
Active Learning Strategies for Technology Assisted
Sensitivity Review

Graham McDonald1, Craig Macdonald2, Iadh Ounis2

University of Glasgow, G12 8QQ, Glasgow, UK
1g.mcdonald.1@research.gla.ac.uk

2firstname.lastname@glasgow.ac.uk

Abstract. Government documents must be reviewed to identify and protect any
sensitive information, such as personal information, before the documents can be
released to the public. However, in the era of digital government documents, such
as e-mail, traditional sensitivity review procedures are no longer practical, for ex-
ample due to the volume of documents to be reviewed. Therefore, there is a need
for new technology assisted review protocols to integrate automatic sensitivity
classification into the sensitivity review process. Moreover, to effectively assist
sensitivity review, such assistive technologies must incorporate reviewer feed-
back to enable sensitivity classifiers to quickly learn and adapt to the sensitivities
within a collection, when the types of sensitivity are not known a priori. In this
work, we present a thorough evaluation of active learning strategies for sensitivity
review. Moreover, we present an active learning strategy that integrates reviewer
feedback, from sensitive text annotations, to identify features of sensitivity that
enable us to learn an effective sensitivity classifier (0.7 Balanced Accuracy) using
significantly less reviewer effort, according to the sign test (p < 0.01). Moreover,
this approach results in a 51% reduction in the number of documents required to
be reviewed to achieve the same level of classification accuracy, compared to
when the approach is deployed without annotation features.

1 Introduction

At least 95 countries implement Freedom of Information (FOI) laws legislating that
governments documents should be open to the public1. However, many such documents
contain sensitive information, such as confidential or personal information and, there-
fore, FOI laws provide exemptions to prevent the release of such information. Gov-
ernment documents must, therefore, be sensitivity reviewed to ensure that no exempt
information is released.

Historically, sensitivity review has been an exhaustive manual review of all docu-
ments being considered for release. However, in the era of born-digital documents such
as e-mail, this purely manual review is not feasible [1], for example due to the volume
of digital documents that are to be reviewed. Recently, automatic sensitivity classifica-
tion algorithms have been shown to have potential for effectively identifying sensitive
information in documents [2–5]. However, the potential consequences from the inad-
vertent release of sensitive information can be severe, for example if the identity of an
informant is made public it can put the informant and their family at risk. Therefore,
until automatic sensitivity classification is trusted, all documents that are to be released
1 http://www.right2info.org/access-to-information-laws/access-to-information-laws



will continue to be manually reviewed. With this in mind, there is a need for appropriate
protocols to integrate sensitivity classifiers into the review process to assist reviewers.

Technology assisted review (TAR), most notably associated with e-discovery [6,
7], is a process whereby human reviewers and an Information Retrieval (IR) system
actively work together to identify relevant documents. The TAR protocol typically con-
sists of two components, a key-word search system and a learning algorithm. Given a
collection of documents and a request for production, e.g. “find all documents relating
to ..”, the TAR system formulates a query2 to retrieve an initial pool of documents to be
manually reviewed and labeled, or coded. The labeled pool is then used as a seed set to
train the learning algorithm. The TAR protocol is then an iterative process whereby the
learner predicts the k most relevant unlabeled documents which the reviewer labels. The
newly labeled documents are added to the training data and the algorithm is re-trained.

The TAR protocol can potentially be adapted to meet the needs of digital sensi-
tivity review. However, in sensitivity review there is no equivalent to the request for
production, since the types of sensitivity within the collection are not known a priori.
Moreover, a judgment of sensitivity is often dependent on the context in which the in-
formation is produced and the time at which it is reviewed. Therefore, with this in mind,
we propose to derive a representation of the sensitivities within a collection by having a
reviewer annotate the specific text in a document that led to the reviewer’s decision that
the document is sensitive. Moreover, we propose to incorporate this reviewer feedback
into the classification model to more quickly learn and adapt to the sensitivities within
a collection at the time of review, while using minimal reviewing effort.

One possible strategy for integrating reviewer feedback into classification is active
learning [8]. In active learning, the learning algorithm selects the order that documents
are presented to a reviewer, with the aim of minimising the reviewer effort that is re-
quired to learn an effective classifier. Active learning has previously been shown to
be an effective strategy for e-discovery TAR [6] and for topic-oriented text classifica-
tion [9]. However, sensitivity is not topic-oriented [3] and, therefore, it is not obvious
which active learning strategy is most appropriate for sensitivity classification.

