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ABSTRACT
Freedom of Information (FOI) laws legislate that government docu-
ments should be opened to the public. However, many government
documents contain sensitive information, such as con�dential infor-
mation, that is exempt from release. �erefore, government docu-
ments must be sensitivity reviewed prior to release, to identify and
close any sensitive information. With the adoption of born-digital
documents, such as email, there is a need for automatic sensitiv-
ity classi�cation to assist digital sensitivity review. SVM classi�ers
and Part-of-Speech sequences have separately been shown to be
promising for sensitivity classi�cation. However, sequence classi�-
cation methodologies, and speci�cally SVM kernel functions, have
not been fully investigated for sensitivity classi�cation. �erefore,
in this work, we present an evaluation of �ve SVM kernel func-
tions for sensitivity classi�cation using POS sequences. Moreover,
we show that an ensemble classi�er that combines POS sequence
classi�cation with text classi�cation can signi�cantly improve sen-
sitivity classi�cation e�ectiveness (+6.09% F2) compared with a text
classi�cation baseline, according to McNemar’s test of signi�cance.

1 INTRODUCTION
Freedom of Information (FOI) laws state that government docu-
ments should be open to the public. However, many government
documents contain sensitive information, such as con�dential in-
formation. �erefore, FOI laws exempt sensitive information from
release and government documents must be sensitivity reviewed
prior to release, to identify and close any sensitivities. However,
with the introduction of born-digital documents, such as email, the
volume of documents has increased and document creation pro-
cesses have become less structured. Hence, traditional sensitivity
review processes are not viable for digital sensitivity review.

Automatic classi�cation techniques can potentially be adapted
to assist the digital sensitivity review process and reduce the time
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taken to review documents. McDonald et al. [12] showed that sen-
sitivities relating to information supplied in con�dence could be cap-
tured in the grammatical structure of documents, by representing
the documents as sequences of Part-of-Speech (POS) n-grams [11].
For example, sensitivities relating to information supplied in con-
�dence are o�en recounts of dialogues or actions and, therefore,
can contain strings such as “an informer gave him”, “the ambas-
sador said she” or “a detainee showed us”. �ese strings can all be
represented by the POS sequence DT NN VB PR, or subsequently
as a sequence of POS n-grams, e.g. as POS 2-grams DTNN NNVB
VBPR. McDonald et al. [12] showed that the frequencies of certain
POS sequences can be an indicator of potential sensitivity.

Representing documents by an abstraction, such as the POS tags
they contain, has an additional a�ractive by-product. In e�ect, a
document’s tokens (POS n-grams) can be viewed as a sequence of
symbols from an alphabet, rather than terms from a vocabulary
and, hence, gives rise to the possibility of developing techniques
based on sequence classi�cation [18]. Sequence classi�cation has
been shown to be e�ective in �elds such as Bioinformatics (e.g.
classifying protein sequences) and Cyber-Security (e.g. intrusion
detection), in addition to Information Retrieval (IR) tasks (e.g. bot
detection from query log sequences). An intrinsic component of se-
quence classi�cation is selecting a classi�cation kernel function that
is suitable for the classi�cation task being a�empted, for example,
sequence-similarity kernels such as the Spectrum kernel [10].

Our contributions in this work are two-fold. Firstly, we present a
thorough evaluation of �ve SVM kernel functions for POS sequence
classi�cation of sensitive information that would be exempt from
release under UK FOI laws. Secondly, we show that a weighted
majority vote ensemble classi�er that combines POS sequence classi-
�cation with text classi�cation can signi�cantly improve sensitivity
classi�cation (+6.09% F2) compared to a text classi�cation baseline,
according to McNemar’s test of signi�cance.

�is paper is structured as follows: Section 2 discusses prior
work; Section 3 provides an overview of the kernel functions that
we deploy; We present our experimental setup in Section 4 and our
results in Section 5; Concluding remarks follow in Section 6.

2 RELATEDWORK
Most of the existing literature on automatically identifying sensitive
information has addressed the task of masking personal data [2, 5].
However, sensitive information in government documents is more



wide-ranging than personal information and can include, for exam-
ple, issues of con�dentiality or international relations. Gollins et
al. [6] posited that IR technologies could assist the digital sensitivity
review process. �ey also noted that some sensitivities, such as
international relations, can pose more of a risk due to the potential
e�ect of accidental release. Hence, there is a need for automatic tech-
niques for classifying these more wide-ranging types of sensitivity.

