
Electronic Notes in Theoretical Computer Science 21 (2002)
URL: http://www.elsevier.nl/locate/entcs/volume21.html

Computing Probability Bounds
for Linear Time Formulas

over Concurrent Probabilistic Systems

Christel Baier a, Marta Kwiatkowska b,? and Gethin Norman b,?

a Fakultät für Mathematik & Informatik
Universität Mannheim

68131 Mannheim, Germany
baier@pi1.informatik.uni-mannheim.de

b School of Computer Science
University of Birmingham, Edgbaston

Birmingham B15 2TT, UK
{mzk,gxn}@cs.bham.ac.uk

Abstract

Probabilistic verification of concurrent probabilistic systems against linear time
specifications is known to be expensive in terms of time and space: time is double
exponential in the size of the formula and polynomial in the size of the state space,
and space complexity is single exponential [24,7]. This paper proposes to compute
for a linear time formula only a lower and upper bound on the probability measure
of the set of paths satisfying it, instead of calculating the exact probability. This
yields a coarser estimate, namely an interval of values in [0,1] which contains the
actual probability, but the calculation is simpler and more efficient (time is single
exponential and space complexity is linear), and could thus be useful as an initial
check in a model checking tool.

1 Introduction

Verification of systems such as probabilistic protocols or randomized algo-
rithms against temporal or modal specifications involves calculating the prob-
ability measure of the set of paths satisfying the given path formula. Several
model checking algorithms for probabilistic extensions of temporal logics have
been proposed in the literature. For the sequential case (essentially discrete
Markov chains), the problem of computing exact probabilities can be reduced,

? Research partially supported by the EPSRC project GR/M04617.

c©2002 Published by Elsevier Science B. V.

via an involved construction, to a linear equation system; an algorithm with
time complexity exponential in the size of the formula and polynomial in the
size of the system has been proposed in [7], and also in [24] lower bound
PSPACE-hardness is shown. The case of concurrent probabilistic systems
(similar to concurrent Markov chains of [24]) is more complex. These allow a
nondeterministic choice between probability distributions on successor states,
where that choice is understood to arise in the context of a distributed com-
putation and is made by a scheduler (which we call adversary). Since there
is no unique probability measure that can be defined on the set of paths in
this case, we are unable to compute the exact likelihoods, and instead work
with minimum/maximum probabilities over all adversaries. Two approaches
have been introduced, qualitative and quantitative, of which we work with
the latter. For the qualitative properties we require that the formula, say
representing absence of deadlock, holds with probability 1, which may involve
making suitable fairness assumptions on the nondeterministic choices. A suit-
able algorithm, presented in [7], has time complexity doubly exponential in
the size of the formula and quadratic in the size of the system. For the so
called quantitative properties, which involve establishing that the likelihood
is at least some threshold value p where p ∈ [0, 1], algorithms with time com-
plexity doubly exponential in the size of the formula and polynomial in the
size of the system have been proposed in [6,7] and [8] (improvement of [4]);
a lower bound is double exponential time, and hence the problem is hard for
single exponential space [25,7].

The above-mentioned complexity results are rather discouraging from the
point of view of practical implementations of model checking tools for prob-
abilistic systems. Without substantial efficiency gains through appropriate
choice of data structures, these algorithms are unlikely to scale up to medium-
size, let alone realistic, applications. The implications of this inherent com-
plexity are rather fundamental: establishing satisfaction of atomic proposi-
tions, their conjunctions, and even path formulas, such as p U q where p, q
are atomic propositions, is relatively straightforward (it amounts to solving a
linear equation system in the latter case), but if p, q are allowed to be path
formulas then calculating the exact probabilities involves first establishing
conditional probabilities for p and q, and this is needed even for conjunc-
tions. In the model checking algorithms of [7,4] this is reflected by the need
to transform the underlying Markov chains to much larger ones which en-
code conditional probabilities (in the case of [7]) and (in [4]) the “history of
computation” with the help of atomic propositions.

This paper proposes to calculate the lower and upper bounds on proba-
bilities of temporal formulas being satisfied, instead of calculating the exact
probabilities. Lower and upper bounds were also considered in [18,12,14,13]
in the context of variants of the mu-calculus. The main advantage of such an
approach is its simplicity and efficiency, particularly when space complexity
is concerned (for the concurrent case, for example, the space requirement for

2

our method is linear, as opposed to single exponential needed for exact calcu-
lations). The price to pay is the coarser nature of the probability estimates,
as the outcome of the computation is an interval of probabilities which in gen-
eral contains the minimum/maximum probability interval. In the worst case
this will be [0,1], but in the best case it could turn out to be singular. Thus,
our approach would be useful as an initial check to perform on a probabilistic
system, which would help identify those systems or properties that require a
closer inspection.

We consider the syntax of Linear Temporal Logic (LTL), whose formulas
we interpret in a given model as a pair of maps from its states to the [0,1]
interval, denoting, for each state, the minimum and maximum probability of
the set of forward paths from it satisfying the formula in the classical sense.
To each LTL formula we also assign two maps (lower bound lb and upper
bound ub) from states to the [0,1] interval. The idea is for the lower bound to
approximate the minimum probability from below, whereas the upper bound
approximates the maximum probability from above. We state the lower and
upper bound calculations as optimization problems solvable via iteration; the
exact probability is sandwiched between the approximations to the bounds.
Our method can be viewed as a simple and space efficient heuristic approach
based on a greedy algorithm, which can serve as a sound proof technique
for establishing quantitative linear time properties. We also report on a case
study, for which we are using a variant of the randomized dining philosophers
protocol verified in [19] with the help of a proof system. The results so far are
encouraging for certain classes of properties, which includes all the properties
verified in [19]; in particular, we can deduce the probability from the value of
the lower bound.