In this work, we simulate the technology assisted sensitivity review process to
present a thorough evaluation of active learning strategies for identifying sensitivities
within a collection. We test two well-known uncertainty sampling active learning strate-
gies from the literature and evaluate, as an active learning strategy, a semi-automated
text classification [10] approach, that has previously been shown to be effective for in-
creasing the cost-effectiveness of sensitivity reviewers [3]. Moreover, we show that by
extending these approaches to incorporate reviewer feedback from sensitive text an-
notations, we can improve upon the raw active learning strategies to develop effective
sensitivity classifiers more quickly, i.e. using less reviewer effort.

The contributions of this paper are two fold. Firstly, we provide the first thorough
evaluation of active learning strategies for automatic sensitivity classification. Secondly,
we present an active learning strategy that integrates reviewer feedback, from sensitive
text annotations, to identify features of sensitivity that enable us to learn an effective
sensitivity classifier (0.7 Balanced Accuracy) using significantly less reviewing effort,
according to the sign test (p < 0.01). This approach resulted in a 51% reduction in the
2 In active learning parlance, “query” usually refers to membership queries i.e. the system poses
queries in the form of instances to be reviewed. In this work we use query in the IR sense, i.e. a
textual passage used to retrieve relevant documents from an IR system. For membership queries
we say that the system suggests documents to be reviewed.



number of documents that had to be reviewed to achieve the same level of classification
accuracy, compared to when the approach was deployed without annotation features.

The remainder of this paper is structured as follows. Firstly, we present related work
in Section 2, before presenting the active learning strategies that we evaluate in Sec-
tion 3. We present our experimental setup in Section 4 and results in Section 5, before,
finally, presenting our conclusions in Section 6.

2 Related Work

In this section we, firstly, present work relating to automatic sensitivity classification,
before discussing technology assisted review and active learning later in the section.

The task of automatically classifying sensitive information that is exempt from
release under Freedom of Information (FOI) laws was first introduced by McDon-
ald et al [2]. In that work, the authors presented a proof-of-concept sensitivity clas-
sifier for identifying two FOI exemptions. In [2], the authors showed that text classi-
fication [11] can provide an effective baseline approach for sensitivity classification,
achieving markedly above random effectiveness (0.7372 Balanced Accuracy). In [2],
the authors also extended text classification with additional hand-crafted features, such
as named entities of interest (e.g. politicians) and a subjective sentences count, which
resulted in improved effectiveness for most of the reported metrics (e.g. + 5% F2).

Feature engineering for sensitivity classification was subsequently investigated fur-
ther by McDonald et al. [5]. In that work, the authors constructed document represen-
tations using word embeddings to capture semantic relations in the documents, such
as who said what about whom. In [5], the authors evaluated the effectiveness of these
semantic features compared with textual and syntactic features and found that com-
bining semantic and textual features resulted in the largest increases in effectiveness,
identifying ~10% more sensitive documents than the baseline approach.

Other works on sensitivity classification have, for example, investigated identifying
sequences of sensitive text within documents [4] and selecting an appropriate classi-
fier kernel for sensitivity [12]. However, the approaches mentioned thus far [2, 4, 5, 12]
have evaluated sensitivity classification as a 1-shot batch supervised learning process,
and therefore relied on there being a pre-judged representative collection with reliably
labeled examples of the sensitivities within the collection. This can be problematic for
sensitivity classification since, as previously mentioned in Section 1, the types of sensi-
tivity in the collection are not known a priori. Therefore, differently from [2, 4, 5, 12], in
this work we investigate how to incorporate reviewer feedback into the learning process
to quickly learn an effective sensitivity classifier using minimal reviewing effort.

Berardi et al. [3] was the first work to investigate optimising the cost-effectiveness
of sensitivity reviewers. In that work, the authors evaluated the effectiveness of a utility-
theoretic [10] semi-automated text classification (SATC) approach, for sensitivity clas-
sification. The approach of Berardi et al. [10] addresses a scenario in which the under-
lying state-of-the-art classifier is not effective enough to meet a strict level of accuracy
required within an organisation, e.g. reviewing for sensitivity within governments. The
approach ranks documents by the expected gain in accuracy that a classification system
could expect to achieve by having a reviewer correct mis-classified instances. Berardi
et al. [3] found that their approach achieved substantial improvements in overall clas-
sification (+3% – +14% F2). However, the authors concluded that these improvements



were much smaller than their approach had achieved for topic-oriented classification
tasks, for example in [10]. In this work, we evaluate the utility-theoretic approach of
Berardi et al. [3, 10]. However, differently from those works, which assume that the
underlying classifier is state-of-the-art, we evaluate the approach as an active learning
strategy to incorporate reviewer feedback into the underlying sensitivity classifier.