Text classi�cation has been shown to be an e�ective approach
as a basis for automatic sensitivity classi�ers [1, 13]. Text classi�-
cation relies on there being a speci�c set of terms, for which their
distribution can be a reliable indicator of the class that is to be
identi�ed. However, as Gollins et al. [6] noted, sensitivity arises
not only from the terms in a document but also from the context
in which they appear and, therefore, sensitivity classi�cation must
go beyond term features (and text classi�cation). In this work, we
focus on combining text classi�cation with sequence classi�cation
techniques for sensitivity identi�cation.

McDonald et al. [12] showed that Part-of-Speech (POS) n-gram
sequences can be e�ective for identifying supplied in con�dence
sensitivities. �ey adapted an approach from Lioma and Ounis [11],
who showed that more frequent POS n-grams in a collection are
likely to bear more content. McDonald et al. used the distributions
of POS n-grams in sensitive and non-sensitive text to measure the
sensitivity load of text sequences. Di�erently from the work of [12],
in this work, we use POS sequences to study di�erent SVM kernel
functions for sensitivity classi�cation. Moreover, we investigate
methods of ensemble learning for e�ectively combining POS se-
quence classi�cation with text classi�cation for sensitivity.

Ensemble classi�cation [3] methods combine the decisions from
a commi�ee of individual classi�ers with a view to improving the
overall classi�cation performance. �e simplest, but o�en most ef-
fective, of these approaches combines the predictions from the com-
mi�ee classi�ers by viewing each classi�er’s prediction as a vote
for the class of a document [9]. Another popular approach, namely
stacking [17], is to learn a separate (meta-learner) combiner func-
tion from the predictions of the commi�ee classi�ers. In this work,
we investigate weighted voting and stacking ensembles for com-
bining sequence and text classi�cation for sensitivity classi�cation.

3 SVM KERNEL FUNCTIONS
As previously stated in Section 1, an intrinsic component of a new
sequence classi�cation task is to identify a suitable kernel function
for the task. �erefore, in this section we provide an overview of
the kernel functions and classi�er that we deploy for POS sequence
classi�cation for sensitivity.

Support Vector Machines (SVM) [16] are a type of supervised
learning algorithm that learn a linear separating hyperplane be-
tween two classes within a vector space. SVM achieves this by solv-
ing a dual optimisation problem on a set S of training instance vec-
tors, xi , with corresponding class labels,yi , where i = 1..m, xi ∈ Rn
and yi ∈ {±1}. �e SVM optimisation aims to 1) maximise the dis-
tance between the hyperplane and the closest instances in either of
the classes, and, 2) minimise the classi�cation error. �e resulting
optimisation problem, Maximise

∑
i αi − 1

2
∑
i
∑
j αiα jyiyj

〈
xi ,x j

〉
,

requires learning the optimal weights, αi for i = 1..m, where αi ≥ 0.
Since this optimisation problem relies only on the inner products〈
xi ,x j

〉
, which can be viewed as a distance measure, this component

of the optimisation can be substituted by a kernel function, K(xi ,x j ),
that computes a measure that is selected for the classi�cation task.

�e linear kernel, de�ned as Kl inear (xi ,x j ) = xTi x j , is the sim-
plest kernel. However, Kl inear has desirable properties in that it is
very fast to train and does not tend to over-�t the learned model
to S when |x | is very large [7]. For non-linearly separable data, a
more suitable kernel is the Gaussian kernel, Kдaussian (xi ,x j ) =
exp

(−| |xi−x j | |2
2σ 2

)
, where σ is a parameter that determines the width

of the Gaussian function, i.e. the region of in�uence for an instance
in vector space. A properly tuned Gaussian kernel will always be
able to learn the optimal decision of a linear kernel [8], yet tuning σ
can be expensive and does not guarantee obtaining a be�er model.

By substituting
〈
xi ,x j

〉
with a kernel function, we e�ectively

create a feature map, ϕ, which maps an instance, x , to a new (possi-
bly higher dimensional) space. For the linear and Gaussian kernels,
ϕ is implicit within the dot products de�ned in the functions. O�en,
however, kernels explicitly de�ne this mapping as the input to the
kernel function. String kernels operate on �nite sub-sequences
of strings and the Spectrum kernel [10] is a simple string ker-
nel de�ned by its map ϕ over all sub-sequences in an alphabet
A. For a given alphabet A, |A| = l , a document’s feature map,
Φk (x) = (ϕa (x))a∈Ak , is the frequency weighted set of all contigu-
ous subsequences of length k ≥ 1, that the document contains, i.e.
its k-spectrum, and whereϕa (x) is the frequency of a in x . �e Spec-
trum kernel is then de�ned as Kspectrum (x ,y) = 〈Φk (x),Φk (y)〉.