2 Preliminaries

Let S be a finite or countable set. A probability distribution on S is a function
µ : S −→ [0, 1] such that

∑
s∈S µ(s) = 1. A (discrete time) Markov chain is

a tuple (S,P) where

• S is a set of states,

• P : S × S → [0, 1] is the transition probability function, i.e.∑
t∈S

P(s, t) = 1

for all s ∈ S. In other words, µs(t)
def
=

∑
t∈S P(s, t) is a probability distri-

bution.

We can unfold a Markov chain in the standard way into a set of execution
sequences (paths). Formally, an execution sequence in (S,P) is a nonempty (fi-
nite or infinite) sequence π = s0s1s2, . . . where si are states and P(si−1, si) >

3

0, i = 1, 2, Path denotes the set of infinite paths, and Path(s) is the set of
infinite paths which have s as the start state. For s ∈ S, let Σ(s) be the small-
est σ-algebra on Path(s) which contains the basic cylinders {π ∈ Path(s) :
ω is a finite prefix of π} where ω ranges over all finite paths starting in s. The
probability measure Prob on Σ(s) is the unique measure satisfying:

Prob { π ∈ Path(s) : ω is a finite prefix of π } = P(ω)

where P(s0s1 . . . sk) = P(s0, s1) ·P(s1, s2) · . . . ·P(sk−1, sk).

3 Concurrent probabilistic transition systems

A concurrent probabilistic transition system is a pair (S, Steps) where

• S is a set of states

• Steps is a function which assigns to each state s ∈ S a finite non-empty set
Steps(s) of distributions on S.

A system (S, Steps) is called finite iff S is finite. If for each s ∈ S the set
Steps(s) is a singleton set then (S, Steps) is called a sequential probabilistic
transition system.

Intuitively, Steps represents the nondeterministic alternatives in each state:
given a state s ∈ S, the choice of a distribution µ from Steps(s) is made by
a scheduler, and then a probabilistic transition is made according to µ, i.e.
some state t with positive probability (µ(t) > 0) is selected and the process
moves to that state.

Execution sequences of concurrent probabilistic transition systems (which
we call paths) arise by alternately resolving the nondeterministic and proba-
bilistic choices. Formally, a path in a concurrent probabilistic system (S, Steps)
is a nonempty (finite or infinite) “sequence”

π = s0
µ1→ s1

µ2→ s2 . . .

where si are states, µi ∈ Steps(si−1) and µi(si) > 0, i = 1, 2, (The case
π = s0 is allowed.) A path π is called a fulpath iff it is infinite. We use the
following notation for paths. The first state of a path π is denoted by first(π).
If π is finite then the last state of π is denoted by last(π). The length |π| of
a path is defined in the usual way as follows: if π = s0 ∈ S then |π| = 0;

otherwise, if π = s0
µ1→ s1

µ2→ . . .
µn→ sn, then |π| = n. For infinite π we

put |π| = ∞. Let π be a finite or infinite path as above. If k ≤ |π| then

• π(k) denotes the k-th state of π (i.e. π(k) = sk)

• π(k) is the k-th prefix of π (i.e. if k < |π| then π(k) = s0
µ1→ s1

µ2→ . . .
µk→ sk,

if k ≥ |π| then π(k) = π)

• step(π, k) denotes the k-th step in π (i.e. if k < |π| then step(π, k) = µk+1).

4

Path(s) denotes the set of fulpaths π with first(π) = s. Similarly, Pathfin(s)
is the set of finite paths ω with first(ω) = s.

We unfold a concurrent probabilistic system (S, Steps) into its computation
trees (called “execution trees” in [10] and “maximal resolutions” in [15]), with
each component described as a Markov chain. The computation trees arise
by resolving the nondeterministic choices (but not the probabilistic choices).
It is convenient to suppose that an adversary (also called scheduler or policy)
decides, based of the past history of the system, which of the possible steps
(probability distributions) to perform next.

Formally, an adversary of a concurrent probabilistic transition system
(S, Steps) is a function A mapping every finite path ω to a distribution A(ω)
on S such that A(ω) ∈ Steps(last(ω)). PathA(s) denotes the set of all paths
π ∈ Path(s) with step(π, i) = A(π(i)) for all i ≥ 0. Similarly, we define the set
of finite paths PathA

fin(s) induced by the adversary A to be the set of all finite

paths ω ∈ Pathfin(s) with step(ω, i) = A(ω(i)) for all i < |ω|. Adv denotes the
set of all adversaries.

Thus, an adversary chooses for every finite path ω a distribution from
Steps(last(ω)). Note that we only consider deterministic adversaries. The
notion of randomization of adversaries or probabilistic adversaries has been
investigated in [10,4,22], where it is shown that the probability of a measurable
set Γ w.r.t. a randomized adversary is a convex combination of the measure of
Γ w.r.t. non-randomized adversaries, and hence lies between the minimal and
maximal measure of Γ w.r.t. non-randomized adversaries. By Corollary 20
of [4], it suffices to only consider the deterministic adversaries, as the mini-
mal/maximal measures over randomized adversaries coincide with those for
the deterministic adversaries. Hence, our results carry over to the randomized
adversaries.

