that we also confirmed with simulations (described in
Sect. 3). Boudreau (2011) also demonstrates that the most likely outcome of such a
decentralised market might not be the most efficient stable matching, which is defined
as the minimum-choice-count matching (i.e., a matching, where the sum of the rank-
ings that agents give their partners is minimal). In a very recent work Boudreau (2012)
identifies two measurable factors that do have significant, non-linear impacts on the
likelihood that a market’s most likely outcome will be (in)efficient: the number of
stable matchings that the market possesses and the level of correlation among the
preferences of each side of the market.

To summarise, the contribution of this paper is the following. In Sect. 2 we give an
alternative proof for the theorems of Diamantoudi et al. (2004) and Inarra et al. (2008).
This new proof, which is based on the Tan—Hsueh algorithm, is not only shorter and
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simpler than the originals, but also provides upper bounds on the number of steps
needed to reach a stable (or /-stable) matching. In Sect. 3 we define the Stable Mar-
riage and Stable Roommates Automata and then we demonstrate how the probabilistic
model checker PRISM (website. www.prismmodelchecker.org/, Kwiatkowska et al.
2011) can be used to analyse and compare the performance of different instances. In
particular, we study two well-known SM instances, a SR instance and then present a case
study involving structured and random SM instances. We believe that this approach
will also have applications in the study the interaction of agents in real markets and
networks for more complex settings. We describe some future research directions in
Sect. 4.

2 Convergence to stability, an alternative proof

In this section we describe the Roth—Vande Vate and the Tan—Hsueh algorithms. We
use the latter to give an alternative proof for the theorems of Diamantoudi et al. (2004)
and Inarra et al. (2008). That is, we show that starting from an arbitrary matching of
a solvable SR instance one can always find a stable matching by successively satis-
fying blocking pairs; and that starting from an arbitrary matching of an instance of
SR (solvable or unsolvable) one can always find an /-stable matching by successively
satisfying blocking pairs. Note that these theorems were the main results of the above
papers. Our proof is much shorter and it gives upper bounds for the number of blocking
pairs that need to be satisfied to obtain a stable (or i-stable) matching. Also, it shows
that the argument of Roth and Vande Vate for the marriage case can be extended for
the roommates case in a natural way.

The Roth—Vande Vate algorithm Suppose that we are given an instance / of SM together
with a matching My = {(m, wy), ..., (mk, wr)}. We shall show that we can reach a
stable matching by successively satisfying blocking pairs. A variant of the Roth—Vande
Vate algorithm works as follows.

During the procedure we gradually extend a set S € (U U W) and a matching Mg
that is stable in S. Initially let S = (J and Mg = (. For each index i (i = 1,...,k),
if Mg U {(m;, w;)} is stable in S U {m;, w;}, then let Mgy = Mg U {(m;, w;)} and
S’ = SU{m;, w;} (i.e. we simply enlarge both S and Mg with a new pair). Otherwise
we add m; and w; to S one by one as follows.

Without loss of generality suppose that m; is involved in a blocking pair with an
agent of S with respect to matching Mg U {(m;, w;)}, let w;, be the woman who is the
best blocking partner of m; and let " = S U {m;}. If w;, is unmatched in My, then
Mg = Mg U {(m;, w;,)} is a stable matching in §’. Otherwise, let m;, =Ms(w;,) and
MS/\{m‘.l} = (Mg \ {(m;,, wi))} U {(m;, w;,)} is stable for "\ {m;,}. Now we let m;,
re-enter the market. If mm;, is not involved in any blocking pair, then M S'\(mi, ) is stable
for §’. Otherwise we satisfy the best blocking pair m;, is involved in according to his
preferences, and so on. This process must terminate after satisfying at most m blocking
pairs, since no woman ever receives a worse partner. We can also add w; in a similar
manner, reversing the role of men and women. (Note that if m; was not involved in
a blocking pair with an agent of S with respect to matching Mg U {(m;, w;)} then
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w; must have been involved in a blocking pair, so we start by adding w; to S first,
followed by m;.)

After processing all pairs of M, we add the remaining agents one by one in the
same way. Therefore, we obtain the sequence of blocking pairs that we need to satisfy
to reach a stable matching starting from M. Since we never satisfy a pair twice when
adding a new agent to S, it follows that the number of steps in the path to stability is
at most mn.®

The Tan—Hsueh algorithm The Tan—Hsueh algorithm deals with SR instances (rather
than SM instances) and stable half-matchings (rather than stable matchings), and there
is no starting matching M. But otherwise it is based on the same idea as the Roth—
Vande Vate algorithm: we gradually extend aset S € V (G) and we restore the stability
of a half-matching kg in S.°

Suppose that we are given an instance / of SR with an underlying graph G(V, E). Let
S denote a set of agents and let & g denote a half-matching of the (entire) graph. Initially
let S=0 and let hs(e)=0 for each e € E(G). Suppose that after adding k agents we
have S={vy, va, ..., vk} withacorresponding stable half-matching % s on the subgraph
induced by S, where each half-weighted cycle has odd length. Let S = S U {vg11}.
Now we describe how we can construct the new stable half-matching sg in S'.