One limitation of the Spectrum kernel is that it is constrained
to exact matches when calculating the similarity of instances. �e
Mismatch Kernel [4] addresses this by allowing for a pre-de�ned
number of mismatched symbols within sequences. For a given
sequence α = a1..ak ,a ∈ A, N (k,m)(α) is the set of all k-length
sequences, β = b1..bk ,b ∈ A that di�er from α by ≤ m mismatches.
�e Mismatch kernel’s feature map is then de�ned as Φ(k,m)(α) =
(ϕβ (α))β ∈Ak , where ϕβ (α) = 1 if β ∈ N (k,m)(α), else ϕβ (α) = 0.
From this feature map, the (k,m)-mismatch kernel is de�ned as
K(k,m)(x ,y) =

〈
Φ(k,m)(x),Φ(k,m)(y)

〉
.

Finally, the Smith-Waterman kernel, Ksw , is based on the Smith-
Waterman sequence similarity algorithm [15]. Unlike the kernels
presented thus far, it is not strictly a kernel function, since it does
not satisfy certain mathematical conditions, e.g. it is not always
positive de�nite. However, in this work, we test its e�ectiveness
as a kernel function for POS n-gram sequence classi�cation.

For complex sequence classi�cation tasks, a single SVM kernel
may not provide an optimal solution. One method of addressing
this is to combine multiple simpler kernels as a hybrid kernel, with
the aim of considering multiple aspects of an instance vector. We
hypothesise that di�erent types of kernels will identify di�erent
aspects of sensitivity and, therefore, in this work, we evaluate two
hybrid kernels that are a linear combination of the scores from two
simpler kernels, namely Spectrum+Linear and Spectrum+Gaussian.

4 EXPERIMENTAL SETUP
Collection: Our test collection is 3801 government documents that
have been sensitivity reviewed by government reviewers. All docu-
ments that contain any sensitivity relating to Personal Information
or International Relations FOI exemptions were labeled as sensitive.
All other documents were labeled not-sensitive, resulting in a bi-
nary classi�cation task with 502 sensitive and 3299 not-sensitive



Table 1: �e total unique POS n-gram tokens in each collection representation.

1-gram 2-gram 3-gram 4-gram 5-gram 6-gram 7-gram 8-gram 9-gram 10-gram
Unique Tokens 15 209 1877 11408 51238 172109 441251 888837 1465215 2052063

documents. We perform a 5-fold Cross Validation and randomly
down-sample non-sensitive documents to balance the training data.
Baseline: As a baseline we use a text classi�cation approach with
binary bag-of-words features. For this approach, we use SVM with
a linear kernel and C = 1.0, since these default parameters are
known to be e�ective for text classi�cation [7, 14] and can provide
a strong baseline for sensitivity classi�cation [1, 13].
Sequence Classi�cation: For the POS sequence representations,
following [11, 12], we use the TreeTagger1 part-of-speech tagger
to POS tag documents using a reduced set of 15 POS tags. We then
create separate n-gram sequence representations of the collection,
resulting in individual n-gram sequence collections for n = {1...10}.
Table 1 presents the number of observed unique tokens in the alpha-
bet, A, for each size of n. For the linear and Gaussian kernels, we
represent documents as token frequency vectors. For the Spectrum,
Mismatch and Smith-Waterman kernels, we count the frequency
of k length sub-sequence matches in a pair of documents. We train
a separate commi�ee classi�er for each size of n-gram sequence,
resulting in n votes per kernel as input to the ensemble approaches.
Ensemble Classi�cation: For the ensemble approaches, we com-
bine the predictions of the text classi�cation Pt with the predictions
of n sequence classi�ers Ps , resulting in n + 1 document features
f , f ∈ {pt ,ps }. We test four combination methods. Firstly, in
Weighted Majority Vote (WMV), to predict a document’s class, pt is
assigned a weight w for each fold and the document’s overall pre-
diction score is calculated as (pt ·w )+

