
ALPyNA: Acceleration of Loops in Python for Novel
Architectures

Dejice Jacob
School of Computing Science

University of Glasgow
UK

d.jacob.1@research.gla.ac.uk

Jeremy Singer
School of Computing Science

University of Glasgow
UK

jeremy.singer@glasgow.ac.uk

Abstract
We presentALPyNA, an automatic loop parallelization frame-
work for Python, which analyzes data dependences within
nested loops and dynamically generates CUDA kernels for
GPU execution. The ALPyNA system applies classical depen-
dence analysis techniques to discover and exploit potential
parallelism. The skeletal structure of the dependence graph
is determined statically (if possible) or at runtime; this is
combined with type and bounds information discovered at
runtime, to auto-generate high-performance kernels for of-
fload to GPU.
We demonstrate speedups of up to 1000x relative to the

native CPython interpreter across four array-intensive nu-
merical Python benchmarks. Performance improvement is
related to both iteration domain size and dependence graph
complexity. Nevertheless, this approach promises to bring
the benefits of manycore parallelism to application develop-
ers.

CCS Concepts • Software and its engineering → Dy-
namic compilers; Scripting languages; Parallel program-
ming languages; • Computer systems organization →
Heterogeneous (hybrid) systems.

Keywords code generation, nested loop parallelization, GPU

ACM Reference Format:
Dejice Jacob and Jeremy Singer. 2019. ALPyNA: Acceleration of
Loops in Python for Novel Architectures. In Proceedings of the
6th ACM SIGPLAN International Workshop on Libraries, Languages
and Compilers for Array Programming (ARRAY ’19), June 22, 2019,
Phoenix, AZ, USA. ACM, New York, NY, USA, 10 pages. https://doi.
org/10.1145/3315454.3329956

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
ARRAY ’19, June 22, 2019, Phoenix, AZ, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6717-2/19/06. . . $15.00
https://doi.org/10.1145/3315454.3329956

1 Introduction
Dynamically typed, high-level scripting languages such as
Python, R, Ruby and Javascript are increasingly popular.
Python has been in widespread use for many years as shown
by various programming language surveys [5, 21]. The Python
language is particularly attractive to end-user developers
[3, 18] given its simplicity and accessibility. For these rea-
sons, Python has high usage in a broad range of scientific ap-
plication domains including astronomy [16] bio-informatics
[20] and meteorology [14]. Array-intensive numerical code
is often prototyped, even deployed, as Python scripts or in-
teractive notebooks.
While Python execution, via the CPython interpreter, is

generally slow, many users are reluctant to switch to more
optimization-amenable programming languages and sys-
tems. For this reason, there are various schemes to improve
the runtime performance of Python— this work (along with
many others) proposes exploiting manycore parallelism for
Python. However we distinctively advocate that:

1. parallelism should be extracted transparently, from the
point of view of the developer, to maintain maximum
user-friendliness and

2. at runtime we must generate code tuned to the specific
dependence relationships between memory accesses
in each instantiation of a loop-nest within a code frag-
ment.

Commodity GPUs offer huge numbers of cores forminimal
cost and are often extremely effective for data parallel tasks.
Depending on the workload, such accelerators can provide
orders of magnitude better performance. ProgrammingGPUs
is, however, highly complex as it exposes the programmer
to the physical realities of the GPU being used. Each kernel
must be written in low-level domain specific languages like
CUDA and OpenCL which involves the developer carefully
calculating the size of the iteration domain and calculating
any dependences between data accesses.
The process of reasoning gets progressively harder for

complex code and imposes high cognitive burdens on the
developer. Many attempts have been made to make this
process easier for end-user developers as detailed in section-
2.1.
Moreover, dynamic languages like Python resolve types

at runtime. This complicates the generation of GPU code

25

https://doi.org/10.1145/3315454.3329956
https://doi.org/10.1145/3315454.3329956
https://doi.org/10.1145/3315454.3329956

ARRAY ’19, June 22, 2019, Phoenix, AZ, USA Dejice Jacob and Jeremy Singer

since such kernels are required to be compiled with type
information. While static type annotations can help, some
form of templating is normally required to reuse the same
kernel code for different types.

1.1 ALPyNA
This paper introduces ALPyNA, a dynamic loop paralleliza-
tion framework for Python. The programmer writes numeri-
cal kernels using dense nested for-loops with a linear itera-
tion space using the Python range function. Restricting the
analysis to linear loops allows the analysis engine to reason
about dependences carried by the loops, and apply various
optimisations.
ALPyNA is extensible to multiple types of accelerators

by abstracting the accelerator specific code generation for
different classes of hardware. It is envisaged to extend the
framework to generate code compiled specifically for CPUs
or FPGA devices.

ALPyNA has three key novelties:

1. The dependence analysis is staged, with initial analysis
occurring ahead-of-time and generating in-memory
data structures that are preserved till runtime. As the
program executes, information about types and bounds
is incrementally added to the in-memory dependence
data, allowing safe dynamic parallelization to occur.

2. The automatic parallelization takes plain old Python
code as input, with no need for user annotations or
rewriting.

3. The system generates a set of observationally equiva-
lent variants for each method, targeting different com-
pute devices. This allows selection of the optimal back-
end for each specific loop nest, for which performance
may be input-dependent.