With each adversary we associate a discrete time (in general infinite-state)
Markov chain which can be viewed as a computation tree. Let PathA

fin denote⋃
s∈S PathA

fin(s). Formally, if A is an adversary of a concurrent probabilistic

system (S, Steps) then (PathA
fin ,PA) is a Markov chain where

PA(ω, σ) =

 A(ω)(last(σ)) : if ω = σ(k−1) where |σ| = k

0 : otherwise.

We identify each path x = ω0ω1 . . . in (PathA
fin ,PA) which starts in a state

s0 ∈ S (i.e. ω0 = s0 is a path of length 0) with the path

last(ω0)
A(ω0)−→ last(ω1)

A(ω1)−→ . . .

in (S, Steps). Vice versa, if π is a fulpath in (S, Steps), π ∈ PathA, then we
identify π with the path x = π(0)π(1)π(2) . . . in (PathA

fin ,PA). This yields a one-

to-one correspondence between PathA(s) and the fulpaths in (PathA
fin ,PA).

5

Hence, for each s ∈ S and adversary A, the probability measure on (PathA
fin ,PA)

induces a probability measure on PathA(s), which we denote ProbA(·).
A labelled concurrent probabilistic transition system is a tuple (S, Steps ,AP , L)

consisting of a concurrent probabilistic transition system (S, Steps) and

• a finite set AP of atomic propositions,

• a labelling function L : S → 2AP which assigns to each state s ∈ S the set
L(s) of atomic propositions that hold in s.

4 Linear time logic LTL

We fix a set AP of atomic propositions. The syntax of LTL (linear time logic)
formulas over AP is given by the grammar:

f ::= tt | a | ¬f | f1 ∧ f2 | Xf | f1 U f2

where a ∈ AP .

We interpret LTL formulas over the states of a labelled concurrent proba-
bilistic transition system (S, Steps ,AP , L) as follows. We adopt the standard
satisfaction relation |=⊆ Path × LTL [24]. By [24], for a fixed adversary and
formula f , the sets of paths of the form {π ∈ PathA(s) : π |= f} are measur-
able, and hence ProbA for such a set is defined. Next we define, for each state
s and LTL formula f , the maps Probinf

f (s) and Probsup
f (s) which respectively

assign the minimal and maximal probability that f holds for an execution
starting in s over all adversaries. The need for the minimal and maximal
probability arises due to the presence of nondeterminism, which prevents us
from identifying a single probability space on paths. The quantification over
all adversaries is necessary to ensure that the property holds even in the worst
case scenario, and agrees with the usual treatment of LTL on nonprobabilistic
systems.

Let f be a LTL formula. We define maps:

Probinf
f : S → [0, 1], Probinf

f (s) = inf
A∈Adv

ProbA
{
π ∈ PathA(s) : π |= f

}
,

Probsup
f : S → [0, 1], Probsup

f (s) = sup
A∈Adv

ProbA
{
π ∈ PathA(s) : π |= f

}
.

The values Probinf
f (s) and Probsup

f (s) induce an interval semantics for LTL
formulas when interpreted over the states of a labelled concurrent probabilis-
tic system. Note that since sequential systems admit only one adversary, for
such systems these intervals collapse to single values. Clearly, this interval
semantics is preserved by “maximal trace equivalence”, defined in an appro-
priate way in the style of [21], where a probabilistic counterpart to (finite)
trace inclusion is given.

6

5 Defining lower and upper bounds on probability for
the truth-value of LTL formulas

We now propose the maps lb and ub from LTL formulas and states to the [0,1]
interval which respectively define a lower and upper bound on the probability
of a formula holding in a state over all the adversaries of a concurrent proba-
bilistic transition system. Given a state s and a formula f , the pair of bounds
gives an interval which in general properly contains the probability interval of
f being satisfied in s.

The maps are built by induction on the structure of the formula from
atomic propositions (assigned 0 or 1 as expected) and monotone operators on
state vectors (functions from the set of states to the interval [0,1]) modelling
conjunction, negation and “next state”. The case of “until” is dealt with by a
reduction to the equivalent fixed point formulation which only involves “next
state” and Boolean operators, followed by conversion to a (non-linear) opti-
mization problem which can be solved with the help of an iterative method.
We omit the existence proofs of unique solutions to the optimization prob-
lems, which are verified through reduction to the existence proofs of least and
greatest fixed points.

In what follows, we fix a labelled concurrent probabilistic transition sys-
tem (S, Steps ,AP , L). Recall that concurrent probabilistic systems allow a set
of next-state probability distributions given by the mapping Steps . We de-
fine lower and upper bounds, lb(f, s) and ub(f, s), respectively approximating
Probinf

f (s) and Probsup
f (s) as follows.

5.1 Atomic propositions and Boolean connectives

First we define the maps lb(f, s) and ub(f, s) where f is an atomic proposition.
It should be intuitively clear that it suffices to assign the lower/upper bound
to 0 or 1 depending on whether the proposition is satisfied in the given state
or not.

Next, we consider conjunctions . Let A be an adversary. We aim to de-
fine an operator ∧ on functions from the set of states to the interval [0,1]
such that lb(f1, s)∧ lb(f2, s) yields an approximation to ProbA

f1∧f2
(s) from be-

low (the case of the upper bound ub is dual). Note that f1 and f2 could be
path formulas, and hence in order to compute the exact probability we would
require knowledge of dependence/independence of the underlying events, to-
gether with the corresponding conditional probabilities. Our idea is instead
to assume the worst case outcome and compute only the greatest lower bound
on the probability measures computed for the conjuncts (which could be 0) 1 .
Dually, we assume the best case outcome when calculating the upper bound.
Unfortunately, we are unable to estimate the error, as in the worst case the

1 A similar map for conjunctions was used in [23], where we refer the reader for a more
detailed discussion.

7

values obtained could be 0 for the lower bound and 1 the for upper bound.