∑n
i=1 psi

n+1 . �e remaining three
combination methods are stacking approaches. �ese require an
intermediate step where Pt and Ps are predictions for a validation
set for each of the 5-fold Cross Validation folds. Pt and Ps are then
concatenated and the resulting n+1 predictions (per document) are
used to train the combiner. We test three classi�ers as combiners,
namely Logistic Regression (LR), SVM and Random Forests (RF).
Classi�cation and Parameters: We use scikit-learn2 and extend
LibSVM3 with the Spectrum, Mismatch and Smith-Waterman ker-
nels. Parameter values for the sequence and combinator classi�ers
are selected by 10-fold Cross Validation on training and validation
sets respectfully, for each of the 5-fold Cross Validation folds. We
vary SVM’s C parameter exponentially in the range [0.001,10000],
and similarly for γ parameters in [0.0001,10]. For sequence classi�-
cation, sub-sequences are varied for k = {3, 6, 9, 12}. For ensemble
combinators: for WMV, we testw = {1..100}; for LR we select L1 as
our loss function and vary C in the same range as for SVM; for RF,
we test number of trees t = {100, 250, 500, 750, 1000}. We optimise
for area under the Receiver Operating Characteristic curve (auROC).
Metrics: We select auROC as our main metric for measuring kernel
e�ectiveness, since it is calculated over all decision thresholds for a
classi�er. Additionally, we report precision (P), True Positive Rate
(TPR), True Negative Rate (TNR), F1, F2 and Balanced Accuracy
(BAC) metrics. We report statistical signi�cance using McNemar’s
non-parametric test, withp < 0.001. Signi�cant improvements com-
pared to the text classi�cation baseline are denoted by † in Table 4.

1h�p://www.cis.uni-muenchen.de/∼schmid/tools/TreeTagger/
2h�p://scikit-learn.org/
3h�ps://csie.ntu.edu.tw/∼cjlin/libsvm/

Table 2: Results for the best performing size of n-gram for
stand-alone POS sequence classi�cation, according to the
area under the ROC curve (auROC).

N P TPR TNR F1 F2 BAC auROC
Linear 5 0.2185 0.6155 0.6651 0.3225 0.4514 0.6403 0.6897
Gaussian 4 0.2070 0.6494 0.6214 0.3139 0.4550 0.6354 0.6820
Spectrum 1 0.1868 0.6574 0.5644 0.2909 0.4370 0.6109 0.6636
Mismatch 1 0.1847 0.4833 0.6006 0.2673 0.3387 0.5420 0.5415
Smith-Waterman 2 0.2266 0.6250 0.6006 0.3326 0.3024 0.6128 0.6476
Hybrid
Spectrum+Linear 4 0.2266 0.6178 0.6656 0.3278 0.4384 0.6417 0.6779
Spectrum+Gaussian 2 0.2245 0.5995 0.6780 0.3251 0.4361 0.6388 0.6764
Boosted
Linear 1-6 0.3433 0.4074 0.8087 0.2874 0.3263 0.6081 0.7027
Gaussian 1-9 0.2290 0.5726 0.6511 0.2981 0.3933 0.6118 0.7031
Spectrum 1-3 0.1834 0.7146 0.4678 0.2829 0.4207 0.5912 0.6801

5 RESULTS
In this section, we �rst review the performance of each of the
kernels as stand-alone classi�ers for POS sequence classi�cation
without text features, before evaluating the combined ensemble
approaches, compared to the text classi�cation baseline.

Table 2 presents the results for the stand-alone classi�ers. �e ta-
ble shows the best performing size of n-gram for each of the individ-
ual kernels and for two hybrid classi�ers, namely Spectrum+Linear
and Spectrum+Gaussian, according to auROC. Additionally, Table 2
also presents the results of a simple boosting classi�cation approach
where, for a speci�c kernel, we add the output from an n-gram clas-
si�cation as an additional feature for the n+1-gram classi�cation.

As shown in Table 2, the linear kernel achieves the best auROC
score (0.6897). However, the Gaussian and Spectrum kernels per-
form competitively with the linear kernel, achieving 0.6820 and
0.6636 auROC respectively. Moreover, in sensitivity classi�cation
the cost of mis-classifying a sensitive document is far greater than
that of mis-classifying a not-sensitive document and the highest F2
(0.4550) and TPR (0.6574) scores are achieved by the Gaussian and
Spectrum kernels respectively. �e Mismatch and Smith-Waterman
kernels perform less well, achieving 0.5415 and 0.6476 auROC re-
spectively. �erefore, in the remaining approaches, we focus on
the Spectrum, Gaussian and linear kernels.