The ALPyNA system is implemented in Python and inte-
grated with the standard CPython interpreter, as Section 3
describes. Adoption simply requires the user to import an
extra Python library. We have evaluated ALPyNA with a
range of array-intensive Python benchmarks (described in
Section 4) and demonstrated significant speedup for moder-
ately sized input data sets on stock hardware, as reported in
Section 5.

To the best of our knowledge, this is the first framework for
general auto-parallelization in Python that does not require
invasive user annotations. Further, this is the first paralleliza-
tion system for Python that stages the analysis.

2 Background
This section reviews concepts and material that are relevant
for parallel Python (Section 2.1) and automatic parallelization
techniques (Section 2.2).

2.1 Parallelism in Python
The Global Interpreter Lock (GIL) in the vanilla CPython
runtime is an obvious impediment to parallelism. It prevents
multiple threads from executing Python bytecode concur-
rently. The GIL is required since memory management is
not thread-safe in CPython.
Given the near-ubiquitous availability of manycore pro-

cessors, there is increasing pressure to support parallel exe-
cution in Python. A range of techniques have been applied,
as reviewed below.
Code annotation: Lam et al [13] introduce Numba, which
uses @decorator syntactic sugar to selectively compile func-
tions for CPU or GPU. Numba requires code annotations,
optionally including type information. It analyzes Python
bytecode and compiles methods Just-in-Time (JIT) to na-
tive code using the LLVM infrastructure. In particular, the
@cuda.jit decorator only works for a restricted subset of
Python, effectively a one-to-one mapping from Python se-
mantics to GPU kernel operations.
Parallelisinghigher order functions: Functional patterns
involving higher-order functions like map and filter are
attractive candidates for GPU offload since loop iteration
independence is guaranteed by construction. Optimization
is effectively a syntactic rewriting operation. Fumero et al
[8] compile and parallelize map functions in Ruby and R. For
Python, the effectiveness of this method has been demon-
strated by Catanzaro et al [6] and Rubinsteyn et al [17].
Embedded Domain Specific Languages (eDSLs): Loo.py
[11] is an eDSL that allows a developer to specify loop itera-
tion ranges and sequences of array update operations, inlined
in the Python code. These specifications can be transformed
to parallel kernels, and invoked programmatically. Loo.py is
an elegant code generation library for array-intensive cal-
culations, targeting CPU and GPU devices. However, this
explicit parallelism requires careful thinking on the part of
the developer. No data dependence analysis or resolution is
provided.
Task graphs: This approach allows for scheduling of inter-
kernel dependences by modelling computation as nodes in
a Directed Acyclic Graph (DAG) with edges representing
data dependence. The Pydron system [15] is directed by user
annotations to build a task graph for decomposing a program
into parallel sections for cloud-based concurrent execution. It
relies on further annotations to indicate pure (i.e. side-effect
free) functions.
Writing GPU kernels: Klöckner et al [12] directly target
the GPU by binding to CUDA (PyCUDA) and OpenCL (Py-
OpenCL) libraries. This grants direct access for the developer
to program the GPU. The disadvantage is that kernels must
be written in low-level C-like syntax and must also contain
data types. Information can be patched in by editing the
source code just before compiling the kernel. However this
is left for the developer to do.

26

ALPyNA: Acceleration of Loops in Python for Novel Architectures ARRAY ’19, June 22, 2019, Phoenix, AZ, USA

Library parallelism:Many Python libraries support GPU
execution, e.g. the TensorFlow framework [1]. In such cases,
all parallelism occurs inside a black box; the developer has
little understanding and is unable to go ‘below the API’.
Python simply acts as a coordination language, executed
sequentially, with all parallelism devolved to the library code.
Our new approach: Our motivation for ALPyNA is that
the user should be able to write code as conventional, un-
decorated, ‘plain old Python’ functions and pass these to
the analysis tool. The ALPyNA framework will return a spe-
cialised object containing a dictionary of callable functions
which the programmer can invoke with relevant arguments.
When such functions are called at runtime, ALPyNA’s dy-
namic analysis and introspection system intercepts each call;
it then generates, compiles, and executes relevant GPU ker-
nels with appropriate data marshalling and transfer.

2.2 Automatic Parallelization
Automatic parallelization has a long and chequered history
[2]. Commonly, the key control structure for parallelism is
the loop, particularly hot loops (where most of the execution
time is concentrated). The key data structure for parallelism
is often the array, where most of the dynamic memory is
allocated.
There is a vast compendium of loop parallelization tech-

niques.Much is encapsulated in thework of Allen andKennedy
[10]. For the majority of use-cases, Goff et al [9] present
simplified fast dependence tests. By computing the cyclic
dependences between statements carried by various loops,
we can identify which loops can be executed in parallel for
the overall set of nested loops, without changing the compu-
tation.

These techniques generally apply to imperative, numerical
computation. Code is usually written in Fortran; paralleliza-
tion is also desirable for C/C++ high-performance computing
code although the variable aliasing problem is more acute
for C-style languages.
The difficulties with general auto-parallelization derive

from the following root causes:

1. complexity of analysis (for both aliasing and depen-
dence).

