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Abstract. Government documents must be reviewed to identify any sensitive in-
formation they may contain, before they can be released to the public. However,
traditional paper-based sensitivity review processes are not practical for review-
ing born-digital documents. Therefore, there is a timely need for automatic sen-
sitivity classification techniques, to assist the digital sensitivity review process.
However, sensitivity is typically a product of the relations between combinations
of terms, such as who said what about whom, therefore, automatic sensitivity
classification is a difficult task. Vector representations of terms, such as word
embeddings, have been shown to be effective at encoding latent term features
that preserve semantic relations between terms, which can also be beneficial to
sensitivity classification. In this work, we present a thorough evaluation of the
effectiveness of semantic word embedding features, along with term and gram-
matical features, for sensitivity classification. On a test collection of government
documents containing real sensitivities, we show that extending text classification
with semantic features and additional term n-grams results in significant improve-
ments in classification effectiveness, correctly classifying 9.99% more sensitive
documents compared to the text classification baseline.

1 Introduction

Freedom of Information (FOI) laws1,2 legislate that government documents should be
opened to the public. However, many government documents contain sensitive informa-
tion, such as personal or confidential information, that would be likely to cause harm
to, or prejudice the interests of, an individual or organisation if the information were to
be made public. Therefore, FOI laws provide exemptions that negate the obligation to
release information that is of a sensitive nature.

To ensure that sensitive information is not made public, all government documents
must be manually sensitivity reviewed prior to release. However, with the adoption of
digital technologies, such as word processing and emails, the volume of government
documents has increased and, moreover, documents are produced and stored in a more
ad-hoc manner than the paper-based filing systems of previous decades. Therefore, the
traditional sensitivity review process is not practical for the era of born-digital docu-
ments, and governments are facing an increasing backlog of digital documents awaiting
review before they can be considered for release.

1 http://www.legislation.gov.uk/ukpga/2000/36/contents 2 http://www.foia.gov
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Fig. 1. The range of potential sensitivities relating to 2 of the 24 Freedom of Information Act
2000 (FOIA) exemptions, namely International Relations and Personal Information.

There is, therefore, a timely need for automatic sensitivity classification, to assist
the digital sensitivity review process [1]. However, automatic sensitivity classification
is a difficult task. For example, the UK Freedom of Information Act 2000 (FOIA) has
24 FOI exemptions3, each with wide-ranging sub-categories of exemptions. Figure 1
illustrates the scope of potentially sensitive information from just 2 of these 24 exemp-
tions, namely International Relations and Personal Information. As can be seen from
Figure 1, the scope of potentially sensitive information is broad. Moreover, a document
can, potentially, contain many unrelated sensitivities. Therefore, in this work, we view
sensitive information as a composite class of information that can be a result of one or
more different types of sub-category sensitivities.

Text classification [2] is one approach that has been shown to be promising as a
basis for automatic sensitivity identification algorithms [3, 4]. Usually, a text classifica-
tion model is learned by observing statistical patterns in the distributions of individual
key terms from example documents. However, the potential effectiveness of sensitivity
classification from single-term observations is limited, due to the fact that sensitivity
classification is not a topic-oriented task [4] and, moreover, sensitivity tends to arise as
a product of specific factors. For example, International Relations sensitivities are often
a product of who said what about whom. It is, therefore, the relations between terms that
can result in information being sensitive. One approach that has been shown to be effec-
tive at capturing the semantic relations between terms is word embeddings [5]. Word
embeddings are vector space word representations, where each dimension maps to a
latent feature of the word. We expect word embedding to be able to identify latent sen-
sitivity in terms, due to two fundamental properties. Firstly, semantically similar terms
are positioned close to each other within the vector space and, secondly, the directional-
ity between multiple terms in the vector space can encode relations between the terms.
Therefore, relations such as the previous example, who said what about whom, can have
their relations preserved in specific dimensions of vector representations.