The soundness of our approach follows from the following observation,
which can be thought of as yielding expressions defining lower and upper
bounds for conjunctions and disjunctions:

Lemma 5.1 Let f1, f2 be LTL formulas. Then, for all A ∈ Adv and s ∈ S:

ProbA
f1

(s) + ProbA
f2

(s) − 1 ≤ ProbA
f1∧f2

(s) ≤ min
{
ProbA

f1
(s),ProbA

f2
(s)

}
,

max
{
ProbA

f1
(s),ProbA

f2
(s)

}
≤ ProbA

f1∨f2
(s) ≤ ProbA

f1
(s) + ProbA

f2
(s).

Proof. Easy verification. We simply use the fact that for any A ∈ Adv :

ProbA
f1∨f2

(s) + ProbA
f1∧f2

(s) = ProbA
f1

(s) + ProbA
f2

(s).

2

The treatment of negation is rather delicate, as it changes the nature of
the bound: if we complement a lower bound to 1 we get an upper bound, and
vice-versa [14]. Altogether, we arrive at the definition given below.

Definition 5.2 [Atomic propositions, conjunction, negation] Let a be
an atomic proposition and f1, f2 and f LTL formulas. The functions lb,
ub : LTL× S → [0, 1] are defined as follows.

• lb(tt , s) = ub(tt , s) = 1

• Atomic propositions:

lb(a, s) = ub(a, s) =

 1 : if a ∈ L(s)

0 : otherwise.

• Conjunction:

lb(f1 ∧ f2, s) = max {0, lb(f1, s) + lb(f2, s)− 1}
ub(f1 ∧ f2, s) = min {ub(f1, s), ub(f2, s)} .

• Negation:

lb(¬f, s) = 1− ub(f, s)

ub(¬f, s) = 1− lb(f, s).

We next consider the lower and upper bounds of the derived Boolean op-
erators, namely disjunction ∨ and implication →. These can be obtained by
expanding the classical identities f1∨f2 = ¬(¬f1∧¬f2) and f1 → f2 = ¬f1∨f2

with operators for ∧ and ¬ given in Definition 5.2:

lb(f1 ∨ f2, s) = max{lb(f1, s), lb(f2, s)}
ub(f1 ∨ f2, s) = min{1, ub(f1, s) + ub(f2, s)}
lb(f1 → f2, s) = max{1− ub(f1, s), lb(f2, s)}
ub(f1 → f2, s) = min{1, 1− lb(f1, s) + ub(f2, s)}.

8

It should be noted that the Boolean operators defined with respect to lower
and upper bounds are no longer idempotent. Thus, the results of the functions
lb and ub are sensitive to the way a formula is written. For example, for any
LTL formula f , f∧f ≡ f and f∨f ≡ f , where≡ stands for logical equivalence.
However, if lb(f, s) 6∈ {0, 1} and ub(f, s) 6∈ {0, 1} then:

lb(f ∧ f, s) < lb(f, s) and ub(f ∨ f, s) > ub(f, s).

5.2 The temporal operators

We now consider the “next state” operator Xf . When defining the lower
bound, we assume the worst case scenario, that is, an adversary that chooses
the step that results in the minimum probability value. Clearly, for a fixed
next state probability distribution µ ∈ Steps(s) from state s, the weighted
sum

∑
t∈S µ(t) · lb(f, t) is a lower bound. Therefore, taking the minimum of

such values over all µ ∈ Steps(s) yields a lower bound for Xf holding in s.
Dually, to calculate the upper bound (best case scenario) it suffices to take
the maximum of the weighted sums

∑
t∈S µ(t) · ub(f, t).

Definition 5.3 [Next state] Let f be a LTL formula. The functions lb,
ub : LTL× S → [0, 1] are defined as follows.

• Next state:

lb(Xf, s) = min

{ ∑
t∈S

µ(t) · lb(f, t) : µ ∈ Steps(s)

}
,

ub(Xf, s) = max

{ ∑
t∈S

µ(t) · ub(f, t) : µ ∈ Steps(s)

}
.

To deal with the “until” operator f1 U f2 we first reduce it to the equiv-
alent fixed point representation f2 ∨ (f1 ∧ X(f1 U f2)). Since the fixed point
formulation only uses Boolean connectives and “next state”, we can expand it
using the operators for ∨, ∧ and Xf defined in Definitions 5.2 and 5.3. More
specifically, in the case of the lower bound we need to solve the set of recursive
equations: for all s ∈ S

lb(f1 U f2, s) = lb(f2 ∨ (f1 ∧X(f1 U f2)), s)

= max{lb(f2, s), lb(f1 ∧X(f1 U f2), s)}
= max{lb(f2, s), max{0, lb(f1, s) + lb(X(f1 U f2), s)− 1}

= max

{
lb(f2, s), lb(f1, s) + min

{ ∑
t∈S

P(s, t) · xt : µ ∈ Steps(s)

}
− 1

}
.

What we have obtained is an optimization problem (non-linear because of
nested minimum). Observe that in the restricted case of sequential systems the
nested minimum is taken over a singleton set, resulting in a linear optimization
problem. The case of the upper bound is dual.

This motivates the definition below.