2. conservative nature of static analysis, since runtime
values like loop bounds are usually unavailable.

3. difficulty of mapping parallel tasks to available hard-
ware resources to achieve significant speedup.

ALPyNA overcomes the above difficulties using a hybrid
analysis technique, combining static and runtime depen-
dence analysis. It benefits from the Python language’s rela-
tive simplicity, in terms of structured control flow (no C-style
goto) and loop iterator guarantees provided by the range
function semantics. These features make analysis much less
complex.

Because Python execution is interpreter-based and rela-
tively slow, we can often afford significant analysis overhead.
As our results demonstrate (cf. Section 5) the analysis time
is commensurate with the interpreter execution time for
numerical codes.
Dependence analysis can exploit dynamic information.

The rich nature of the Python runtime environment means
we can preserve analysis artifacts throughout program exe-
cution and refine the knowledge base as information about
data types and loop bounds becomes available. This enables
more effective parallelization, as explained below.
Since we generate parallel work at runtime, we can do

profiling to determine improvements. Further, we have exact
knowledge of the nature of the target platform, since we are
executing directly on it.

2.3 Benefits of Deferring to Runtime
Consider the code-segment in Listing 1. Dependence analysis
tells us that the statement in the for-loop can be parallelised
as long as the loop iteration domain is within the range
[0,1024) in order to be correct.

Listing 1. Benefit of runtime parallelization
def function_foo(arg_a , arg_b , arr_len) :

for i in range(0,arr_len ,1):

arg_a[i+1024] = arg_a[i] + arg_b

In a static language like Fortran, symbolic resolution of
the limits would result in the addition of a guard condition
to check if the loop iteration domain would be less than 1024.
If so, a parallel version of the loop would be invoked for
execution. Otherwise the loop would be executed sequen-
tially. Smarter compilers would do strip mining to tile all
iterations that can be run in parallel and execute them with
SIMD instructions.

Listing 2. ALPyNA example
import numpy as np

import Alpyna as alp

user_code = """

def loopy_kernel(arg_a , arg_b , limits) :

i_max , j_max , k_max , m_max = limits

for i in range(0,i_max ,1):

for j in range(0,j_max ,1):

for k in range(0,k_max ,1):

for m in range(0,m_max ,1):

loopy_kernel_stmt_01

arg_a[i][j+10][k][m] =

arg_a[i][j][k][m] + 4 + arg_b[i]

loopy_kernel_stmt_02

arg_a[i+1][j][k][m] =

arg_a[i][j][k][m] + 43

"""

...

...

27

ARRAY ’19, June 22, 2019, Phoenix, AZ, USA Dejice Jacob and Jeremy Singer

Figure 1. Dependence graph of loop nest in Listing 2 when
end of iteration domain of j-loop causes a loop-carried de-
pendence (end of j iteration domain > 10).

alpyna_ex_engine = alp.static_analyse(user_code)

alpyna_ex_engine.loopy_kernel(arr_a , arr_2 , lims)

When the number of data dependences become larger,
the dependence relationships make generating all the guard
conditions and code variants NP-hard. By deferring this anal-
ysis to runtime, we can infer how much parallelism can be
extracted from the loop-nest depending on the loop size and
generate code to satisfy the dependence constraints while
still executing in parallel.
To demonstrate the potential gains in parallelization by

deferring analysis to runtime, consider the code in Listing
2. We depict dependences between statements in a nested
loop as shown in Equation 1. The loop carrying the de-
pendence is shown by its nesting level n. and has a range
[0,max-loop-nest-level).

Dependence =




Dt_n, True dependence (δn)

D^_n, Anti dependence (δ−1n)

Do_n, Output dependence (δon)

(1)

During static analysis, the iteration domain of the loops
are unknown. There could potentially be loop-carried de-
pendences from statement-1 to statement-2 and vice versa.
To be correct, a static optimising compiler would have to be
conservative and assume such dependences exist.

For example, if the iteration domain for dimensions (i,j,k,m)
was [0− 50), [0− 20), [0− 40), [0− 50), we would obtain a de-
pendence graph as shown in Figure 1. A True dependence is
carried by the j-loop from statement-1 to statement-2. A True
and Output dependence is carried by the i-loop in the oppo-
site direction creating a cycle. Further cyclical dependences
in this loop structure exist due to

1. a True dependence from Statement-1 to itself carried
by the j-loop

2. a True dependence from Statement-2 to itself carried
by the i-loop

The cyclical dependences between statement-1 and statement-
2 necessitates running both statements sequentially inside

Figure 2. Dependence graph of loop nest in Listing 2 when
iteration domain of j-loop = [0,10).

the i-loop. Statement-2 can then be parallelized over the inner
j,k and m-loops. To preserve the dependence relationship,
the first statement would have to be run sequentially inside
the i and j-loops while parallelizing the k and m-loops.

If the iteration domain was changed to [0−50), [0−4), [0−
40),[0 − 50),the dependence graph, as shown in Figure 2,
would be applicable. In this case, the only cycle is generated
by the True dependence from statement-2 to itself. This would
allow us to parallelize the first statement across all four
(i,j,k,m) loop iteration dimensionswhile the second statement
would have to be run sequentially within the i-loop and
parallelized across the other three iteration domains.