In this work, we present a thorough evaluation of the effectiveness of semantic word
embedding features for sensitivity classification. On a test collection of government
documents with real sensitivities, we compare semantic features with grammatical fea-
tures derived from sequences of part-of-speech tags (POS) and term n-gram features.
The contributions of this paper are two-fold. Firstly, we present the first in depth anal-
ysis of the effectiveness of word embeddings for sensitivity classification. Secondly,
we show that semantic word embedding features can significantly improve the effec-
tiveness of sensitivity classification. The combination of semantic word embeddings

3 14 of the 24 FOIA exemptions apply to documents that are to be archived for public access.



and term n-gram features correctly classified 9.99% more sensitive documents than the
baseline text classification approach.

The remainder of this paper is structured as follows. In Section 2 we present work
relating to sensitivity classification and word embeddings for text classification. In Sec-
tion 3, we present the feature sets that we evaluate for sensitivity classification before,
in Section 4, presenting our experimental setup. We present our results in Section 5,
before providing some further analysis in Section 6, and conclusions in Section 7.

2 Related Work

Classifying sensitivities, such as FOI exemptions, to assist the sensitivity review of
government documents, is a relatively new task. Moreover, it can be considered that the
definition of sensitivity, in this context, is more broad than in most of the previous lit-
erature, e.g. preserving the privacy of personal data [6, 7]. McDonald et al. [3] was the
first work to address the automatic classification of FOI exemptions. In that work, the
authors presented a proof-of-concept classifier for classifying specific FOI exemptions,
and found that extending text classification with additional features, such as the num-

ber of subjective sentences and a country risk score, could improve the effectiveness
of text classification for specific sensitivities. The work that we present in this paper
differs from the work of [3] in a number of ways. Firstly, in [3], the authors deployed
individual classifiers for each specific sensitivity, whereas our work addresses the more
challenging task of classification of the composite class of sensitivity. Secondly, in [3],
the authors extended text classification with hand-crafted features that were tailored
for specific sensitivities. In this work, we present a fully automatic approach that could
easily generalise to other collections or sensitivities.

Berardi et al. [4] built on the work of McDonald et al. [3] to optimise the cost-
effectiveness of sensitivity reviewers. In that work, Berardi et al. deployed a utility-

theoretic ranking approach for semi-automatic text classification [8]. Their approach
ranks documents by the expected gain in accuracy that a classification system can
achieve by having a reviewer correct mis-classified instances, i.e. if a reviewer vali-
dates a document that the classifier is least confident about, then the overall accuracy
is increased. Berardi et al. found that their approach performed well at estimating the
correctness of classification predictions from McDonald et al.’s approach, and achieved
substantial improvements in overall classification (+3% - +14% F2). However, these im-
provements were much smaller than their approach had achieved on other tasks and they
concluded that the task of classifying by sensitivity is much harder than topic-oriented

classification.
In other work, relating to FOI exemptions, McDonald et al. [9] investigated methods

for identifying passages of text in documents that contained information that had been
supplied in confidence. In that work, the authors identified confidential information by
measuring the amount of sensitivity in specific part-of-speech (POS) n-grams. Inspired
by the work of Lioma and Ounis [10], who showed that high frequency POS n-grams
have a greater content load, McDonald et al. used POS n-grams with a high sensitivity

load to train a Conditional Random Fields sequence tagger for predicting confidential
sequences. Their work showed that POS n-grams could be effective for identifying a
specific sensitivity. Therefore, we also use POS n-grams as classification features in
this work. However, differently from the work of McDonald et al. [9], we test if POS
n-grams are effective features for classifying the composite class of sensitivity and com-
pare POS n-grams with the performance of word embeddings and term features.