Moving on to technology assisted review (TAR), as previously stated in Section 1,
TAR is an iterative process, whereby a learning algorithm selects batches of documents
to be presented to a reviewer to be labeled. The labeled documents are then added to the
current training data and the learner is re-trained. This iterative process continues until
it is judged that sufficiently many relevant documents have been identified [6]. TAR has
been applied to fields such as systematic review for evidence-based medicine [13], test
collection construction [14] and, most notably, e-discovery [7, 15], where TAR has been
shown to be more effective and more efficient than exhaustive manual review [16].

We believe that the TAR protocol can be adapted to meet the needs of sensitivity re-
view. However, there are two noticeable differences in the objectives of TAR, for exam-
ple in e-discovery, and reviewing for sensitivity. Firstly, the goal of TAR for e-discovery
is to identify close to all the relevant documents in a collection while minimising the re-
quired reviewing effort [6], while in sensitivity review we must identify all sensitivities
in any documents that are to be released to the public. Secondly, as previously stated in
Section 1, there is no request for production, or query, in sensitivity review. Therefore,
in this work we simulate TAR for sensitivity review to incorporate reviewer feedback
into the TAR protocol to quickly learn to identity sensitivities from the reviewer feed-
back. Moreover, we evaluate approaches for selecting documents to be presented to a
reviewer so that we can learn the sensitivities using the least reviewing effort possible.

Many TAR approaches deploy an active learning component to select documents
to be reviewed. For example, Cormack and Grossman [6] presented an approach called
continuous active learning and showed that selecting initial training documents through
a simple keyword search, and subsequent training documents by continuous active
learning, required significantly less (according to a sign test with p < 0.01) review-
ing effort to achieve any given level of recall, compared to when the learning algorithm
did not implement an active learning strategy to select the documents to use for training.

Pool-based active learning is a well known paradigm where by the learner selects
documents to be reviewed, and labeled, from a pool of unlabeled documents. The most
popular approach to pool-based active learning is uncertainty sampling, which has been
extensively studied for developing text classification algorithms [8]. For example, Lewis
and Gale [17] evaluated the effectiveness of uncertainty sampling, compared with rel-
evance sampling and random sampling. In that work, the authors found that, for the
same amount of labeling effort, uncertainty sampling usually resulted in the most effec-
tive classifier compared to the other approaches, when relevant documents are relatively
abundant in the collection.

However, the selection of an appropriate active learning strategy is dependent on the
nature of both the type of classification task and the task’s objective [8]. Moreover, most
of the research into active learning for text classification addresses a scenario in which
there is a large collection of representative unlabeled examples available. Differently
from that scenario, in this work, we investigate how quickly different active learning
strategies can effectively learn a classifier for sensitivity classification when the types
of sensitivities in a collection are not known a priori.
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Fig. 1. Technology assisted sensitivity review simulation architecture.

3 Active Learning Methodologies

In this section, we present the active learning strategies that we evaluate for technology
assisted sensitivity review. Firstly, in Section 3.1, we provide some preliminary infor-
mation regarding our methodology for simulating technology assisted sensitivity review
and the underlying classifier that we use as a basis for evaluating our active learning ap-
proaches. In Sections 3.2 - 3.4, we present the active learning strategies that we evaluate.