If vgy is not involved in any blocking pair in §’, then hg remains stable
in §’, obviously. Otherwise let v; be the best blocking partner of viy; in §'.
If v; is unmatched (i.e., not matched and not covered by a half-weighted cycle
either), then by setting hg ((vky1,v;))=1 and hg(e)=hg(e) for every other edge
we obtain a new stable half-matching in §’. If v; is covered by a half-weighted odd
cycle, say by (v, Ve, - ., Ueyy, ) Where vj=uv.,, then by setting hg ((Vk+1,v;)) =
L, hg ((Vey s Vey =1 Tor i=1, ..., 1, hg((Vey;_;, Vey;))=0 for i=1,...,[ and hy
((Weyyy» Ve ))=0 we obtain a new stable half-matching. The last case is when
v; is matched in hg to an agent, say v,,. By setting hs/\{val}((vk+1, v;))=1 and
hsr\{val}((vj, vg,))=0 we obtain a half-matching that is stable in S\ {v,,}. (Note
that each of the half-weighted cycles in the new stable half-matching has odd length.)
Now, we restart the process with v, .

In contrast with the SM context, it is possible that the latter case happens every time
and the above process never ends, since in a sequence vg,, Up,, - . ., Vg, Up,;, the last
agent, v, may be the same as v,,. Tan and Hsueh showed that, if such a repetition
occurs, then a subset of these agents (always the same agents after the repetition) will
be involved in a never ending cycling and we can form a new half-weighted odd cycle
on the corresponding edges resulting in a new stable half-matching sg in S'.

In each phase of this incremental algorithm (when an agent is added to the market)
we obtain a new stable half-matching in O (m) steps, so the algorithm terminates in
O (mn) steps in total, where each step means that one blocking pair is satisfied.

8 This version of the Roth—Vande Vate algorithm has been described by Ma (1996). Note that it slightly dif-
fers from the original method described in Roth and Vande Vate (1990), but the difference is not substantial.
In the original version, if no blocking pair involves an agent from S and another from outside S then a
blocking pair involving two agents from outside S is satisfied and both agents are added to S.

9 For any bipartite graph the Tan—Hsueh algorithm is identical to the Roth—Vande Vate algorithm if the
starting matching of the latter algorithm is .
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Alternative proofs of Inarra et al. (2008) and Diamantoudi et al. (2004) Modify-
ing the Tan—Hsueh algorithm slightly (with A-stable matchings rather than with stable
half-matchings), we can obtain an alternative proof for the following theorem of Inarra
et al. (2008), with an upper bound on the number of steps needed to reach an /-stable
matching.

Theorem 1 Suppose that we are given an instance of SR and a matching M, then one
can always reach an h-stable matching starting from My by successively satisfying at
most mn blocking pairs.

Proof Let My ={(vy, v2), (v3,v4), ..., (V2k—1, V2r)}. Just as in the proof of Roth and
Vande Vate, we gradually extend a set S € V(G) and a matching My in S, where
initially S = ) and Mg =40.

Suppose that S ={vy, va, ..., vz} and Mg is a hg-stable matching relative to a
stable half-matching hg in the sub-instance induced by S. Recall that each edge
e of weight 1 in hg is represented in Mg and each half-weighted odd cycle
C = (Vey, Vey,s - -+ 5 Ueyy,y) i represented by [ disjoint edges of C in My. Consider
a half-matching 2* in S U {vpi41, v2i+2} where h*((v2i+1, v2i4+2)) =1 and the other
weights are the same as in hg. If 2™ is stable in S U {vp; 11, v2;42}, then it follows that
Mg = Mg U {(vaiy1, v2;+2)} is an h*-stable matching in 8" = S U {vo; 41, v2it2}.
Otherwise, if 4™ is not stable in S U {vp; 41, v2i+2}, then we add vy; 41 and vp; 42 one
by one to S as follows.