As previously stated in Section 1, word embeddings are vector space representa-
tions of terms [5]. Word embeddings have low dimensionality, compared to the sparse
vector representations more traditionally used in text classification. The dense vector
formation of word embedding models allow them to capture semantic qualities of, and
relations between, terms in a collection. This has resulted in word embeddings becom-
ing very popular in natural language processing tasks, e.g. [11, 12]. Moreover, there
are a number of available word embedding frameworks, such as word2vec [13] and
Glove [14], with models that are pre-trained on large corpora from different domains,
such as Google News4 or Wikipedia5.

Recently, word embeddings have been shown to be effective in Information Re-
trieval and classification tasks, e.g. [15–17]. However, for classification, they have mostly
been used for classifying short spans of text, such as tweets or sentences [17, 18]. Typ-
ically, word embeddings have been used as an initialisation step for neural networks.
However, recently, Balikas and Amini [19] presented a large scale study that integrated
word embeddings as classification features for multi-class text classification. In that
study, the authors obtained document vector representations by deploying simple com-
position functions (e.g. min, average, max) to construct vector representations of com-
binations of words, such as phrases or sentences, from term vector models [20]. They
showed that these compositional document vectors could be effectively used as features
to extend text classification and improve classification performance. In this work, we
follow the methodology of [19, 20] and compose document representations from word
embeddings in the task of sensitivity classification. However, differently from Balikas
and Amini [19], we show how these document representations combined with text fea-
tures can be effective for discovering latent sensitivities.

3 Sensitivity Classification

In this section, we provide an overview of the feature sets that we test for sensitivity
classification. Firstly, since term n-grams have not previously been studied for sensitiv-
ity classification, in Section 3.1, we briefly describe extending text classification with
term n-gram features before, in Section 3.2, presenting the approach we deploy for gen-
erating grammatical features from POS sequences. Lastly, in Section 3.3, we present
the approach that we deploy for generating semantic features using word embeddings.

The expected volumes of individual types of sensitivity vary between specific gov-
ernment departments. For example, in the UK, the Foreign and Commonwealth Of-
fice encounters many more International Relations sensitivities than the Department of
Health. The approaches that we present in this section only depend on the terms in a
collection and require no prior knowledge of specific sensitivities. Therefore, they could
be deployed as part of a first line of defense across government departments.

3.1 Term Features

The first set of features that we evaluate are term features. Term features are a popular
type of feature used for classifying textual documents. Indeed, using the frequencies of
terms in documents to train classifiers, such as Support Vector Machines (SVM) [21],
can be effective for many topic-oriented classification tasks [2].
4 https://code.google.com/archive/p/word2vec/ 5 http://nlp.stanford.edu/projects/glove/



Although sensitivity classification is not a topic-oriented task [4], text classification
has been shown to be a strong baseline approach [3, 4]. A popular, and effective, ex-
tension to text classification is to include additional n-gram term features [2]. N-gram
features for text classification are, typically, a tuple of n contiguous terms from a larger
ordered sequence of terms. Typically, text classification is extended with n-grams where
n  4. However, for sensitivity classification, we expect larger values of n to be more
effective, since they have the potential to capture document structures that, in turn, can
be an indicator of potential sensitivity. For example, table headings, such as Name,

Date of Birth, Residence, can be a reliable indicator of Personal Information sensitivity.
Therefore, in this work we test the effectiveness of larger term n-gram sequences, along
with additional combinations of smaller values of n for completeness.

3.2 Grammatical Features

As previously mentioned in Section 2, part-of-speech (POS) n-grams have been shown
to be effective for identifying text relating to information supplied in confidence [9].
However, as outlined in Section 1, sensitivity is a composite class containing many,
more specific, types of sensitive information (such as confidential information) and the
effectiveness of POS n-grams as features of sensitivity has not been fully studied for
sensitivity classification. Therefore, in this work, we evaluate the effectiveness of POS
n-grams as grammatical features for sensitivity classification.