3.1 Preliminaries: Simulating Technology Assisted Sensitivity Review

Figure 1 presents the process that we deploy to simulate technology assisted sensitiv-
ity review. The process aims to efficiently solicit sensitivity judgments, for a document
collection, D, that can subsequently be used to train a sensitivity classifier. The col-
lection, D, consists of two separate subsets. Firstly, an unlabeled collection, Du, for
which we do not know the collection’s sensitivities and, secondly, a labeled collec-
tion,Dl, which has been sensitivity reviewed and, therefore, has associated class labels,
li, l ∈ {sensitive, nonSensitive}. Initially, |Du| = |D|, |Dl| = 0 and, moreover, at
all times |Du| + |Dl| = |D|. Our review simulation consists of three separate system
components. Firstly, an active learning component, AL. At each iteration of the review
cycle, AL, is responsible for identifying k documents from Du that would be likely to
provide the most valuable evidence for training a sensitivity classifier, if their associated
class labels, l1..lk, were known. To do this, AL ranks documents, d1..d|Du|, di ∈ Du,
by means of an active learning strategy, alj , and selects the top k ranked documents.
These top k documents are presented to the reviewer in rank order, d1..dk, via the sec-
ond system component, a user interface, UI , that enables the reviewer to label each
of the documents with a corresponding class label li. For documents that are labeled
lsensitive, the reviewer also provides text-level annotations, adi, |ad| ∈ {0..|di|}, as il-
lustrated in Figure 1, that indicate which text within the document led to the reviewer’s
li decision. The newly labeled documents, with their associated labels l1..lk and anno-
tations ad are integrated into the labeled document set,Dl. Documents fromDl are then
used to train the final system component, a sensitivity classifier, C. For C we select a
multinomial naive Bayes (MNB) classifier, since it has been shown to be effective for
text classification tasks [18] and, moreover, the model can be easily adapted to inte-
grate different sources of feature evidence by simply weighting the underlying feature’s
multinomial [9, 19]. Once C has been trained, it is deployed and its predicted class la-
bels, l̂i, with a corresponding confidence score, ci, for the documents in Du are input to



AL to provide evidence of the classifier’s current knowledge. The simulation proceeds
in this iterative cycle until all documents are labeled, |Du| = 0, |Dl| = |D|.

3.2 Uncertainty Sampling

Uncertainty sampling [17] is a well known set of active learning approaches for evalu-
ating the informativeness of documents in an unlabeled collection. In uncertainty sam-
pling the algorithm tries to identify, and present to a reviewer, the documents in the
collection for which the classifier is least certain about their correct class labeling.

In general, uncertainty sampling is a popular set of approaches for active learn-
ing since they are relatively easy to implement, are not computationally expensive and
have been shown to be effective for many classification tasks [8]. Moreover, when de-
ployed with a classifier that outputs probabilities or confidence scores, the classifier can
be viewed as a black box. We test two well-known uncertainty sampling approaches,
which have previously been shown to be effective for topic-based text classification [8,
17]. However, as previously mentioned in Section 1, sensitivity is not topic-based and,
therefore, we can not presume that they will be effective for sensitivity classification.

The first uncertainty sampling strategy that we evaluate is entropy based uncer-
tainty [8]. Entropy uncertainty sampling ranks documents by the sum of their label
entropies [20], H(L) = −

∑
i P (li)logP (li), over all possible labels, li. One way to

view the intuition of this approach is that it calculates the number of bits it would take
to encode the distribution of possible outcomes for L. Therefore, documents with a high
H(L) score should provide more information about their assigned label.

The second uncertainty sampling strategy that we evaluate is margin sampling [21],
M(di, l1, l2) = |P (l1|di) − P (l2|di)|. This approach to uncertainty sampling calcu-
lates the margin, or difference, between the classifier predicted probability scores for
a document’s first and second most likely classification labels. The intuition of mar-
gin sampling is that documents with a small margin between the two most likely class
prediction probabilities are more ambiguous and, therefore, knowing the class label of
these documents would be most beneficial to the classifier.

3.3 Utility

As previously mentioned in Section 2, we evaluate the approach of Berardi et al. [10]
as an active learning strategy for technology assisted sensitivity review. Berardi et al.’s
approach was designed to rank documents in an order that would achieve the maximum
increase in overall classification if a reviewer was to start from the top of the ranking
and proceed down the list correcting any mis-classifications until an available reviewing
budget had expired. This scenario is different from active learning in that it assumes that
the underlying classifier is state-of-the-art and its objective is to produce the most effec-
tive ranking for a given reviewing budget. However, we believe that the utility-theoretic
approach should perform well as an active leaning strategy for sensitivity classification
since it has previously been shown to be able to improve the cost-effectiveness of sen-
sitivity reviewers [3] and, moreover, by feeding the corrected classifications back into
the learning process we are, in effect, just closing the loop in the active learning cycle.

The approach’s intuition is that in text classification problems where there is an im-
balance in the distributions of classification categories, and a metric is chosen to account
for this imbalance (e.g. F2), the improvements in effectiveness, or gain, that are derived



from correcting a false positive prediction is not the same as that for correcting a false
negative prediction. This is important for sensitivity, since the consequences of mis-
classifying a sensitive document are much greater than that of a non-sensitive document.