3 Compiler Implementation
In principle, the ALPyNA analysis and kernel code construc-
tion is a staged process. In this section, we refer to the static
(Section 3.2) and dynamic (Section 3.3) stages distinctly. The
static part occurs during program initialization, described in
Section 3.1. This may run in the interpreter or as a setup code
block in an interactive notebook. The dynamic part happens
as the loop is executed for the first time, when runtime types
and loop bounds have been resolved.

3.1 Application Programmer Interface (API)
ALPyNA is intended to be easy to use for a non-expert
Python developer, i.e. an end-user programmer. A minimal
setup process is required, as shown in Listing 2. A developer
calls one function from ALPyNA to initiate static analysis of
developer-specified ‘plain old Python’ kernels; this returns
an ALPyNA runtime execution object. ALPyNA assumes
loop-nests will always be enclosed within functions. This
ensures developers are able to reference parallelized loops
via named function abstractions. This workflow is similar to
the OpenCL online compiler workflow.

3.2 Compiler Frontend
The compiler implementation takes as its input kernel func-
tions written in plain old Python. These functions may have
more than one dense linear loop nest specified in Python. It

28

ALPyNA: Acceleration of Loops in Python for Novel Architectures ARRAY ’19, June 22, 2019, Phoenix, AZ, USA

Figure 3. The ALPyNA system architecture is staged, with an ahead-of-time static analysis and a near-identical structure for
the lazy dynamic analysis; note some information is preserved in memory from the initial stage.

is assumed that the developer will use Numpy arrays for vec-
tors. Only basic subscripting of single or multi-dimensional
arrays is supported, i.e. no slicing or sequence indexing.
Dereferencing the vector subscripts should evaluate to

instances of the underlying Numpy dtype object or to scalar
values. We further restrict ALPyNA to loop bodies that con-
tain no control flow divergence.

The compiler takes dense loop nests as its unit of analysis.
All other code constructs will be executed in the CPython
interpreter as normal. This allows developers to intersperse
loop nests with standard Python code, e.g. conditional exe-
cution constructs (if/else constructs that are not inside loop
bodies).

To simplify analysis, loops are automatically rewritten in
a normalised form, with an iteration increment of 1. Any
loop bounds expressions, i.e. parameters of range, that are
to be evaluated dynamically are hoisted above the loop and
stored in temporary variables.

As shown in Figure 3, a call to the static analysis function
parses the AST of all nested loops with a linear iteration
domain. The subject functions are parsed using Python’s
AST library, to create a flat record structure consisting of
‘loop landmarks,’ i.e. fragments of abstract syntax that deter-
mine the looping behaviour. This landmark record structure
is processed during the static analysis phase, allowing us

to generate the subscript and variable pairings required to
perform dependence analysis.

If all the loop bounds and data dependences can be deter-
mined statically, ALPyNA can generate the untyped GPU
kernels (corresponding to the statements in the loop nest
body) at compile time and cache these kernels in memory
to reduce dynamic analysis time. In this case, with ahead-of-
time generated kernels, we only need to patch the type infor-
mation into the generated GPU kernels at runtime. Based on
the structure of the dependence graph, kernels correspond-
ing to the loop body statements are generated, along with a
Python driver function, which invokes the GPU kernels.

On the other hand, if the static analysis cannot determine
loop bounds at compile time, then it will mark the loop nest
for dependence analysis at runtime.
The landmark record structure of the Python AST along

with loop nests marked by ALPyNA for deferred analysis
are preserved as in-memory data structures, carried over to
the runtime execution context to aid dynamic dependence
analysis. At runtime, parallelization is again performed on
loop nests marked for deferred analysis. This happens lazily,
upon invocation of a particular loop nest within an ALPyNA
target function.

29

ARRAY ’19, June 22, 2019, Phoenix, AZ, USA Dejice Jacob and Jeremy Singer

3.2.1 Runtime Type Determination
We determine the types of the vectors relevant to each GPU
kernel at runtime, using Python’s introspective facilities.
The types are patched into the structure of the GPU kernels.
These kernels may have been generated statically, or lazily
when the function is invoked at runtime.

While our compiler restricts its analysis to dense loops
with linear numeric iteration domains in a kernel, other
expressions and statements within the kernel function that
are not enclosed in a loop-nest are left to execute in the
interpreter.

3.3 Compiler Backend
3.3.1 Runtime GPU Thread Organization
MostmodernGPUs use a Single-Instruction-Multiple-Threads
(SIMT) approach to execute large numbers of threads in par-
allel. They have a thread organizational hierarchy reflecting
the underlying architecture of the GPU. The CUDA paradigm
partitions threads into blocks and grids. ALPyNA exploits
the dynamic introspection capabilities of the CPython inter-
preter to extract loop bound values immediately prior to loop
nest invocation and execution. This is done by inspecting
the binding of the result of the loop bounds expression, just
prior to the execution of the loop. All the loops that can be
run in parallel are mapped to each of the GPU axes and all
other parallel loops are executed sequentially within each
kernel.