POS n-gram features are derived similarly to the approach for term n-gram fea-
tures. However, prior to selecting n-grams, a document is represented by the POS tags
it contains. For example, the sentence “The informant provided the information” can
be represented by the following POS tags “DT NN VB DT NN”. When represented as
POS 2-grams, the sentence becomes “DTNN NNVB VBDT DTNN”. POS tags sub-
stantially reduce the vocabulary of a collection and provide a single representation of
similar sentences. For example, sentences that are about different entities and actions
but have the same grammatical structure have a single representation.

3.3 Semantic Features

In this section, we present the approach that we deploy for extending text classification
with semantic features using word embeddings. As previously mentioned in Section 1,
sensitivity is often a product of a combination of factors, such as who said what about

whom. The common factors of these types of sensitivity are two-fold: Firstly, relations
between terms are often preserved over multiple sensitivities. For example, in the sen-
tences “the assailant denied offering the plans for the attack” and “The informant pro-
vided us the names of the suspect” the relation of Entity A giving something to Entity B
is common to both sentences; The second common factor is that the entities or actions
often have similar meaning, e.g. offering/provided or informant/assailant.

Word embedding models are trained by observing the contexts in which terms usu-
ally appear within large corpora, with the assumption that words occurring within sim-
ilar contexts are semantically similar. The resulting word embedding models have two
fundamental properties that can help us to identify relational sensitivities. Firstly, se-
mantically similar terms tend to appear close to each other in the vector space (e.g. infor-
mant/assailant) and, secondly, the directionality between terms in the vector space can



Table 1. Experimental Setup: Feature set combinations and abbreviations.
Feature Set Stand Alone Extending Baseline
Text Classification (baseline) Text -
Term n-grams TN Text+TN
Grammatical POS Text+POS
Semantic WE Text+WE
Term & Grammatical TN+POS Text+TN+POS
Term & Semantic TN+WE Text+TN+WE
Grammatical & Semantic POS+WE Text+POS+WE
Term & Grammatical & Semantic TN+POS+WE Text+TN+POS+WE

encode relations between terms (e.g. the direction of assailant to offering is close to par-
allel with informant to provided). This, in turn, means that semantically similar relations
tend to have similar values in specific dimensions of their embedding representations.

To derive semantic features, we follow the approach of Balikas and Amini [19] to
construct a document representation from word embeddings using a set of composi-
tion functions, min, mean and max [22, 23]. For a given word embedding model, W ,
of term vectors, V term 2 W and a document collection, C, a document vector rep-
resentation, V doc

, |vdoc| = |vterm|, is composed by applying a composition function,
F 2 {min,mean,max} to each document, d 2 C. For example, using the compo-
sition function Fmax, the value of the nth dimension of the document representation,
denoted as V doc

d,n

, is:
V

doc

d,n

= max(V term

i,n

)8i 2 C

d

(1)

Each dimension of V doc can then be used as a single feature for the purposes of classifi-
cation. Moreover, in addition to the composition functions min, mean and max, we also
deploy the compound function concat, where the resulting document representation is:

Concat(d) = [min(d),mean(d),max(d)] (2)

Word embedding models capture the semantic relations of terms within a collection.
Therefore, it is possible that semantic relations which are important for identifying sen-
sitivities within our test collection may not be present in our chosen model. To address
this, we construct document representations using two word embedding models that
have been trained on different domains, namely Google News6 and Wikipedia7. To do
this, we apply the selected composition function, F , to each model, w

i

, separately, to
obtain a document representation from each model. We concatenate the document rep-
resentations and use each vector dimension as a separate classification feature, resulting
in the document representation:

semantic representation(d) = [F (w
i

, d), F (w(i+1), d), ...F (w
n

, d)] (3)

4 Experimental Setup

In this section we present our experimental setup for evaluating the effectiveness of
term, grammatical and semantic features for sensitivity classification. The research
questions that we address are two-fold. Firstly, RQ1: “Are semantic word emdeddings
features more effective for sensitivity classification than grammatical or term features?”
and, secondly, RQ2: “Does using multiple word embedding models trained on different
6 https://code.google.com/archive/p/word2vec/ 7 http://nlp.stanford.edu/projects/glove/



domains further improve the effectiveness of semantic features for sensitivity classifi-
cation?”. Table 1 presents the combinations of feature sets that we evaluate, and the
abbreviations that we use to denote each combination in the remainder of this paper.