Without loss of generality suppose that vy; 41 is involved in a blocking pair with
an agent of § with respect to matching Mg U {(v2i+1, v2i42)}, let v; be the best
blocking partner of vy; | and let §' = S U {vpjq1}. If v; is unmatched in Ay (and
so also in M), then Mg = M U {(v2i41, vj)} is an hg-stable matching in S” where
hs ((v2i+1,v;)) =1 and otherwise it is the same as hg. Note that (v2; 1, v;) must be
a blocking pair for M too, so we may obtain Mg from Mg by satisfying (v 41, v;).

If v; is covered by a half-weighted odd cycle in hg, say by C = (v, ..., Veyy )
where v.; = v}, then we proceed as follows. Note that v; can be matched to her pre-
ferred partner among her two neighbours in C, say to v, . In this case it may be possible
that (v; 41, v;) is blocking for /5 but it is not blocking for M. However, in this case,
we can always rotate the edges of Mg in C by successively satisfying blocking pairs so
that v; becomes unmatched. Then we can satisfy (v2;41, v;) and obtain an s g -stable
matching Mg where hg is the stable half-matching that we get from kg according to
the corresponding Tan—Hsueh algorithm.

Finally, if v; is matched in hgs (and also in My) to an agent v, , then we satisfy
(v2i 41, v;) obtaining a matching MS’\{vjl} = Mg\ {(vj, v;j)}) U{(v2i41, v;)} which
is an hS/\{Ujl}—stable matching in "\ {v}, }, where hg/\{vjl} is a stable half-matching
in S\ {v},} that we obtain in the corresponding Tan—Hsueh algorithm. Again, we
continue the same process with v}, .

If a repetition occurs for the first time, namely, when an agent who became
unmatched at a point of this process later gets involved in a blocking pair satisfied
in the process, then in the corresponding Tan—Hsueh algorithm we form a new half-
weighted odd cycle from the agents involved in the cycling, resulting in a new stable
half-matching & g. The half-weighted edges of this new odd cycle correspond to those
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pairs that we would satisfy if we were to continue the proposal-rejection sequence.
But regarding the matching Mg, we can just stop after seeing the first repetition, and
Mg will be an & g-stable matching.

Note that if a repetition occurs, then we have to satisfy at most m blocking pairs
(since each left-alone agent keeps getting worse partners, so no pair occurs twice as a
blocking pair). Otherwise, if we have no repetition, then we also reach a new h-stable
matching within m steps, since even if we have to rotate edges along a half-weighted
odd cycle, the agents of this cycle could not be involved in any blocking pair satisfied
before we rotated the edges along this cycle. Thus we can obtain the final 4-stable
matching in mn steps. O

This result implies the theorem of Diamantoudi et al. (2004) with an upper bound
on the number of steps needed to reach a stable matching.

Corollary 1 Suppose that we are given a solvable instance of SR and a matching
Mo, then one can always reach a stable matching starting from My by successively
satisfying at most mn blocking pairs.

Finally in this section, we consider the differences between our proof technique and
those of Diamantoudi et al. (2004) and Inarra et al. (2008). Their proofs are based on
the following idea. They suppose that a stable (or /-stable) matching is given together
with the starting matching and then show that after satisfying a number of blocking
pairs the initial matching can be transformed into another matching which shares more
pairs with the given stable (or /-stable) matching than the initial one. This is not actu-
ally explicitly stated in the proof of Diamantoudi et al., but it is not hard to see that
in the above transformation no pair is satisfied twice, so we can obtain the same mn
upper bound for the number of steps needed to reach a stable matching. In our proof,
which is the extension of the Roth—Vande Vate technique for the roommates problem,
we do not need to know a stable (or A-matching) in advance. The process works in
an incremental way: successively enlarge a set of agents for which the corresponding
matching is stable (or A-stable). Our proof also implies that if a new agent enters (or
leaves) the market then the stability (or 4-stability) of the matching can be restored
after satisfying at most m blocking pairs. For more motivation with regard to the
advantages of our alternative proof technique, please see the first paragraph of Sect. 4.

3 Analysing the market behavior with automata

If the input is random, then it is possible to simulate the dynamics of a matching market
where two agents meet with each other randomly and behave in a myopic way (i.e.
they form a new pair if they both would be better off). This is called the better response
dynamics by Ackermann et al. (2008), Klaus et al. (2010) refer to it as unperturbed
blocking dynamics. What is the expected outcome of a matching market with myopic
agents? To answer this question first we define the stable marriage and roommates
automata as follows.

Definition 1 Let I be a SR (SM) instance with underlying graph G. The stable room-
mates automaton (stable marriage automaton) of I, denoted SRA(I) (SMA(T)) is
the automaton (M(G), E(G), §, My, S;) where:

@ Springer



P. Bir6, G. Norman

— the set of states is the set of all matchings M(G) of G;
— the set of symbols is the set of edges E(G) of G;
— the transition function § : M(G)x E(G) — M(G) is given by:

M@iv)f (v, v;) blocks M
M otherwise

(M, (v, vj)) = [

— the initial state M is any matching (e.g. the empty matching ();
— the set of accepting states equals the set Sy of stable matchings of /.