3.3.2 Numba
ALPyNA uses Numba [13] to finalize and compile its auto-
matically generated GPU kernels. Numba is an LLVM based
compiler for Python functions. It is invoked by applying the
@jit decorator to specific functions. To write code targeting
the GPU, Numba uses the decorator syntax to compile ker-
nels written in a tightly restricted subset of Python. These
kernels have specific intrinsics that map to the GPU grid,
block and synchronize programming primitives in the CUDA
paradigm. These mappings directly refer to the CUDA primi-
tives used to identify the thread hierarchy within the kernel.

While Numba allows runtime type inference, it does this
on every invocation to the kernel. In the context of ALPyNA,
consequent upon the dependences discovered in a loop nest
structure, a kernel might have to be executed sequentially.
This happens in the case of a loop-carried dependence. When
a kernel is invoked multiple times sequentially, Numba’s
auto-typing feature re-compiles the code upon each kernel
invocation. This slows down execution time by an order of
magnitude1. To prevent this, ALPyNA applies discovered
types to the kernel once only at the loop nest level. This
allows Numba to cache the compiled kernel for further use
over every invocation within a loop.

1measured on the Desktop platform specified in evaluation, Section 5

4 Benchmarks
ALPyNA is evaluated using four well-known array-intensive
benchmarks expressed in ‘plain old Python’ as nested linear
loops. The benchmark kernel is executed with a range of
inputs. The execution time is directly related to iteration
domain size. We measure time taken for:

1. dependence analysis and kernel generation
2. GPU kernel compilation
3. execution time for generated code on GPU

This total time is compared with the time taken by equivalent
code executed within the CPython interpreter.
NaïveMatrixMultiplication operates on two dense matri-
ces, represented as two-dimensional arrays of floating-point
values. The naïve approach to matrix multiplication involves
a triple nested for-loop, to iterate over rows and columns and
compute a dot-product for each result element. While other
algorithmically efficient variations of matrix multiplication
exist, they are used in the context of overloaded operators
for specific Matrix representations. The absence of the k-loop
iterator in any of the subscript pairs that have to be checked
for dependence generates all three dependence types namely
(i) True dependence(RAW 2), (ii) Anti dependence (WAR 3) and
(iii) Output dependence (WAW 4). Hence the k-loop has to be
run sequentially (Listing 3).
Saxpy is Single precision AX plus Y. This benchmark com-
bines scalarmultiplication and vector addition on two equally
sized linear arrays of 32-bit floating point values. Mathemat-
ically, the computation is represented by αx⃗ + y⃗ (Listing
4).
Jacobi Relaxation Core is an iterative solution for a set
of linear equations, expressed as a matrix/vector product
equation. Approximate trial values are used initially, and
refined to reduce the error terms. The algorithm is iterated
until it converges on a solution. This benchmark is the core
of the iteration step, a doubly nested loop to compute the
next value and the error value for each element in the two-
dimensional matrix (Listing 5).
Conway’s Game of Life is a zero-player game on a two-
dimensional board, representing a cellular automaton. Each
element is either alive or dead. At each turn of the game, ele-
ments are born, survive, or die, based on their neighbouring
element’s state at the previous turn. This benchmark is the
core of the survival calculation, representing a single turn
in the game. Effectively, it is a stencil computation across a
two-dimensional integer matrix (Listing 6).

2Read-after-Write
3Write-after-Read
4Write-after-Write

30

ALPyNA: Acceleration of Loops in Python for Novel Architectures ARRAY ’19, June 22, 2019, Phoenix, AZ, USA

Figure 4. ALPyNA benchmark execution times (lower is better). Note logarithmic y-scale is used due to the magnitude of
difference in execution time across different input sizes. GPU execution times are much lower in general. When time for code
analysis and kernel compilation are factored into consideration, GPU offload become profitable for larger iteration domain
spaces (towards right hand side on each graph).

5 Evaluation
5.1 Experimental Setup
The experimental platform used for evaluating the bench-
marks is a typical commodity desktop computer. It has an
Intel Core i7-6700 quad-core CPU with Simultaneous Multi-
threading (SMT) enabled and a L3 Cache of size 8MB. The
maximum clock frequency is 3.4GHz. The memory fitted to
this machine is 16GB (2 ∗ 8GB) of 2133MHz DDR-4 RAM.

The GPU used to perform the benchmarking is an Nvidia
GeForce GTX-1060. It has a maximum frequency of 1.7GHz
with 3GB on-board GDDR-5 RAM. The SIMT compute hard-
ware of the GPU is laid out as nine Streaming Multiproces-
sors (SM), each holding four partitioned SIMT units. Each
SIMT unit has 32 cores that are scheduled simultaneously as
well as its own individual warp 5 scheduler. This provides
for a total of 1152 cores across nine SMs. The graphics card
is connected via PCI-Express (PCI-E 3.0).
All experiments are run using native x86_64 Linux, ker-

nel version 4.9. ALPyNA is evaluated with CPython version
3.5.3, with Numpy version 1.13.3. The runtime code gener-
ation uses Numba version 0.33.0. Numba itself hooks into

5Nvidia’s term for smallest single schedulable unit of threads

an underlying GPU code generator—we use Nvidia CUDA
compute version 8.0.44.