Collection: We use a test collection of 3801 government documents that contain
real sensitivities. The documents were sensitivity reviewed by trained government sen-
sitivity reviewers, who assessed the documents against 2 FOIA exemptions, namely
International Relations and Personal Information. All documents that were judged as
containing any Exemption 27 or Exemption 40 sensitivities were labeled as sensitive.
Table 2 presents the resulting collection statistics, after stopword removal. We use a
5-fold Cross Validation to perform the binary classification sensitive vs. not-sensitive.
To address the class imbalance in the collection (13.2% sensitive), we match the num-
ber of sensitive and not-sensitive training instances by randomly down-sampling the
not-sensitive documents in each fold.

Table 2. Salient statistics of our test collection.

Total Not Sensitive Unique Avg. Doc
Documents Sensitive International Relations Personal Information Both Total Terms Length

3801 3299 231 156 115 502 122 348 710 terms

Baseline: We evaluate each of the feature sets against a baseline text classification
system using bag-of-words uni-gram term features, denoted as Text. We remove stop-
words and terms that appear in only 1, or more than half, of the training documents
in a fold. Feature values are binary, i.e. term features are either present or not. When
extending text classification, additional features are scaled in the range [0, 1].

Term Features: For term features, presented in Section 3.1, we test for term n-
grams where n = {2..10}. When testing for values of n, we include n-grams for all
values < n, i.e. when n = 3 feature vectors are constructed from all bi-grams and
tri-grams. In the remainder of this paper, we denote term features as TNn (i.e. for the
previous example, TN3). Feature values are binary, i.e. either present or not.

Grammatical Features: For grammatical features, presented in Section 3.2, we use
the TreeTagger8 part-of-speech tagger to POS tag documents and use a reduced set of
15 POS tags following [9, 10]. We test for POS n-grams where n = {1..10}. Follow-
ing the experimental setup for term features, when testing for values of n, we include
n-grams for all values < n. Grammatical features are denoted as POSn.

Semantic Features: We use pre-trained word embedding models and test if using
two word embeddings models trained on different domains improves the effectiveness
of semantic features for sensitivity classification.

Table 3. Pre-trained word embedding models for deriving semantic features.

Model Architecture Vocabulary
Size #Dimensions Training Context

Window Ref

Google News word2vec 3M 300 Negative Sampling BoW5̃ WEgn

Wikipedia+Gigaword5 Glove 400,000 300 AdaGrad 10+10 WEwp

8 http://www.cis.uni-muenchen.de/ schmid/tools/TreeTagger/



Table 4. Results for combinations of textual, grammatical and semantic feature sets, compared
against the text classification baseline.

Configuration precision TPR TNR F1 F2 BAC auROC
Text 0.2410 0.6573 0.6841 0.3520 0.4874 0.6707 0.7419
TN6 † 0.2607 0.6970 0.6975 0.3786 0.5207 0.6972 0.7626
POS10 0.2149 0.6095 0.6611 0.3177 0.4456 0.6353 0.6861
WEwp(concat) 0.2019 0.6055 0.6350 0.3025 0.4321 0.6203 0.6801
WEgn(concat) 0.1959 0.6034 0.6226 0.2956 0.4258 0.6130 0.6434
WEwp+WEgn(concat) 0.2106 0.6235 0.6432 0.3146 0.4474 0.6334 0.6962
TN10+POS10 0.2647 0.5974 0.7438 0.3632 0.4724 0.6706 0.7407
TN10+WEwp(concat) † 0.2634 0.7130 0.6948 0.3839 0.5302 0.7039 0.7797
TN9+WEgn(concat) † 0.2552 0.7208 0.6778 0.3761 0.5267 0.6993 0.7638
TN8+WEwp+WEgn(concat) † 0.2657 0.7309 0.6911 0.3890 0.5401 0.7110 0.7772
POS10+WEwp(concat) 0.2174 0.6512 0.6405 0.3241 0.4619 0.6458 0.7120
POS10+WEgn(concat) 0.2081 0.6275 0.6356 0.3117 0.4455 0.6315 0.6956
POS10+WEwp+WEgn(concat) 0.2199 0.6552 0.6462 0.3280 0.4670 0.6507 0.7202
TN10+POS10+WEwp(concat) † 0.2592 0.6931 0.6954 0.3760 0.5171 0.6942 0.7585
TN10+POS10+WEgn(concat) † 0.2474 0.6651 0.6863 0.3584 0.4937 0.6757 0.7472
TN9+POS10+WEwp+WEgn(concat) † 0.2531 0.6850 0.6887 0.3679 0.5078 0.6868 0.7599