Recall, for a matching M and blocking pair (v;, v;), M (i:v)) s the matching such that
(vi,vj) € M@i-¥)) and for each w € {v;, v;}, if w is matched in M, then M (w) is
unmatched in M%), The set of symbols in the input of this automaton represents
the pairs that are picked randomly in the stochastic process. The automaton accepts
an input if the final state of the automaton is a stable matching.

Suppose that in each step of the process each blocking edge is chosen with equal
probability, then starting from an arbitrary matching (e.g. the empty matching ¢J) we
can calculate the exact probabilities of particular matchings occurring after certain
rounds. To be more precise, we will calculate these probabilities in the following
absorbing Markov chain.

Definition 2 Let / be a SR instance with corresponding automaton SRA(/) =
(M(G), E(G), 8, My, S7). The Markov chain of I is given by (M(G), My, P) where
the set of states and initial state are taken from SRA (/) and the probability transition
matrix P : M(G)xM(G) — [0, 1] is such that for M, M" € M(G) :

— if M is stable, then P(M, M") equals 1 if M = M’ and 0 otherwise;
— if M is not stable, then

[{(v,v) € E(G)]| (v, V") blocks M and §(M, o) = M'}|
{(v, V) € E(G)| (v, V) blocks M}| '

For any SM instance or solvable SR instance, the stochastic process is an absorbing
Markov chain where the absorbing states are the stable matchings.

We now report on our experiments to construct and analyse the Markov chain of
a number of different instances with the probabilistic model checking tool PRISM
(website. www.prismmodelchecker.org/) Kwiatkowska et al. (2011). PRISM is a tool
for the formal modelling and analysis of systems that exhibit random or probabilis-
tic behaviour. It supports a wide range of probabilistic models and has been used to
analyse systems from many different application domains, including communication
and multimedia protocols, randomised distributed algorithms, security protocols and
biological systems.

Models are described using the PRISM language, a simple, state-based language
based on guarded commands. The basic components of the modelling language are
modules and variables. A system model is defined by specifying a set of modules, with
the state of each module represented by a finite number of variables. The behaviour
of each module is given by a set of guarded commands of the form:

P(M, M) =

[<action>] <guard> — <prob> : <update> + -.-- + <prob> : <update>;
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The action label is used to force modules to synchronise (i.e. execute their commands
simultaneously) and the guard is a predicate over all the variables of the model, indicat-
ing when the command is enabled. The updates describe the probabilistic transitions
that the module can make when the command is executed, i.e. the changes made to its
own variables; primed variables indicate the next values of variables.

PRISM provides support for automated analysis of a wide range of quantitative
properties such as what is the probability of a failure within 4 h?, what is the worst-
case probability of the protocol terminating in error, over all possible initial configura-
tions?, what is the expected size of the buffer after 30 min?, or what is the worst-case
expected time taken for the program to terminate?. The property specification lan-
guage incorporates the temporal logics PCTL, CSL and LTL, as well as extensions for
quantitative specifications and rewards. PRISM incorporates state-of-the art symbolic
data structures and algorithms, based on binary decision diagrams and multi-terminal
binary decision diagrams Kwiatkowska et al. (2004), Parker (2002). It also includes
a discrete-event simulation engine, providing support for approximate and statistical
verification, and implementations of various different analysis techniques, such as
quantitative abstraction refinement and symmetry reduction.

Below we give a overview of the PRISM model for an SM instance with three men
and three women. To represent the preference lists of the men and the women the
model includes constants m; j, w; j € {1,2,3}fori, j=1,...,3, where m; ; equals
the jth preference of mani and w; ; equals the ith preference of woman j. There is a
module M; (i € {1,..., 3}) for each man and a module W; (j € {1, ..., 3}) for each
woman. Each module has an integer variable (denoted m; and w; respectively) in the
range {0, 1, 2, 3} representing the current matching of the man or woman (where 0
corresponds to the case when the man or woman is unmatched).