9

Definition 5.4 [Until] Let f1 and f2 be LTL formulas. The functions lb,
ub : LTL× S → [0, 1] are defined as follows.

• The “until” operator:
· The vector (lb(f1 U f2, s))s∈S is the unique solution of the following opti-

mization problem:

0 ≤ xs ≤ 1

xs ≥ lb(f2, s)

xs ≥ lb(f1, s)− 1 + min

{∑
t∈S

µ(t) · xt : µ ∈ Steps(s)

}
where

∑
s∈S xs is minimal.

· The vector (ub(f1 U f2, s))s∈S is the unique solution of the following opti-
mization problem:

0 ≤ ys ≤ 1

ys ≤ ub(f1, s) + ub(f2, s)

ys ≤ ub(f2, s) + max

{∑
t∈S

µ(t) · yt : µ ∈ Steps(s)

}
where

∑
s∈S ys is maximal.

The existence of unique solutions of the optimization problems given in the
definition above follows from fixed point arguments for maps on state vectors
[3].

Similarly, we can unwind the operators 3f = (tt U f) and 2f = (¬3¬f).
Consider, for example, 3f :

• The vector (lb(3f, s))s∈S is the unique solution of the following optimization
problem:

0 ≤ xs ≤ 1

xs ≥ lb(f, s)

xs ≥ min

{∑
t∈S

µ(t) · xt : µ ∈ Steps(s)

}
where

∑
s∈S xs is minimal.

• The vector (ub(3f, s))s∈S is the unique solution of the following optimiza-
tion problem:

0 ≤ ys ≤ 1

ys ≤ ub(f, s) + max

{∑
t∈S

µ(t) · yt : µ ∈ Steps(s)

}
where

∑
s∈S ys is maximal.

We note that, for all s ∈ S and f ∈ LTL, the upper bound for 3f is constant
and equal to 1, and dually lb(2f, s) = 0.

10

The next lemma and theorem state the correctness of our model check-
ing method: for a given adversary, the lower and upper bounds as defined
in Definition 5.4 respectively approximate from below and above the exact
probability measure of the set of paths satisfying “until”.

Lemma 5.5 Let f1, f2 be LTL formulas. Then, for all A ∈ Adv and s ∈ S:

ProbA
f1 U f2

(s)≥max
{
ProbA

f2
(s), ProbA

f1
(s) + ZA

s − 1
}

,

ProbA
f1 U f2

(s)≤min
{
1,ProbA

f1
(s) + ProbA

f2
(s), ProbA

f2
(s) + WA

s

}
where

ZA
s = min

{ ∑
t∈S

µ(t) · ProbA
f1 U f2

(t) : µ ∈ Steps(s)

}
,

WA
S = max

{ ∑
t∈S

µ(t) · ProbA
f1 U f2

(t) : µ ∈ Steps(s)

}
.

Proof. Uses Lemma 5.1 and the fact that f1 U f2 is equivalent to f2 ∨ (f1 ∧
X(f1 U f2)). 2

Theorem 5.6 For all LTL formulas f , A ∈ Adv and states s ∈ S:

lb(f, s) ≤ ProbA
f (s) ≤ ub(f, s).

Hence, lb(f, s) ≤ Probinf
f (s) ≤ Probsup

f (s) ≤ ub(f, s).

Proof. By structural induction on the syntax of f . For conjunction we use
Lemma 5.1. We consider the “until” operator. Let f = f1 U f2 and A ∈ Adv .
By induction hypothesis:

lb(fi, s) ≤ ProbA
fi
(s), i = 1, 2.

By Lemma 5.5:

ProbA
f1 U f2

(s)≥max
{

lb(f2, s), lb(f1, s) + ZA
s − 1

}
.

It can be shown by induction that lb(f1 U f2, s) ≤ ProbA
f1 U f2

(s) for all s ∈ S.
An essentially dual argument yields the claim for ub(f1 U f2, ·). 2

5.3 Complexity of the method

The above definitions and statements result in an algorithm which inputs
a concurrent probabilistic system and an LTL formula f , and outputs two
state vectors (mappings from states to [0,1]) yielding for each state s a prob-
ability interval [lb(f, s), ub(f, s)]. The algorithm proceeds as follows. First,
it builds the parse tree of the formula, and then traverses it in a bottom-
up fashion, successively computing the lower/upper bounds for subformulas.
The case of atomic propositions and Boolean operators is straightforward.

11

The “next state” operator involves scalar vector product and taking min-
imum/maximum. For the “until” operator we invoke an iterative method
described below.

Lemma 5.7 If f1 and f2 are LTL formulas and s ∈ S, then

lim
l→∞

xl
s = lb(f1 U f2, s), lim

l→∞
yl

s = ub(f1 U f2, s).

where

• x0
s = z0

s = 0 and y0
s = w0

s = 1

• For l = 0, 1, 2, . . .:

zl
s = min

{ ∑
t∈S

µ(t) · xl
t : µ ∈ Steps(s)

}
,

xl+1
s = max

{
lb(f2, s), lb(f1, s) + zl

s − 1
}

,

wl
s = max

{ ∑
t∈S

µ(t) · yl
t : µ ∈ Steps(s)

}
,

yl+1
s = min

{
1, ub(f1, s) + ub(f2, s), ub(f2, s) + wl−1

s

}
.