In the case of binary classification, the utility-theoretic measure is defined asU(di) =∑
e P (e)G(e), where P (e) is the probability of an event, e, occurring (i.e. a false nega-

tive or a false positive prediction) and G(e) is the gain that can be obtained if that event
does occur. To calculate the probability of an event occurring, the approach relies on
the underlying classifier’s label predictions, l̂i, on documents in Du to be reliable. The
probability of a false negative prediction, given that the classifier has made a negative
prediction, is then calculated as P (FN(di)|l̂i = neg) = 1 − eσci

eσci+1 , where eσci

eσci+1
is a generalised logistic function that monotonically converts a classifier’s confidence
score, c, in the range (−∞,+∞) to real values in the range [0.0, 1.0]. The probability
of a false positive occurring is computed analogously.

G(e) is calculated on Dl and G(FN) 6= G(FP ). This inequality is reflected in
the definitions of the gain functions G(FN) = 1

FN ( 2(TP+FN)
2(TP+FN)+FP −

2TP
2TP+FP+FN )

and G(FP ) = 1
FP ( 2TP

2TP+FN −
2TP

2TP+FP+FN ). To compute G(FN) and G(FP ) the
TP, FP and FN frequency counts are derived by performing a k-fold cross validation
on Dl. The corresponding frequencies are then obtained by the maximum-likelihood
estimation α̂ML = αDl · |Dl|/|Du|, α ∈ {TP, FP, FN}. Berardi et al. provide a
thorough examination of the approach in [10], however it is worth noting that when
calculating the α̂ML values, to avoid zero counts, Laplace smoothing is applied to each
α̂ML in an on-demand fashion if any α̂ML < 1, resulting in α̂ML + 1.

3.4 Sensitivity Annotation Features

The active learning strategies presented in Sections 3.2 and 3.3 use predictions from the
classifier,C, as evidence of the classifier’s confidence in correctly classify the unlabeled
documents, Du. However, sensitive information is often only a small passage of text
within a document and, therefore, we expect an active learning strategy that integrates
term-level features of sensitivity to produce a more confident classifier that, in turn, will
enable the active learning strategy to select more informative documents.

With this in mind, in this section, we present three strategies, inspired by Settles [9],
that integrate term-level sensitivity features into the active learning process. As shown
in Figure 1, when a document, di, is judged to be sensitive, the reviewer annotates the
sensitive text within the document, adi, |ad| ∈ {0..|di|}. The strategies presented here
utilise these document annotations to extend the strategies presented in Sections 3.2 and
3.3 with informative term-level sensitivity features.

We refer to our first annotation features strategy as simple annotation features. The
simple strategy assumes that all the terms that a reviewer annotates are equally useful
for identifying sensitivity. To integrate term feature importance into the active learning
process, we simply increase the prior for the corresponding multinomial in the classifier,
C, by a constant value α. This strategy is denoted as +Anno in Section 5.

The remaining two strategies make use of the labeled collection of documents, Dl,
and the classifier’s predictions on the unlabeled documents in Du to calculate the ex-
pected information gain, IG(fk) =

∑
Fk

∑
i P (Fk, yi)log

P (Fk,yi)
P (Fk)P (yi)

, of term features
in the unlabeled collection Du, where Fk ∈ {0, 1} indicates the presence or absence of
a feature fk in the class yi, yi = li ∪ l̂i. The first information gain annotation features



strategy that we present considers all the term features that are in the intersection of the
terms identified by IG(fk) and the terms annotated by a reviewer, in the current batch
of documents being reviewed, as good sensitivity features and increases the prior for
the corresponding multinomial in the classifier, C, by α. We refer to this strategy as
information gain annotation features, denoted as +AnnoIG in Section 5.

The final annotation features strategy that we evaluate, annotation pool, identifies
useful sensitivity features through the same process as the previous information gain
strategy, except that instead of only considering annotation terms from the current batch
of documents being reviewed, a pool of potential sensitivity features is built from all
previous annotations and any terms that are in the intersection of the terms identified
by IG(fk) and terms in the annotation pool are considered as being good sensitivity
features. This approach is denoted +AnnoPOOL in Section 5.