The commands of the modules correspond to the men and women trying to improve
their current matching by synchronising on actions, more precisely, when man i and
woman j form a blocking pair, the action b; ; can be performed and performing the
action updates the matching so that i and j become matched. For example, the com-
mands of man 1 (in module M) take the form:

[b11] mi =0V (my=2Am11>mi2)V (m=3Am1>m3) — (m)=1);
[(bi2] mi=0V (mi=1Ami2>mi 1)V (mi=3Amia>m3) — (m)=2);

[b13] mi=0V (mi=1Ami3>mi 1)V (mi=2Ami3>m2) — (m)=23);

where the second command states: if either man 1 is unmatched or would prefer to
be matched to woman 2 than his current matching (i.e. either matched to woman 1
and woman 2 is higher than woman 1 in his preference list, or is matched to woman 3
and woman 2 is higher than woman 3 in his preference list), then the module for man
1 is able to perform the action b 2 and update its matched partner to woman 2. The
commands of the women are similar with the indexing of action names reversed. For
example, the commands of woman 2 (in module W») are given by:

[(b12] wa=0V (w2=2Awz1>wz2)V (Wr=3Awy>wp3) = (wy=1);
[b22] wa=0V (wa=1Awr2>wp 1)V (w2=3Awz2>wz3) = (Wh=2);
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[b32] wa=0V (wa=1Awr3>wp 1)V (W2 =2Awr3>wp2) = (wy=3);

in this case, the first command states: if either woman 2 is unmatched or would prefer

to be matched to man 1 than her current matching (i.e. either matched to man 2 and
man 1 is higher than man 2 in her preference list, or is matched to man 3 and man 1
is higher than man 3 in her preference list), then the module for woman 2 is able to
perform the action b; » and update its matched partner to man 1. Notice that for both
man 1 and woman 2 are able to perform the action b > they must both prefer each
other to their current matching, i.e. the action can only be performed when they form
a blocking pair.

When a matching is updated to remove a blocking pair i and j, then the people
previously matched to i and j much also update their preference lists, and therefore
additional commands (synchronising on b; ;) are included in each module to perform
these updates. Further details of the models and experiments are available from the
PRISM website (our experiments. www.prismmodelchecker.org/casestudies/stable_
matching.php). For small instances, we also exported the PRISM models to the sym-
bolic solver Maple [MapleSoft Corporation. Maple computer algebra system (www.
maplesoft.com)] and computed the exact rational values. Note that in Examples 1-3
the absorption probabilities are calculated with the empty matching as starting state.

Example 1 We start with a classical instance by Gale and Shapley (1962) with three
men and three women and the following preferences:

mp i wp, w2, w3 mz w2, W3, Wy mp - wi, Wz, W3

wy imp,m3,mp Wz :msz,mi,my w3 :mig,my,m3

Here, the Markov chain has 34 states and 123 transitions, and the following three
absorbing states (stable matchings):

My, = {(m1, w1), (m2, w2), (m3, w3)} (man-optimal)
My, = {(my, w3z), (m2, wy), (m3, wa)} (woman-optimal)
M, = {(my, w2), (m2, w3), (m3, wy)} (egalitarian)

Calculating the absorption probabilities we find:
X (M) =x*(My) = 75 ~ 02195301028 and x*(M.)= 233 ~ 0.5609397944.

The egalitarian stable matching is therefore more likely than both the extreme solutions
together. This differs from using the random order mechanism, since in this case the
egalitarian stable matching is not achievable (as nobody gets their best stable partner)
and the remaining stable matchings have probability %

Example 2 The following classical instance was proposed by Knuth et al. (1976)
with four men and four women and the following preferences:

miiwg, w2, W3, W4 M2:wz, Wi, W4, W3 M3:1W3, W4, W1, W2 M4:W4, W3, W2, W1
W1iM4, M3, M2, M| W2IM3, M4, ML, MY W3, MY, M4, M3 W4, M2, M3, M4
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In this case, the Markov chain has 209 states, 1280 transitions, and the following 10
absorbing states (stable matchings):

My = {(my, wy), (ma, wa), (m3, w3), (M4, wg)}
My = {(ma, wy), (my, w2), (M3, w3), (Mg, wa)}
M3 = {(m1, wy), (m2, wy), (Mg, w3), (M3, we)}
My = {(m2, w1), (m1, w2), (Mg, w3), (M3, wq)}
Ms = {(m3, wy), (m1, w2), (Mg, w3), (M2, wa)}
Mg = {(m2, wy), (mg, wa), (my, w3), (M3, wg)}
M7 = {(m3, wy), (mg, w2), (M1, w3), (M2, wa)}
Mg = {(m4, wy), (m3, wa), (m1, w3), (M2, wa)}
My = {(m3, wy), (mg, wa), (M2, w3), (my, wa)}
My = {(m4, w1), (m3, w2), (m2, w3), (M1, wy)}

and calculating the absorption probabilities we find:

XF(M1) = x*(M10) = G5iaesentil0d ~ 0.0577387362

x* (M) = x*(M3) =x*(Mg) =x*(Mo) = {532 P00 ~ 0.0831412002

61576717268573787
X" (My) = x™(M7) = 55550157048505 1108 ~ 0-1164457912

— __ 253084017443076793

Using the random order mechanism we find My, ..., M7 are not achievable, whilst in
our case it is more likely one of these matchings will be reached.'®

Example 3 In this example we consider the roommates instance from Klaus et al.
(2010, Example 3, p. 25) provided by Elena Molis. This instance concerns eight agents
with the following preferences:

ay . ap,as, d4, dg, ds, dj, dg
ap . as,dai, d4, ds, de, dg, aj
as . ay, az, a4, ds, deg, dj, dg
a4 . ae, dz, ds,dj,dz,dy, ds
as . aq4,ay,ay, dz,ds, de, dg
ae - aj, a4, dz,as,dp, ds, ds
ay . as, ae, dy, dz, ds, d4, dg

as : as

10 The probabilities of getting these six matchings by the random order mechanism are as follows Klaus
and Klijn (2007b): p(M) = p(M10) = fo5a5 and p(Ma) = p(M3) = p(Mg) = p(Mo) = 7255
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Itis an unsolvable instance, it admits two stable half-matchings (with no even cycles),
namely /1 and hy, where

hi((4,5)) = h1((6,7)) =1 and h((1,2)) = h1(2,3)) =hi (G, 1) =

h2((4,6)) = ha((5,7)) =1 and ha((1,2)) = h2((2,3)) = h2(3, 1)) =

=N~

The h1-stable matchings are:

My ={(2,3),4.5), (6,7}
My ={(1,2), (4,5), (6,7}
Ms = {(1,3), (4,5), (6,7}

while the /;-stable matchings are:

My ={(2,3),(4,6), (5.1}
Ms ={(1,2), (4,6), (5, D}
Mes = {(1,3), (4,6), 5.7}

Theorem 1 states that, starting from any matching, we can always reach one of these
matchings by successively satisfying blocking pairs. This implies that any ergodic set
(which is called absorbing set in Inarra et al. (2008) and Klaus et al. (2010)) of the cor-
responding Markov chain must contain some of the above matchings. Constructing this
instance in PRISM, we find there are 308 matchings and a single ergodic set which con-
sists of the matchings {M4, M5, Ms, M7}, where M7 = {(1, 2), (3, 8), (4, 6), (5, 7)}.
This corresponds to the results presented in Klaus et al. (2010). Computing the long-
term likelihood of being in any one of the matching (i.e. the steady state probabilities
of the Markov chain) we find:

X*(My) = x*(Ms) = x*(Mg) = 2 ~ 0.285714 and x*(M7) =  ~ 0.142857.

Case study We now compare the performance characteristics of a number of differ-
ent instances of the SM problem, as the number of men and women k(=n/2) varies
between 4 and 8.

— Symmetric in this instance the preferences of the men and women are of the form
m.,' : wj,...,wk,wl,...,wj_l andwj :mj,...,mk,ml,...,mj_l.

— Uncoord this instance is used in Ackermann et al. (2008) to show an exponential
lower bound for the convergence time. The preference lists in this instance are given

bymj:wjyr, ..., wp, wi, ..., wjand wj imj, Mgy, ..., Mg, My, L. M
— Uniform: in this case the preference lists of all men and all women are the same
and equal wy, wa, ..., wg and my, my, . .., my respectively.

In our experiments we consider both the case when we start with a random (complete)
matching and the empty matching. Tables 1 and 2 report on the model statistics (states
and transitions) of the Markov chains generated with PRISM. Table 1 includes both
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Table 1 Expected time to reach a stable matching from a complete initial matching

Model k  States Transitions Expected time
Av. Max.
Symmetric 4 208 1,433 3.595 5.713
5 1,545 15,901 5.456 7.919
6 13,326 189,691 7.692 11.05
7 130,921 2,450,001 10.30 14.09
8 1,441,728 34,194,273 13.27 17.97
Uncoord 4 208 1,268 18.97 25.22
5 1,545 14,205 84.23 93.74
6 13,326 170,886 399.2 413.5
7 130,921 2,222,745 2,197 2,216
8 1,441,728 31,209,032 14,361 14,385
Uniform 4 87 369 6.822 9.160
5 665 4,746 12.04 14.92
6 5,972 64,341 19.08 22.73
7 61,215 926,095 28.18 3242
8 702,311 14,175,310 39.61 44.56
1,000 Random samples (min) 4 102 461 4.735 6.932
5 993 8,524 8.082 11.21
6 9,272 119,035 11.61 15.59
7 130,884 2,378,889 15.93 20.89
1,000 Random samples (average) 4 193 1,247 8.032 10.65
5 1,562 15,618 13.83 17.34
6 13,317 192,465 22.84 27.28
7 130,918 2,524,157 37.34 42.74
1,000 Random samples (max) 4 208 1,460 17.25 20.30
5 1,545 16,660 46.28 50.68
6 13,326 202,560 115.8 121.1
7 130,921 2,657,024 164.9 170.7