Table 3 presents the word embedding models that we test. For each model, we evalu-
ate each of the composition functions presented in Section 3.3, min, mean, max and con-

cat. As can be seen from Table 3, the models have 300 dimensional vectors and, hence,
the functions min, mean and max result in 300 document features (900 for concat).

Classification and Metrics: For pre-processing and classification, we use scikit-
learn9. As our classifier, we use SVM with a linear kernel and C = 1.0, since this
theoretically motivated, default, parameter setting has been shown to provide the best
effectiveness for text classification [2, 24]. We select F2 as our main metric since sen-
sitivity classification is a recall oriented task [3, 4], where the consequences of miss-
classifying a sensitive document are much greater than miss-classifying a not-sensitive
document. We also report the standard F-Measure (F1) and, to account for class imbal-
ance, we report Balanced Accuracy (BAC), where 0.5 BAC is random. We also report
Precision, True Positive Rate (TPR), True Negative Rate (TNR) and the area under the
Receiver Operating Characteristic curve (auROC) which, when documents are ranked
by the output of a classifier’s decision function, denotes the probability that a randomly
selected positive instance is ranked higher than a randomly selected negative instance.

We test statistical significance, p < 0.05, using McNemar’s non-parametric test [25]
which is calculated from the prediction contingency tables for a pair of classifiers. Sig-
nificant improvements compared to the text classification baseline (Text) are denoted
with †. Additionally, in Table 5, significant improvements compared to the text classi-
fication with additional term features (Text+TN) are denoted with ‡.

5 Results

In this section, to answer the two research questions elicited in Section 4, we present the
results of our classification experiments, over two tables: Table 4 presents the classifi-
cation performance for each combination of textual, grammatical and semantic feature
sets as stand-alone features; Table 5 presents the performance of each combination of
feature sets extending the text classification baseline.
9 http://scikit-learn.org/



Table 5. Results for combinations of textual, grammatical and semantic feature sets extending
the text classification baseline.