Proof. The proof follows from the fixed point arguments used in the proof of
Theorem 5.6. 2

The chains (xl
s)l and (yl

s)l are respectively increasing and decreasing in
[0,1], and in particular,

xl
s ≤ xl+1

s ≤ Probf1 U f2(s) ≤ yl+1
s ≤ yl

s.

for all l = 0, 1, 2, Hence, all values xl
s are lower bounds for Probinf

f1 U f2
(s),

and thus premature termination will still result in sound estimates from below.
Likewise, values yl

s approximate Probsup
f1 U f2

(s) from above.

The complexity of the algorithm outlined above is summarised in the next
theorem.

Theorem 5.8 Let (S, Steps) be a concurrent probabilistic system. For each
f ∈ LTL, lb(f, ·) and ub(f, ·) can be approximated in space linear in the size
of the formula and the number of states.

Proof. Straightforward. 2

Note that we cannot estimate the number of steps required to compute
the bounds via the iterative method of Lemma 5.7 as it depends on the speed
of convergence and the desired accuracy. For sequential systems, however, we
can show that time complexity is polynomial.

12

Theorem 5.9 Let (S, Steps) be a sequential probabilistic system. For each
f ∈ LTL, lb(f, ·) and ub(f, ·) can be approximated in time polynomial in the
size of the formula and the system.

Proof. By structural induction on the syntax of the formulas. We build the
parse tree and traverse it bottom-up, successively computing the lower/upper
bounds for the subformulas (nodes in the parse tree). For subformulas where
the outermost operator is

• atomic proposition, negation or conjunction/disjunction: constant time

• “until”: polynomial time (via a standard linear optimization algorithm, e.g.
the ellipsoid method [16])

• “next state”: linear time

Summing up the above, we obtain polynomial time. 2

The approximation method for the lower/upper bounds on probability
derived in this paper can be viewed as a sound proof technique for establish-
ing quantitative linear time properties. Given an LTL formula f and e.g. a
threshold p for the “acceptable” probabilities, we compute (in linear space)
an approximation xl

s for lb(s, f). In case where we have xl
s ≥ p we can deduce

that, for any adversary A,

ProbA
f (s) ≥ Probinf

f (s) ≥ lb(s, f) ≥ p.

(Otherwise the outcome has not been determined, and an exact method may
have to be invoked.) On the other hand, any exact verification algorithm re-
quires at least single exponential space. This follows from the results by [24,7]
where the verification problem for probabilistic systems with nondetermin-
ism against (qualitative) LTL formulas was shown to be complete for double
exponential time. Thus, the problem is hard for single exponential space.
In this sense, the approximate method proposed here (which works in linear
space) overcomes the limitations of exact verification methods (e.g. [4]) that
might not be feasible because of space restrictions. For sequential systems,
our method does not offer a reduction in space complexity, but it improves
time.

6 Case Study

We use the randomized dining philosophers example verified in [19] as a case
study. The verification argument of [19] is for qualitative LTL formulas (with
probability 1) assuming fairness. Although the properties verified there involve
only simple path formulas with atomic propositions, for which the calculation
of exact probabilities is not any more complex than the methods proposed
here, the dining philosophers protocol is nevertheless a flexible test case: by
varying the number of philosophers we were able to investigate quite large
systems, and we could draw comparisons with exact probability calculations.

13

We have built three models of the system, for three, four and five philoso-
phers, with the help of the TIPPtool [17]. The specification of the system
for n philosophers, based on [19], in terms of the process algebra TIPP [11] is
given below.(
phil(1)|||phil(2)||| · · · |||phil(n)

)
‖{get ,release,nf }

(
fork(1)|||fork(2)||| · · · |||fork(n)

)
where

fork(i) := get !i.nofork(i)

nofork(i) := release!i.fork(i) + nf !i.nofork(i)

phil(i) := hungry .h(i) + think .phil(i)

h(i) := (left , 0.5).wl(i) + (right , 0.5).wr(i)

wl(i) := if i < n then get !(i + 1).l(i) + nf !(i + 1).wl(i)

else get !1.l(i) + nf !1.wl(i)

l(i) := get !i.g(i) + nf !i.nr(i)

nr(i) := if i < n then release!(i + 1).h(i)

else release!1.h(i)

wr(i) := get !i.r(i) + nf !i.wr(i)

r(i) := if i < n then get !(i + 1).g(i) + nf !(i + 1).nl(i)

else get !1.g(i) + nf !1.nl(i)

nl(i) := release!i.h(i)

g(i) := eat .e(i)

e(i) := if i < n then release!(i + 1).p(i)

else release!1.p(i)

p(i) := release!i.phil(i)

The properties given in [19] only hold if a suitable fairness constraint is im-
posed. As fairness constraints would be difficult to program in Matlab, instead
we consider a fully probabilistic variant of this system. This corresponds to
modelling the system where the scheduling of the nondetermistic choices is
made by the randomized adversary that makes choices according to the uni-
form probability distribution. In the cases of three, four and five philosophers,
the system has 770, 7070 and 64858 states and gives rise to sparse probability
matrices P with 2845, 34125 and 384621 nonzeros respectively.

Adopting the notation of [19], we have defined atomic propositions h and
e such that h (e) is true in a state if, and only if, a philosopher is hungry
(eating). Using the above atomic propositions we can now express Liveness
(Theorem 2 in [19]) by: h → 3e. To find the lower and upper bounds for the
above formula, we first calculate the lower and upper bounds for the formula
3e. As noted above the upper bound for 3e will be constant and equal to 1,
and therefore it suffices to only calculate the lower bound. Since the model
we use is fully probabilistic, there exists only one adversary, and hence the
lower bound can be computed by the following approximation (adapted from

14

Lemma 5.7):

• x0
s = lb(e, s)

• For l = 0, 1, . . .:

xl+1
s = max

{
lb(e, s),

∑
t∈S

P(s, t) · xl
t

}
,

then liml→∞ xl
s = lb(3e, s).