the average and the maximum expected time to reach a stable matching when start-
ing from a complete matching, while Table 2 the expected time when starting from
the empty matching and number of stable matchings. For comparison, the tables also
includes the minimum, average and maximum values obtained from a sample of 1,000
random instances.'!

The number of states reported in Tables 1 and 2 demonstrate that, when starting
from a randomly chosen complete matching, the number of reachable matchings is
dependent on the particular instance. We also see that for the Symmetric and Uncoord

11 Since for k = 8 each instance takes over 20 min to analyse, it was not feasible to study 1,000 different
instances.
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Table 2 Expected time to reach a stable matching from the empty initial matching

Model k States Transitions Expected time No. of stable
matchings

Symmetric 4 209 1,449 7.469 1

5 1,546 15,926 10.51 1

6 13,327 189,727 13.95 1

7 130,922 2,450,050 17.78 1

8 1,441,729 34,194,337 21.99 1
Uncoord 4 209 1,284 28.04 4

5 1,546 14,230 97.16 5

6 13,327 170,922 416.5 6

7 130,922 2,222,794 2,220 7

8 1,441,729 31,209,096 14,388 8
Uniform 4 209 1,421 11.31 1

5 1,546 15,926 17.66 1

6 13,327 192,862 25.82 1

7 130,922 2,525,804 36.03 1

8 1,441,729 35,686,961 48.56 1
1,000 Random samples (min) 4 209 1,421 7.851 1

5 1,546 15,926 11.53 1

6 13,327 192,862 15.77 1

7 130,922 2,525,804 21.04 1
1,000 Random samples (average) 4 209 1,421 11.02 1.506

5 1,546 15,926 17.54 1.657

6 13,327 192,862 27.39 1.961

7 130,922 2,525,804 42.80 2.187
1,000 Random samples (max) 4 209 1,421 20.35 5

5 1,546 15,926 50.61 5

6 13,327 192,862 121.2 7

7 130,922 2,525,804 170.8 9

instances all matchings (except the empty matching) are reachable. The results for
the Uncoord instances are far slower than for the other instances, corresponding to
the fact that Ackermann et al. (2008) uses this instance to demonstrate a exponential
lower bound on the convergence time. Considering the random sample results, we see
that the performance of the Uncoord instance is unlikely to be seen in practice. These
results also indicate that the number of stable matches does not seem to be cause of
the slow convergence time demonstrated by the Uncoord instance, since the number
of stable matchings for some random matchings were even greater than for the Unco-
ord instances of the same size, but the expected convergence times were significantly
smaller. To further demonstrate how PRISM can be used to analyse instances, Fig. 1
plots the probability of reaching a stable matching within R rounds when starting from
the empty configuration.
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Fig. 1 Probability of reaching a stable matching within R rounds. a Symmetric, b uncoord, ¢ uniform

4 Further remarks

First, we would like to propose an aspect of our alternative proof (described in Sect. 2)
for further consideration, that may deepen our understanding of the behaviour of de-
centralised matching markets. There is a slight contradiction in the theoretical results
with regard to the convergence time of stochastic processes in matching market. Our
theorem (and implicitly also the proof of Diamantoudi et al. 2004) says that a stable
matching can be always reached after satisfying at most mn blocking pairs, whilst
the theoretical results by Ackermann et al. (2008) and the simulations by Boudreau
(2008) show that the expected convergence time can be exponential for ‘uncoor-
dinated’ markets under the better response dynamics. How do real markets work?
Recent experimental papers (Echenique and Yariv 2011; Pais et al. 2011) show that in
laboratory environment the frequency of getting different stable matchings are close
to the absorption probabilities, even if only one side of the market make proposals
Echenique and Yariv (2011). However, there are some other papers (Blum et al. 1997;
Blum and Rothblum 2002) where the authors argue that real two-sided job markets
(especially with regard to senior positions) work differently, and instead of the better
response dynamics, they rather follow the proposal-rejection sequences of Roth and
Vande Vate.!? If the latter conjecture is true then this can clarify why some decentra-
lised job markets are able to reach a stable state relatively quickly. Our proof technique,
which is an extension of the Roth—Vande Vate argument for the roommates problem,
can also have similar policy implications. If we request the agents of a roommates
market to enter (or leave) the market one by one and encourage them to make offers
to the best available mate according to their preferences, then these kind of stochastic
markets would be likely to reach a stable (or close to stable) state more quickly than
the ones with no coordination.' These conjectures would be interesting to investigate