5.2 Performance
The benchmarks are executed over a range of iteration do-
main sizes. The Saxpy benchmark has a one-dimensional iter-
ation space. The Jacobi Relaxation Core and Conway’s Game
of life benchmarks both have a two-dimensional loop itera-
tion spacewhileMatrixMultiplication has a three-dimensional
loop iteration space.
Figure 4 plots CPython and ALPyNA runtimes for differ-

ent iteration domains. To account for the large differences
in execution times between CPython and ALPyNA, the time
axis is logarithmic. To compare the effectiveness that adop-
tion of ALPyNA might have in the real world, we compared
actual time taken by the CPython interpreter against total
execution time taken by ALPyNA to execute the benchmark.
This includes the overhead of analysis and compilation, as
well as and actual execution of GPU kernels. The execution
times shown are inclusive of data transfer time.

ALPyNA generates the skeleton of the GPU kernels at com-
pile time, if all the loop bounds can be resolved at compile-
time. In such a scenario, only the type-inspection is done at

31

ARRAY ’19, June 22, 2019, Phoenix, AZ, USA Dejice Jacob and Jeremy Singer

runtime. To reflect more real-world scenarios and to exer-
cise ALPyNA’s runtime dependence analysis and subsequent
GPU kernel generation, the benchmarks were written with
dynamic loop-limits

Each benchmark is an average of five runs. For the smaller
iteration domains (i.e. 64x64 forMatrix-Multiplication, 256x256
for Jacobi Relaxation Core and Conway’s Game of Life and
256K for Saxpy), we found a +/- 10% variability amongst
the run-time analysis and execution times for both the ex-
ecution on the CPython interpreter and the GPU. For all
the other iteration domain sizes that we tested, variability
reduced from +/- 5% to almost 0%, inversely proportional to
increasing iteration domain size. The variability of the GPU
compilation times was always constant at +/- 10%. This can
be explained by observing that the number of kernels to be
compiled for these benchmarks remain constant irrespective
of iteration domain sizes.

All benchmarks executed on the CPython interpreter were
observed to run at the maximum CPU frequency of 3.4 GHz.
This is due to the CPython interpreter running in single-
threaded mode which caused only one CPU core to be fully
utilized, leaving the others idle. Thus no throttling of the
CPU due to potential thermal issues was noticed.
For GPU execution of the kernels, compiling all the rele-

vant kernels for each loop nest dominated total execution
time. However, the compilation time is relatively constant
for all iteration domain sizes. This is due to the fact that
these are all light-weight kernels that are equal to the num-
ber of statements in the loop body. Only the structure of
each kernel would change if the dependence graph varied
due to runtime factors.
All the benchmarks show that there is a crossover input

size threshold, above which GPU execution becomes prof-
itable. Since:

1. kernel compilation overhead is constant and
2. execution times on the GPU (for parallelizable code)

are orders of magnitude lower than time taken to exe-
cute on the interpreter,

we can surmise that code executed on the GPU will be faster
for loop iteration domains that are large enough to amortize
the cost of GPU kernel compilation.

6 Related Work
Sheffield et al [19] describe Three fingered Jack(TFJ), a sys-
tem that uses loop dependence analysis to parallelize linear
Python for-loops and generate code for FPGAs. They build
on the Copperhead compiler system [6] to do static compila-
tion of nested loops for which loop-bounds are known ahead
of time. It can also only compile for known fixed types.
ALPyNA can also vectorize loop nests with known loop-

bounds at compile time. However, unlike Three Fingered Jack,
we may also defer this dynamically to runtime when the
loop-bounds are not known at compile time. This allows us

to potentially run more work in parallel. Additionally our
system can also discover the types of the vectors at run-time
through using the introspection capabilities of the CPython
virtual machine.

Caamaño et al [4] describe the working of a runtime opti-
mising polyhedral compiler calledApollo. To reduce complex-
ity, they analyze small windows of LLVM-IR and statically
generate variants of code for which dependences cannot
be known until runtime. These are speculatively executed,
with relevant guard conditions checking the accuracy of the
speculation. It falls back onto a known correct point when a
mis-prediction is detected.

Apollo targets CPU based loop parallelization; on the other
hand, ALPyNA targets heterogeneous architectures. Unlike
Apollo, ALPyNA does not speculate and recover. We intro-
spect the values of the loop-domains and the types of the
data from the runtime environment to analyze the structure
of the loop and concomitantly, we generate the structure
of the kernels based on structure of the dependence graph
discovered at runtime.
Tornado, described by Clarkson et al [7], uses a system

of annotations in code for Java. The developer annotates
functions containing loop-nests with annotations like @par-
allel or @reduce. To generate parallel code, the number of
dimensions to parallelize are specified by the developer. A
Directed Acyclic Graph representation is used to describe
the dependences between kernels. Tornado does not attempt
to discover any parallelism in the developer code, but relies
on guarantees provided by the developer to parallelize loops
while ALPyNA discovers dependences in the structure of
the code itself.
Loo.py [11] is an eDSL that can perform dense loop-nest

array manipulation. It relies on the developer specifying the
loop-bounds and operations to be executed in a descriptive
way. Various loop-level transformations in the polyhedral
mould are provided as a library of optimizations for the
developer to use on the specified operations. Code is gen-
erated for backends once all the specified transformations
are applied to the operations described in the DSL. Loo.Py
is a code-generator aimed at the expert developer while the
aim of ALPyNA is to allow the expression of code in regular
Python, while still providing significant speed-ups.