Configuration precision TPR TNR F1 F2 BAC auROC
Text 0.2410 0.6573 0.6841 0.3520 0.4874 0.6707 0.7419
Text+TN9 † 0.2667 0.7010 0.7060 0.3858 0.5279 0.7035 0.7782
Text+POS10 † 0.2596 0.6532 0.7160 0.3707 0.4999 0.6846 0.7498
Text+WEwp(concat) † 0.2474 0.6692 0.6905 0.3609 0.4984 0.6799 0.7584
Text+WEgn(concat) † 0.2435 0.6653 0.6850 0.3560 0.4933 0.6752 0.7459
Text+WEwp+WEgn(concat) † 0.2557 0.6891 0.6947 0.3725 0.5138 0.6919 0.7594
Text+TN6+POS10 † 0.2780 0.6751 0.7308 0.3920 0.5224 0.7029 0.7725
Text+TN9+WEwp(concat) † 0.2678 0.7090 0.7051 0.3881 0.5322 0.7070 0.7874
Text+TN6+WEgn(concat) † 0.2699 0.7169 0.7044 0.3913 0.5371 0.7107 0.7784
Text+TN7+WEwp+WEgn(concat) † ‡ 0.2730 0.7229 0.7069 0.3956 0.5425 0.7149 0.7859
Text+POS10+WEwp(concat) † 0.2507 0.6493 0.7041 0.3609 0.4913 0.6767 0.7620
Text+POS10+WEgn(concat) † 0.2515 0.6571 0.7020 0.3626 0.4950 0.6796 0.7546
Text+POS10+WEwp+WEgn(concat) † 0.2504 0.6532 0.7026 0.3612 0.4930 0.6779 0.7634
Text+TN4+POS10+WEwp(concat) † 0.2674 0.6811 0.7147 0.3827 0.5181 0.6979 0.7789
Text+TN9+POS10+WEgn(concat) † 0.2634 0.6830 0.7081 0.3786 0.5154 0.6955 0.7747
Text+TN6+POS10+WEwp+WEgn(concat) † 0.2657 0.6910 0.7081 0.3825 0.5214 0.6995 0.7798

The baseline text classification approach (Text) is shown at the top of Tables 4 & 5,
followed by sections for single, paired and triple feature sets respectively. We present
results for term features (TN), grammatical features (POS) and semantic features (WE).
For WE, we present the results of the single word embedding models, Wikipedia (WEwp)
and Google News (WEgn), and when used together (WEwp+WEgn). Due to space con-
straints in Tables 4 & 5, we use F2 as our preferred metric and present the best per-
forming size of n-grams for TN and POS. For semantic features, we present the best
performing composition function (min, max, mean or concat).

Firstly, we note that the text classification baseline (Text) achieves 0.4874 F2 and
0.6707 BAC, markedly better than random (0.5 BAC). Addressing RQ1, from Table 4,
we observe that semantic features (WE) on their own are competitive with, but do not
out perform, the text classification baseline. Additionally, we can see that the concat

composition function consistently performs best. These findings are in line with the
findings of Balikas and Amini [19] on a different collection.

As single feature sets, only text n-gram features (TN) achieve significant improve-
ments compared to the text classification baseline (0.5207 F2 vs 0.4874 F2), denoted
as †. This shows that text features provide a strong foundation for sensitivity classifi-
cation. Moreover, the best performing text n-gram size is n = 6, showing that larger
sequences of text are indeed important for sensitivity classification. Adding semantic
features to the text n-grams results in additional improvements, compared to the base-
line, and TN8+WEwp+WEgn(concat) achieves the best overall performance in Table 4.

From Table 5, we can see that extending text classification with semantic features
significantly improves classification performance. The best performing configuration,
Text+WEwp+WEgn(concat), achieves a 5.5% increase in F2 score, compared with the
baseline. However, extending text classification with term n-grams (Text+TN9) achieves
the best classification performance for single feature sets (+8.3% F2).

Overall, the best performance is achieved when text classification is extended with
additional term and semantic features combined, Text+TN7+WEwp+WEgn(concat). This
combination achieves 0.5425 F2 and 0.7229 TPR, correctly classifying 9.99% more



sensitive documents than the text classification baseline. Notably, this combination also
results in significant improvements compared to extending text classification with only
term n-gram features (Text+TN9), denoted as ‡ in Table 5.

In response to RQ1, firstly, we find that semantic word embedding features are, in-
deed, useful features for sensitivity classification. This is shown by the observation of
significant improvements to classification effectiveness when they are added to the next
best performing feature set, denoted by ‡ in Table 5. However, we conclude that the best
overall classification performance is achieved when text classification is extended with
additional term n-gram and semantic features. Moving to RQ2, Tables 4 & 5 show that
using multiple embedding models, WEwp+WEgn, consistently out performs either of
the single models, WEwp or WEgn, when they are used individually. Therefore, we con-
clude that using multiple word embedding models trained on different domains does,
indeed, improve the effectiveness of semantic features for sensitivity classification.