We have implemented the calculation of the lower bound and exact probability 2

in Matlab using sparse matrices for each of the three systems. We consider
Liveness together with three more properties given in [19], all of which are
of the form f1 → 3f2 where both f1 and f2 are atomic. These are:

Property 1 If philosopher Pi is waiting for a fork (while no philosopher is
eating) then eventually either some philosopher eats or Pi will get hold of
the fork ([19, Lemma 1]).

Property 2 If no philosopher is eating and some philosophers are hungry,
then eventually some philosopher eats or all the philosophers become hungry
([19, Lemma 3]).

Property 3 If a thinking philosopher has a hungry neighbour and no philoso-
pher is eating, then eventually either some philosopher will eat or the
philosopher will become hungry ([19, Lemma 2]).

In addition, we have implemented the above (lower bound and exact) prob-
ability calculations in terms of MTBDDs (Multi-Terminal Binary Decision
Diagrams [5]) using the CUDD package (The Colorado University Decision
Diagram package of Fabio Somenzi) [1].

The table below summarises the results of our experiments for ε = 10−6,
first for the three, then four and finally five philosopher system. In each case
(also including the lower bound) the probability is computed by terminating
the iterations when the difference between successive approximations is less
than ε, and hence converges to 1. Since the upper bound is also 1, in this
particular case we can deduce the exact probability from the value of the lower
bound (with error given by ε) for the chosen randomized adversary.

The lower bound calculation is implemented as the iterative method pro-
posed in Section 5.3 solving the (linear) optimization problem derived for the
given property (an “until” formula with atomic propositions in each case),
both in Matlab and MTBDDs. The value of time excludes the construction
of the model (which is substantial for a Matlab sparse matrix, and consider-
ably faster for MTBDDs), and only concerns the probability calculations once
a memory representation of the model has been built.

The exact probability calculation reduces to a system of linear equations (a

2 Exact probability calculation is feasible since all properties are of the form of a single
“until” with atomic propositions.

15

subsystem of the linear equations involving the full matrix which corresponds
to the unknown probability values [2,9]) which we solve via Jacobi iteration,
again both in the case of Matlab and MTBDDs. The value of time includes
the construction of the filter which identifies the linear subsystem.

Property BOUNDS EXACT

iters time iters time

Matlab MTBDDS Matlab MTBDDS

Liveness 49 0.2397 3.34 48 0.2081 2.29

Property 1 44 0.2123 3.65 43 0.1869 2.25

Property 2 23 0.1154 1.55 20 0.0800 0.42

Property 3 22 0.1096 1.64 19 0.0665 0.23

Liveness 50 0.9832 39.19 49 1.5129 30.90

Property 1 46 0.7936 38.46 45 1.3088 28.41

Property 2 26 0.4761 13.26 25 0.5537 7.90

Property 3 26 0.3601 4.79 25 0.2490 2.53

Liveness 51 14.1584 501.57 50 112.0660 503.37

Property 1 48 13.4373 474.35 47 91.5086 529.46

Property 2 30 8.2874 202.24 29 44.0190 157.37

Property 3 30 8.1520 122.53 29 10.2395 38.32

Analysing the experimental results, we note that, as anticipated [1], sparse
matrices are faster than MTBDDs on pure calculations involving matrix-by-
vector multiplication (approx. by a factor of 10 on the models considered here).
However, when it is necessary to manipulate the models, such as filtering
out the submatrix corresponding to the subsystem of linear equations, then
MTBDDs begin to have an advantage over sparse matrices, which is reflected
in the reduction of the factor from 10 to 5. For comparable model size, the
lower bound calculation is faster than the exact probability (recall that the
exact probability calculation generally uses a smaller system of equations,
which is why the timing for the exact calculations in the case of the three
philosophers model is comparable to the lower bound calculations).

Finally, we note that, as yet, we have not fully addressed the issue of
efficiency of our MTBDD implementation. Several improvements, such as
heuristics for the variable ordering, Gauss-Seidel and SOR iterative methods,
remain to be investigated.

16

7 Conclusions

We have proposed a sound, space-efficient, heuristic approach for the verifica-
tion of quantitative linear time properties of concurrent probabilistic systems.
The method is based on a greedy algorithm for computing the lower and upper
bounds on the probability measure of the set of paths of the system satisfying
an LTL formula, instead of the exact minimum/maximum probability. The
bounds are computed via an iteration process, with each iterate respectively
approximating the exact minimum/maximum probability from below/above.
Hence, they can be used to verify quantitative LTL properties, albeit at a cost
of accuracy. Our method also adapts to the sequential systems, where it leads
to time improvement over the exact probability calculations. The proposed
algorithm behaves well in the case of the randomized dining philosophers pro-
tocol proved in [19], but this is not surprising, since the formulas considered
there are relatively simple.

We have performed initial experiments using sparse matrices and an MTBDD-
based implementation. The experiments so far are encouraging, and point to
the efficiency of model construction and manipulation in terms of MTBDDs,
but poorer performance compared to sparse matrices (see also [1]).

One point to note about the lower and upper bounds is that in some cases,
such as the ones discussed here, they can provide a faster and equally accu-
rate method for computing the exact probability. In other cases, however, they
may give rise to a larger interval of probabilities ([0,1] in the worst case). So
far we have been unable to estimate the error associated with the lower/upper
bound calculations. This seems impossible in the general case (it is relatively
easy to construct an example which yields [0,1]), but perhaps one could char-
acterise subclasses of formulas for which the error is small. Another possible
direction is to investigate ways of improving the bounds by locally estimating
conditional probabilities, and using those to derive more accurate estimates.