7 Conclusions
With ALPyNA, we have evaluated the possibility of paral-
lelizing standard Python loops and make a case for its

• productivity: by showing that end-user developers
need not be aware of the precise low-level program-
ming paradigm that is required to extract performance
from the GPU.

32

ALPyNA: Acceleration of Loops in Python for Novel Architectures ARRAY ’19, June 22, 2019, Phoenix, AZ, USA

• portability: by maintaining the original valid Python
code provided by the programmer which we may exe-
cute in the interpreter if this code cannot be transferred
to the GPU.
• dynamic analysis capability: by using the introspec-
tion capabilities of the interpreter during JIT analysis.
This enables us to vectorize to the maximum possi-
ble extent that is allowed by dependence relationships
identified by runtime analysis.

We have shown up to 1000x performance increase relative
to the time taken by the CPython interpreter for workloads
where the iteration domain space is large enough to amor-
tize the (i) analysis of the loop structure, (ii) generation of
requisite kernels and corresponding driver code and (iii)
compilation of the required accelerator code.

A Appendix
A.1 Code Listings

Listing 3. Naïve Matrix Multiply
def matmul(mat_a , mat_b , mat_c):

ma_rmax , ma_cmax = np.shape(mat_a)

b_rmax , mb_cmax = np.shape(mat_b)

for k in range(ma_cmax):

for i in range(ma_rmax):

for j in range(mb_cmax):

mat_c[i][j] = mat_c[i][j] + mat_a[i][k] *

mat_b[k][j]

Listing 4. Saxpy
def saxpy(arr_y , arr_x , constval):

for idx_i in range(len(arr_y)):

arr_y[idx_i] = arr_y[idx_i]

+ constval * arr_x[idx_i]

Listing 5. Jacobi Relaxation Core
def jacobi_relax_core(next_x , curr_x , err):

i_max , j_max = np.shape(curr_x)

for i in range(1,i_max -1):

for j in range(1,j_max -1):

next_x[i][j] = 0.25 * (curr_x[i][j+1]

+ curr_x[i][j-1]

+ curr_x[i-1][j]

+ curr_x[i+1][j])

err[i][j] = next_x[i][j] - curr_x[i][j]

Listing 6. Conway’s Game of Life
def conway(curr , nxt , size):

for i in range(1,size -1):

for j in range(1,size -1):

first count number of live neighbours (

between 0 and 8)

nxt[i][j] = curr[i-1][j-1] + curr[i-1][j] +

curr[i-1][j+1] + curr[i][j-1] +

curr[i][j+1] + curr[i+1][j-1] +

curr[i+1][j] + curr[i+1][j+1]

next cell is live if curr is dead

but has 3 live neighbours ,or if curr

is alive and has 2 or 3 live neighbours

nxt[i][j] = ((~(- curr[i][j]) & nxt[i][j])

| ((curr[i][j]*nxt[i][j])|curr[i

][j]))==3

Acknowledgments
This material is based upon work supported by the Engineer-
ing and Physical Sciences Research Council under Grant
No. EP/L000725/1. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of the
EPSRC.

References
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,

Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving,
Michael Isard, et al. 2016. Tensorflow: A system for large-scale machine
learning. In 12th USENIX Symposium on Operating Systems Design and
Implementation. 265–283.

[2] Utpal Banerjee, Rudolf Eigenmann, Alexandru Nicolau, and David A
Padua. 1993. Automatic program parallelization. Proc. IEEE 81, 2 (1993),
211–243.

[3] Margaret Burnett, Curtis Cook, and Gregg Rothermel. 2004. End-user
software engineering. Commun. ACM 47, 9 (2004), 53–58. https:
//doi.org/10.1145/1015864.1015889

[4] Martinez Caamaño, Juan Manuel, Manuel Selva, Philippe Clauss,
Artyom Baloian, and Willy Wolff. 2017. Full runtime polyhedral opti-
mizing loop transformations with the generation, instantiation, and
scheduling of code-bones. Concurrency and Computation: Practice and
Experience 29, 15 (2017), e4192. https://doi.org/10.1002/cpe.4192

[5] Stephen Cass and Parthasaradhi Bulusu. 2018. IEEE Spectrum Top
Programming Languages Survey. https://spectrum.ieee.org/static/
interactive-the-top-programming-languages-2018. Accessed: 2019-
04-03.

[6] Bryan Catanzaro, Michael Garland, and Kurt Keutzer. 2011. Copper-
head: Compiling an Embedded Data Parallel Language. SIGPLAN Not.
46, 8 (2011), 47–56. https://doi.org/10.1145/2038037.1941562

[7] James Clarkson, Christos Kotselidis, Gavin Brown, and Mikel Luján.
2017. Boosting Java performance using GPGPUs. In International
Conference on Architecture of Computing Systems. 59–70.