6 Analysis

In this section, we provide analysis of the findings from our classification experiments.
In Section 6.1, we discuss the classification predictions that are correct solely due to the
word embedding features. In Section 6.2, we discuss the benefits for the sensitivity re-
view process from extending text classification with semantic and term n-gram features.

6.1 Semantic Features

We now provide a short analysis of the documents we can correctly predict due to
semantic features. We compare the best performing system, Text+TN+WEwp+WEgn,
against text classification extended with term n-gram features, Text+TN.

Additional semantic features (from multiple domains) enable the classifier to con-
vert 23 False Negative predictions to True Positive predictions, and 144 False Positive
predictions to True Negative predictions. 13.77% of these converted predictions were
sensitive documents. From the 23 converted sensitive documents, 15 are sensitive with
respect to International Relations, 4 are sensitive with respect to Personal Information

and 4 are sensitive with respect to both sensitivities.
Each of the documents with International Relations sensitivity contain multiple

paragraphs that recount interactions and conversations between people and, moreover,
the document’s sensitivity is directly linked to these. This is in line with how we expect
semantic features to enhance sensitivity classification, since these relations can be pre-
served in the dimensions of the vector representations. Interestingly, the sensitivities in
documents relating to Personal Information also relate to actions, such as booking ho-
tels, forced resignations and visa bans. Therefore, we intend to investigate such patterns
of interaction relations further in future work, to develop classification rules for sensi-
tivity and evaluate their cost/benefit trade-off for various sensitivity review user models.

6.2 Sensitivity Review

It is useful to provide sensitivity reviewers with a reliable way to predict how many sen-
sitive documents remain in a partially reviewed collection. One way to approach this is
to rank documents by a classifier’s decision function output and review the ranking se-
quentially. We can then ask “how conservative does a classifier have to be, to correctly



Fig. 2. (a) Receiver Operating Characteristic Curve. (b) True Positive Rate vs. Classification
Threshold. The blue line shows the baseline text classification (Text) and the red line shows
Text+TN7+WEwp+WEgn(concat). The dashed line in (a) shows a random classifier. The dashed
lines in (b) show the classification threshold required to achieve 0.95 TPR.

predict a certain percentage of sensitive documents?” In line with this user model, Fig-
ure 2 presents the Receiver Operating Characteristic curve, and True Positive Rate vs
classification threshold for our classifier with additional term and semantic features,
compared against the baseline text classification.

As can be seen from Figure 2(a), the additional features increase the True Positive
Rate throughout the ranking. Therefore, a reviewer can have increased confidence in
the system. Additionally, Figure 2(b), shows that semantic and term features enable the
classifier to be less conservative. For example, the gray dashed lines in Figure 2(b) show
that, with the additional features, we can correctly classify 95% of all sensitive doc-
uments by lowering the classification threshold to -0.46, whereas, the baseline would
need to be set at -0.645. By using our approach, on this test collection, a reviewer would
need to review 262 fewer documents to identify 95% of all sensitive documents.

7 Conclusions

In this work, we presented an effective approach for automatically classifying sensi-
tive information in government documents, to assist the sensitivity review process. Our
classifier deploys semantic features, derived from pre-trained word embedding models,
to identify latent sensitive relations in documents. In a thorough evaluation, we com-
pared the performance of the semantic features against grammatical and term features,
as stand-alone features and extending text classification. We found that extending text
classification with semantic features enabled our classifier to make significantly more
accurate predictions, according to McNemar’s test. Extending text classification with
term n-gram and semantic features resulted in an 11.3% increase in F2 score, correctly
classifying 9.99% more sensitive documents than the baseline approach. Moreover, this
approach markedly reduced the number of documents a reviewer would need to review
to identify 95% of all sensitive documents in our collection (262 fewer documents).
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