12 we might think about a new opening in the senior academic market. If this position is linked to a
well-specified research topic, then it is a realistic assumption that the potential candidates will be reached
by the advertisements and the selection process ensures that the best applying candidate will be selected.
Therefore, we can perhaps assume that in a real (sub-)market only one new position makes the market
instable, and also the stochastic process might be better described with the best response dynamics rather
than better responses.

13 Note that path to stability constructed in the proof of Diamantoudi et al. (2004) cannot be translated into
a policy for agents to follow, as the construction is based on the knowledge of a stable matching, which
could be obtained only by a central coordinator.
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using both laboratory experiments and by inspecting real decentralised matching mar-
kets. In fact, the above best response policy could also be used as a protocol in P2P
systems, as Lebedev et al. (2007) suggested for special roommates settings, which can
make a decentralised system to converge to a stable state rapidly.

Calculations of the absorption probabilities have been conducted in several recent
papers (Boudreau 2008, 2012; Echenique and Yariv 2011) by extensive simulations.
Doing these simulations is not an easy task.'* As we demonstrate in Sect. 3, PRISM
is a very useful tool for analysing stochastic processes of this kind. The reader is
welcome to download this open-source model checker tool and repeat our experi-
ments or try different ones with the code we have made available from the PRISM
website (website, our experiments. www.prismmodelchecker.org/casestudies/stable_
matching.php).

As an extension of the approach presented in this paper, it would be interesting to
study stochastic processes occurring in more general settings, for example, in hedonic
coalition formation games, where the size of possible coalitions can be larger than
two, see e.g. Banerjee et al. (2001) and Bogomolnaia and Jackson (2002). However, in
this case the existence of a stable solution (i.e., a nonempty core) does not guarantee
that there is a convergence to a stable solution when starting from any unstable state,
as illustrated by Diamantoudi et al. (2004). So in this case absorbing states and ergodic
sets may appear together in the Markov chain. Yet, one could investigate the structure
of absorbing and ergodic states for special classes of coalition formation games, and
analyse particular games in a similar framework as we did here, using PRISM.

Furthermore, more general network formation games and matching problems could
also be analysed with this technique. Kojima and Unver (2008) extended the results of
Roth and Vande Vate to many-to-many markets. Another example for such problems is
the resident allocation problem with couples, where the existence of a stable matching
is not guaranteed in general (for a survey on this problem, see Bir6 and Klijn 2012).
However, for particular preference structures Klaus and Klijn (2007a) show that not
only that the existence of a stable solution can be guaranteed, but also that the path to
stability from any starting matching.

Finally, the same questions can be asked for cooperative games with transferable
utilities, such as the matching game Bir¢ et al. (2012a), or the slightly different sta-
ble matching problem with payments Bir6 et al. (2012b), where the agents who are
matched together may share the value of their cooperation between each other. In a
very recent paper Bir6 et al. (2012b) showed that starting from any solution in a room-
mates market with payments we can reach a stable solution by satisfying at most 2m

14 For example, Boudreau (2011) wrote the following in a recent paper: Calculating the probability of
each stable outcome for a given market under the randomized tdtonnement process is extremely difficult
due to the tremendous number of paths that can be involved (see Boudreau 2008 for an idea of just how
long random paths to stability are likely to be). Loops in the process mean that a closed form solution is
virtually impossible to obtain. Fortunately, the process can easily be programmed into software such as
Matlab (copyright The Mathworks). Trials of the process can thereby be repeated over and over again by
starting from the empty matching, assigning uniform probability to all blocking pairs existing at each step,
and keeping track of which particular stable outcome prevails each time. After one million such trials, it is
then possible to obtain a probability distribution for a given market’s set of stable outcomes based on the
simulated experimental data.

@ Springer


www.prismmodelchecker.org/casestudies/stable_matching.php
www.prismmodelchecker.org/casestudies/stable_matching.php

Stochastic matching markets

blocking pairs, if a stable solution exists. Similar result has been shown for two-sided
markets by Chen et al. (2011). Regarding general TU-games, there are also results
on the accessibility of the core and the number of blocks needed to access the core
(or some other desired set of imputations), see e.g. Kéczy and Lauwers (2004), Béal
etal. (2011) and Yang (2011). There can be seen as counterpart of the path to stability
results for matching markets.
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