4 Experimental Setup

In this section, we present our experimental setup for evaluating the effectiveness of ac-
tive learning strategies for technology assisted sensitivity review. We aim to answer two
research questions, namely: RQ1; “Which active learning strategy enables the system
to learn an effective sensitivity classifier with least reviewer effort?”, and RQ2; “Which
method of integrating a reviewer’s annotations feedback is most effective for extending
the tested active learning approaches?”.

We evaluate our research questions on a test collection, T , of 3801 government
documents that have been sensitivity reviewed by government sensitivity reviewers. The
collection was assessed for two UK FOI exemptions, namely international relations and
personal information. Any documents that contain any exempt information are labeled
sensitive. The remaining documents are labeled non-sensitive, resulting in 502 sensitive
documents (~13%) and 3299 non-sensitive (~87%).

To ensure the generalisability of our findings, we run our experiments over 25 strat-
ified samples of the collection T . For each sample, we select 2500 documents from T
as a training set Tr, which we use for the active learning simulation i.e. |Du|+ |Dl| =
Tr = 2500. We select 500 documents from T as a held out test set, Te, for evalu-
ating the performance of the classifier, C. We retain the distributions of sensitive and
non-sensitive documents from T when generating Tr and Te, resulting in Tr = {2150
non-sensitive, 325 sensitive} and Te = {435 non-sensitive, 65 sensitive}. We perform
a binary classification, sensitive vs. non-sensitive and report mean scores over 25 sam-
ples. To test for statistical significance when evaluating reviewer effort, following [6],
we use a sign test with p < 0.01.

At each iteration of the active learning cycle, we present the reviewer a new batch
of k documents. For our experiments, we set k = 20. Previous work has shown that bal-
ancing the class distributions when training sensitivity classifiers can lead to a markedly
improved model [2, 3, 5]. Therefore, when integrating newly labeled documents to Dl,
we introduce the following constraint: |non-sensitive| ∈ Dl ≤ (k/2)+|sensitive| ∈ Dl.
We discard documents that violate this constraint3.

3 In practice this means that we randomly down-sample the classifier’s training data to loosely
match the class frequencies. In preliminary experiments this led to uniform improvements across
all tested approaches of ~+0.4 Balanced Accuracy, after all documents had been reviewed.
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Fig. 2. Reviewer effort vs. Classifier effectiveness measured by Balanced Accuracy (BAC). Raw
approaches are presented in (a), while (b) presents the approaches extended with simple anno-
tation features, (c) presents the approaches extended with information gain annotation features,
and (d) presents the approaches extended with annotation pool features.

For the utility approach, presented in Section 3.3, when estimating G(FN) and
G(FP ), following Berardi et al. [10], we select F2 as our metric and perform a k-fold
cross validation, setting k = 10. For the feature labeling approach, presented in Section
3.4, when integrating feature importance to the classifier, following [9], we set α = 50.

5 Results

In this section, to answer the research questions presented in Section 4, we present the
results of our active learning classification experiments. Figure 2 presents four plots that
show the performance improvements of the learned classifier in terms of Balanced Ac-
curacy (BAC), as evaluated on the held out collection Te. In each of the plots, the x axis
shows the required reviewer effort, in number of documents reviewed. In Figure 2, plot
(a) presents the results for the raw Entropy, Margin and Utility approaches, while plot
(b) shows each of the approaches extended with the simple reviewer annotation features,
plot (c) presents the approaches extended with information gain annotation features and,
finally, plot (d) presents the approaches extended with annotation pool features.

Firstly, addressing RQ1, we evaluate the effectiveness of each active learning strat-
egy for quickly learning a classifier that can reliably predict sensitivity. From Fig-
ure 2(a), we see that the Margin and Utility approaches begin to identify sensitivity no-
ticeably quicker than Entropy, with Margin and Utility resulting BAC scores of 0.59 and
0.57 respectively when only 250 documents have been reviewed, while Entropy results
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Fig. 3. Reviewer effort vs. Classifier effectiveness measured by F2. Raw approaches are presented
in (a), while (b) presents the approaches extended with simple annotation features, (c) presents the
approaches extended with information gain annotation features, and (d) presents the approaches
extended with annotation pool features.

in a random classifier (0.5 BAC). Moreover, the Margin and Utility approaches sus-
tain this additional performance over Entropy for almost the entire review session. As
the number of labeled documents increases, particularly when the number of reviewed
documents is > 1180, we see that Margin shows noticeable improvements compared
to the Utility approach. However, the difference between the approaches reduces as the
number of reviewed documents approaches 2500. Therefore, in response to RQ1, we
conclude that the Margin active learning strategy is the best performing strategy when
the approaches are not extended with annotation features.