Acknowledgements

We would like to acknowledge Markus Siegle for his help in creating the
philosophers example, and Dave Parker for the MTBDD-based implemen-
tation. All authors are members of the British Council/DAAD ARC project
1031 “Stochastic Modelling and Verification”.

References

[1] R.I. Bahar, E.A. Frohm, C.M. Gaona, G.D. Hachtel, E. Macii, A. Pardo and
F. Somenzi. Algebraic decision diagrams and their applications. Journal of
Formal Methods in Systems Design, 10(2/3):171–206, 1997.

[2] C. Baier, E. Clarke, V. Hartonas-Garmhausen, M. Kwiatkowska, and M. Ryan.

17

Symbolic model checking for probabilistic processes. In Proc. ICALP’97,
volume 1256 of Lecture Notes in Computer Science, pp 430–440, Springer, 1997.

[3] C. Baier. On algorithmic verification methods for probabilistic systems.
Habilitation thesis, submitted, 1998.

[4] A. Bianco, L. de Alfaro: Model checking of probabilistic and nondeterministic
Systems. In Proc. Foundations of Software Technology and Theoretical
Computer Science, volume 1026 of Lecture Notes in Computer Science, pp 499–
513, Springer, 1995.

[5] E.M. Clarke, M. Fujita, P.C. McGeer, J.Yang, and X. Zhao. Multi-terminal
binary decision diagrams: an efficient data structure for matrix representation.
In IWLS’93: International Workshop on Logic Synthesis, Tahoe City, May 1993.

[6] C. Courcoubetis, M. Yannakakis: Markov decision processes and regular events.
In Proc. ICALP’90, volume 443 of Lecture Notes in Computer Science, pages
336–349, Springer, 1990.

[7] C. Courcoubetis and M. Yannakakis. The complexity of probabilistic
verification. Journal of the ACM, 42(4):857–907, 1995.

[8] L. de Alfaro. Formal verification of performance and reliability of real-time
Systems, Technical Report STAN-CS-TR-96-1571, Stanford, 1996.

[9] H. Hansson and B. Jonsson. A logic for reasoning about time and probability.
Formal Aspects of Computing, vol. 6, pages 512–535, 1994.

[10] S. Hart, M. Sharir, A. Pnueli. Termination of probabilistic concurrent programs.
ACM Transactions on Programming Languages, Vol. 5, pages 356–380, 1983.

[11] H. Hermanns and M. Rettelbach. Syntax, semantics, equivalences and axioms
for MTIPP. In Proc. PAPM’94, pages 71–88, Erlangen-Regensberg, 1994.

[12] M. Huth and M. Kwiatkowska. Quantitative analysis and model checking. In
Proc. LICS’97, pages 111–122. IEEE Computer Society Press, 1997.

[13] M. Huth and M. Kwiatkowska. Comparing CTL and PCTL on labeled Markov
chains. In Proc. PROCOMET’98, IFIP. Chapman & Hall, 1998. Also available
as Technical Report CIS-97-16.

[14] M. Huth. The interval domain: a matchmaker for aCTL and aPCTL. Technical
Report CIS-97-17, Kansas State University, 1997.

[15] B. Jonsson, K.G. Larsen: Specification and Refinement of Probabilistic
Processes, Proc. LICS’91, pages 266–277, IEEE Computer Society Press, 1991.

[16] H. Karloff. Linear Programming. Birkhauser, 1991.

[17] U. Klehmet, V. Mertsiotakis: TIPPtool: timed processes and performability
evaluation, Technical Report IMMD VII-3/98, University of Erlangen
Nurnberg, 1998.

18

[18] A. McIver and C. Morgan. A probabilistic temporal calculus based on
expectations. In Proc. Formal Methods Pacific’97. Springer-Verlag, 1997. Also
available as Technical Report PRG-TR-13-97.

[19] A. Pnueli and L. Zuck. Verification of multiprocess probabilistic protocols.
Distributed Computing, 1:53–72, 1986.

[20] A. Schrijver. Theory of linear and integer programming. J.Wiley & Sons, 1987.

[21] R. Segala. Modelling and verification of randomized distributed real-time
systems. Ph.D. Thesis, Department of Mathematics, Massachusetts Institute
of Technology, 1995.

[22] R. Segala, N. Lynch: Probabilistic simulations for probabilistic processes. in
Proc. CONCUR’94, volume 836 of Lecture Notes in Computer Science 836,
pages 481–496, 1994.

[23] K. Seidel, A. McIver and C. Morgan. An introduction to probabilistic predicate
transformers. Technical Report PRG-TR-6-96, Oxford Computing Labratory,
1996.

[24] M. Vardi. Automatic verification of probabilistic concurrent finite-state
Programs. Proc. In Proc. FOCS’85, pages 327–338, 1985.

[25] M. Vardi, P. Wolper. An automata-theoretic approach to automatic program
verification, In Proc. LICS’86, pages 332–344, 1986.

19

	Introduction
	Preliminaries
	Concurrent probabilistic transition systems
	Linear time logic LTL
	Defining lower and upper bounds on probability for the truth-value of LTL formulas
	Atomic propositions and Boolean connectives
	The temporal operators
	Complexity of the method

	Case Study
	Conclusions
	References