When evaluating the e�ectiveness of kernels, we are interested
in notable di�erences in the correctness of predictions for sensitive
documents. As shown in Table 3, there is substantial Fleiss’ κ agree-
ment between the linear and Gaussian kernels, but only moderate
agreement between the Spectrum and linear or Gaussian kernels.
�is is in line with our expectation that sequence-based kernels,
such as String kernels, can identify di�erent features of sensitivity
than vector space kernels, such as linear or Gaussian. �erefore,
we select the Spectrum kernel as our base kernel for hybrid kernels.

As can be seen from Table 2, the hybrid kernels achieve 0.67 au-
ROC. �is is slightly less than the 0.68 auROC achieved by the linear
and Gaussian kernels individually. However, in terms of balanced
accuracy, the hybrid kernels improve overall performance (0.6417

Table 3: Fleiss’ κ agreement between the linear, Gaussian
and Spectrum kernels for predictions on sensitive docu-
ments, i.e. True Positive or False Negative predictions.

Lin-Gau-Spec Lin-Gau Lin-Spec Gau-Spec
Fleiss’ κ 0.5312 0.7301 0.4502 0.4122



Table 4: Results for ensemble classi�cation and TC baseline.
# Votes P TPR TNR F1 F2 BAC auROC

Text Classi�cation (TC) 0.2410 0.6573 0.6841 0.3520 0.4874 0.6707 0.7419
Weighted Majority Vote (WMV)
TC+POSLinear 11 † 0.2610 0.6853 0.7048 0.3780 0.5171 0.6950 0.7659
TC+POSGaussian 11 † 0.2631 0.6813 0.7096 0.3796 0.5169 0.6954 0.7633
TC+POSSpectrum 11 † 0.2412 0.6932 0.6681 0.3578 0.5042 0.6807 0.7588
TC+POSLin,Gaus,Spec 31 † 0.2578 0.6554 0.7129 0.3701 0.5009 0.6842 0.7616
TC+POSSpectrum+Linear 11 0.2211 0.6295 0.6626 0.3273 0.4597 0.6461 0.7033
TC+POSBoosted Gaussian 11 0.2445 0.6414 0.6984 0.3540 0.4842 0.6699 0.7308
logistic Regression (LR)
TC+POSLinear 11 † 0.2505 0.6752 0.6923 0.3646 0.5028 0.6837 0.7584
TC+POSGaussian 11 † 0.2437 0.6513 0.6923 0.3537 0.4865 0.6718 0.7492
TC+POSSpectrum 11 † 0.2364 0.6495 0.6805 0.3462 0.4805 0.6650 0.7502
TC+POSLin,Gaus,Spec 31 † 0.2447 0.6594 0.6905 0.3559 0.4908 0.6749 0.7531
TC+POSSpectrum+Linear 11 † 0.2451 0.6733 0.6845 0.3587 0.4978 0.6789 0.7502
TC+POSBoosted Gaussian 11 0.2440 0.6294 0.7023 0.3507 0.4768 0.6659 0.7352
Support Vector Machine (SVM)
TC+POSLinear 11 † 0.2461 0.6695 0.6875 0.3589 0.4964 0.6785 0.7506
TC+POSGaussian 11 0.2385 0.6235 0.6963 0.3436 0.4691 0.6599 0.7398
TC+POSSpectrum 11 0.2410 0.6256 0.6990 0.3463 0.4717 0.6623 0.7385
TC+POSLin,Gaus,Spec 31 0.2435 0.6236 0.7026 0.3488 0.4730 0.6631 0.7307
TC+POSSpectrum+Linear 11 0.2455 0.6335 0.7011 0.3519 0.4782 0.6673 0.7452
TC+POSBoosted Gaussian 11 0.2462 0.6215 0.7093 0.3515 0.4745 0.6654 0.7358
Random Forest (RF)
TC + POSLinear 11 0.3858 0.2629 0.9357 0.3091 0.2791 0.5993 0.7124
TC + POSGaussian 11 0.3531 0.2250 0.9363 0.2715 0.2412 0.5807 0.6975
TC + POSSpectrum 11 0.3190 0.2349 0.9212 0.2672 0.2463 0.5780 0.6697
TC + POSLin,Gaus,Spec 31 0.3557 0.2230 0.9369 0.2718 0.2400 0.5800 0.6888
TC + POSSpectrum+Linear 11 0.3522 0.2429 0.9321 0.2860 0.2583 0.5875 0.6974
TC + POSBoosted Gaussian 11 0.3342 0.2407 0.9276 0.2775 0.2539 0.5842 0.7381

Spectrum+Linear vs. 0.6109 Spectrum and 0.6403 Linear, 0.6388
Spectrum+Gaussian vs. 0.6109 Spectrum and 0.6354 Gaussian).