Turning our attention to RQ2, Figure 2(b),(c) and (d), present the active learning ap-
proaches with additional annotation features. From Figure 2(b), we see that the Entropy
and Margin approaches with additional simple annotation features (+Anno) begin to
identify sensitivity with markedly less reviewer effort than the approaches on their own
(Figure 2(a)). To achieve 0.6 BAC, Margin + Anno required 200 documents to be re-
viewed while Margin required 400. Moreover, Entropy + Anno achieves 0.6 BAC with
significantly less reviewing effort than Entropy, according to a sign test with p < 0.01
(400 documents vs. 1800 documents).

In evaluating the overall performance increase that is obtained from additional re-
viewer annotation features, we note from Figure 2(c) that information gain annotation
features enable each of the approaches to develop an effective sensitivity classifier no-
ticeably quicker than the raw approaches in Figure 2(a). Most notably, Margin sustains
its initial gains in classification effectiveness and reaches its peak classification per-



Table 1. Area Under the Curve for the BAC and F2 plots presented in Figures 2 and 3 respectively.

BAC F2 BAC F2 BAC F2 BAC F2

Entropy 0.5800 0.2675 + Anno 0.6213 0.4070 + AnnoIG 0.6087 0.3674 + AnnoPOOL 0.6029 0.3924
Margin 0.6480 0.4271 + Anno 0.6432 0.4454 + AnnoIG 0.6501 0.4503 + AnnoPOOL 0.6022 0.3963
Utility 0.6236 0.3863 + Anno 0.5871 0.3578 + AnnoIG 0.6084 0.3551 + AnnoPOOL 0.6317 0.4262

formance (~0.7 BAC) with significantly less reviewer effort (according to the sign test,
p < 0.01), requiring only 820 documents to be reviewed as opposed to 1700 when Mar-
gin is deployed without annotation features (shown in Figure 2(a)), therefore, resulting
in a 51% reduction in required reviewer effort. However, we note that there is a notable
decline in classification performance after this peak.

When classifying sensitive information, there is a much greater penalty from mis-
classifying documents that are sensitive than ones that are not. The F2 metric reflects
this asymmetry and, therefore, we present the classification improvements in terms of
F2 in Figure 3. We can see that the plots in Figure 3 display similar trends as the BAC
plots, with Margin performing best and, moreover, information gain annotation fea-
tures resulting in an effective classifier with notably less reviewing effort. Therefore, in
response to RQ2, we conclude that information gain annotation features are most effec-
tive for integrating reviewer feedback from sensitivity annotations. We note, however,
that the Utility approach is very competitive in terms of F2 for the raw active learning
approaches (Figure 3(a)) and when extended with information gain annotation features
(Figure 3(c)). This is intuitive since the utility approach is optimised for F2.

Finally, to provide a measure of overall classification effectiveness, Table 1 presents
the Area Under the Curve (AUC) scores for the BAC and F2 plots presented in Figures 2
and 3 respectively. As can be seen from Table 1, Margin + AnnoIG achieves the best
overall classification effectiveness throughout the review simulation. This finding pro-
vides extra evidence that the Margin + AnnoIG combination can be an effective choice
for technology assisted sensitivity review.

6 Conclusions

In this work, we presented a thorough evaluation of active learning strategies for tech-
nology assisted sensitivity review. We evaluated two well-known uncertainty sampling
active learning strategies from the literature and an approach adapted from semi auto-
mated text classification, that has previously been shown to be effective for improving
the cost-effectiveness of sensitivity reviewers. Moreover, we extended these approaches
to integrate term-level reviewer feedback from annotations of sensitive text within doc-
uments. We showed that extending Margin uncertainty sampling with high information
gain annotation term features enabled us to learn an effective sensitivity classifier (0.7
BAC) using significantly less reviewing effort (according to the sign test with p < 0.01),
than when the approach was deployed without annotation features, i.e. a 51% reduction
in the number of documents that had to be reviewed. Moreover, we found that this ap-
proach achieved the best overall classification effectiveness throughout a technology
assisted sensitivity review simulation, and conclude that the approach can be an effec-
tive choice for quickly learning to classify sensitivity, when the types of sensitivities in
a collection are not known a priori.
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