�e boosted classi�cation approach, presented in Table 2, markedly
improves auROC for the linear and Gaussian kernels (Linear 0.7027
vs. 0.6897, Gaussian 0.7031 vs. 0.6820). For these kernels, boosting
notably increases precision (0.2290 vs. 0.2070 Gaussian, 0.3433 vs.
0.2185 Linear). �e boosted Gaussian achieves the best auROC for
stand-alone sequence classi�ers (0.7031).

Moving on to ensemble classi�cation, Table 4 presents the results
for the four ensemble combination approaches WMV, LR, SVM,
and RF. For each approach, the table presents the individual ker-
nels (separately and together) and the best performing hybrid and
boosted kernels, along with the text classi�cation baseline.

Firstly, we note that text classi�cation achieves 0.6707 BAC,
markedly be�er than random (0.5 BAC), and 0.7419 auROC. Notably,
text classi�cation also performs be�er than the stand-alone classi-
�ers from Table 2 (however, the stand-alone boosted approaches
are competitive and achieve higher TPR and TNR scores).

Reviewing Table 4, we conclude that the linear kernel performs
best for ensemble approaches, since it achieves signi�cant improve-
ments (denoted as †), and performs be�er for all measures, com-
pared to the text classi�cation baseline, when either of the WMV,
LR or SVM combinators are deployed. �is is surprising, since the
hybrid and boosted kernels perform best for stand-alone classi�ers.
�is appears be due to the liner kernel model being more similar to
the (be�er) text classi�cation model than the other kernel models
are, while having enough uncorrelated variations to enhance the
predictions. We will investigate this further as future work.

Turning our a�ention to the combinator methods, we see that LR
achieves signi�cant improvements compared to text classi�cation
for �ve of the six kernel combinations tested (+1.2-2.3% auROC) and
is clearly the most e�ective stacked ensemble approach. However,
we conclude that WMV performs be�er than the stacked approaches
since it achieves the highest TPR, F1, F2, BAC and auROC scores.
Currently, WMV applies pt ·w globally and we expect to be able to
further improve these results by learning more �ne grained weights,
at the instance or vote level. Again, we leave this as future work.

Overall, combining text classi�cation with linear kernel POS
sequence classi�cation (TC+POSLinear) and WMV performs best

for sensitivity classi�cation, from the combinations we tested. �is
approach achieves signi�cant improvements according to McNe-
mar’s test with p < 0.001 (+6.09% F2, +3.24% auROC), compared to
the text classi�cation baseline. Moreover, the approach correctly
predicted 4.25% more sensitive documents (0.6853 TPR vs. 0.6573
TPR), while achieving a 3.02% increase in correct not-sensitive pre-
dictions (0.7048 TNR vs. 0.6841 TNR). �is results in an additional
83 correct predictions on our collection.

�ese results show that combining text classi�cation with POS
sequence classi�cation can be e�ective for classifying documents
that contain sensitivities relating to FOI exemptions. Moreover, the
largest gains in overall classi�cation performance can be achieved
when deploying a simple weighted majority vote combination strat-
egy and a linear SVM kernel for POS sequence classi�cation. �is,
in turn, has the additional advantage of reducing training times.

6 CONCLUSIONS
In this work, we presented a thorough investigation of �ve SVM
kernel functions (Linear, Gaussian, Spectrum, Mismatch and Smith-
Waterman) for sensitivity classi�cation using Part-of-Speech n-
gram sequences. We showed that an ensemble classi�cation ap-
proach that combines text classi�cation with sequence classi�cation
can signi�cantly improve sensitivity classi�cation e�ectiveness.
Moreover, we found that combining linear kernel POS sequence
classi�cation with text classi�cation by Weighted Majority Vote
lead to the largest increase in sensitivity classi�cation e�ectiveness
(+ 6.09% F2), when compared to a text classi�cation baseline.
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