[8] Juan Fumero, Michel Steuwer, Lukas Stadler, and Christophe Dubach.
2017. Just-In-Time GPU Compilation for Interpreted Languages with
Partial Evaluation. In Proceedings of the 13th ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments. 60–73.
https://doi.org/10.1145/3050748.3050761

[9] Gina Goff, Ken Kennedy, and Chau-Wen Tseng. 1991. Practical De-
pendence Testing. SIGPLAN Not. 26, 6 (May 1991), 15–29. https:
//doi.org/10.1145/113446.113448

[10] Ken Kennedy and John R Allen. 2001. Optimizing compilers for mod-
ern architectures: a dependence-based approach. Morgan Kaufmann
Publishers Inc.

[11] Andreas Klöckner. 2014. Loo. py: transformation-based code genera-
tion for GPUs and CPUs. In Proceedings of ACM SIGPLAN International
Workshop on Libraries, Languages, and Compilers for Array Program-
ming. 82. https://doi.org/10.1145/2627373.2627387

[12] Andreas Klöckner, Nicolas Pinto, Yunsup Lee, Bryan Catanzaro, Paul
Ivanov, and Ahmed Fasih. 2012. PyCUDA and PyOpenCL: A scripting-
based approach to GPU run-time code generation. Parallel Comput.
38, 3 (2012), 157–174. https://doi.org/10.1016/j.parco.2011.09.001

33

https://doi.org/10.1145/1015864.1015889
https://doi.org/10.1145/1015864.1015889
https://doi.org/10.1002/cpe.4192
https://spectrum.ieee.org/static/interactive-the-top-programming-languages-2018
https://spectrum.ieee.org/static/interactive-the-top-programming-languages-2018
https://doi.org/10.1145/2038037.1941562
https://doi.org/10.1145/3050748.3050761
https://doi.org/10.1145/113446.113448
https://doi.org/10.1145/113446.113448
https://doi.org/10.1145/2627373.2627387
https://doi.org/10.1016/j.parco.2011.09.001

ARRAY ’19, June 22, 2019, Phoenix, AZ, USA Dejice Jacob and Jeremy Singer

[13] Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert. 2015. Numba:
A LLVM-based Python JIT compiler. In Proceedings of the Second
Workshop on the LLVM Compiler Infrastructure in HPC. 7. https:
//doi.org/10.1145/2833157.2833162

[14] Johnny Wei-Bing Lin. 2012. Why Python is the next wave in earth
sciences computing. Bulletin of the American Meteorological Society
93, 12 (2012), 1823–1824. https://doi.org/10.1175/BAMS-D-12-00148.1

[15] Stefan C Müller, Gustavo Alonso, and André Csillaghy. 2014. Scaling
Astroinformatics: Python + Automatic Parallelization. IEEE Computer
47, 9 (2014), 41–47. https://doi.org/10.1109/MC.2014.262

[16] Thomas P Robitaille, Erik J Tollerud, Perry Greenfield, Michael Droett-
boom, Erik Bray, Tom Aldcroft, Matt Davis, Adam Ginsburg, Adrian M
Price-Whelan, Wolfgang E Kerzendorf, et al. 2013. Astropy: A com-
munity Python package for astronomy. Astronomy & Astrophysics 558
(2013), A33. https://doi.org/10.1051/0004-6361/201322068

[17] Alex Rubinsteyn, Eric Hielscher, Nathaniel Weinman, and Dennis
Shasha. 2012. Parakeet: A Just-in-time Parallel Accelerator for Python.

In Proceedings of the 4th USENIX Conference on Hot Topics in Parallelism.
14–14.

[18] Christopher Scaffidi, Mary Shaw, and Brad Myers. 2005. Estimating the
numbers of end users and end user programmers. In 2005 IEEE Sympo-
sium on Visual Languages and Human-Centric Computing (VL/HCC’05).
207–214. https://doi.org/10.1109/VLHCC.2005.34

[19] David Sheffield, Michael Anderson, and Kurt Keutzer. 2012. Automatic
generation of application-specific accelerators for FPGAs from Python
loop nests. In Proc. 22nd International Conference on Field Programmable
Logic and Applications. 567–570. https://doi.org/10.1109/FPL.2012.
6339372

[20] Jeet Sukumaran and Mark T Holder. 2010. DendroPy: a Python library
for phylogenetic computing. Bioinformatics 26, 12 (2010), 1569–1571.
https://doi.org/10.1093/bioinformatics/btq228

[21] TIOBE. 2018. TIOBE index. http://www.tiobe.com/tiobe-index/
python/. Accessed: 2019-04-03.

34

https://doi.org/10.1145/2833157.2833162
https://doi.org/10.1145/2833157.2833162
https://doi.org/10.1175/BAMS-D-12-00148.1
https://doi.org/10.1109/MC.2014.262
https://doi.org/10.1051/0004-6361/201322068
https://doi.org/10.1109/VLHCC.2005.34
https://doi.org/10.1109/FPL.2012.6339372
https://doi.org/10.1109/FPL.2012.6339372
https://doi.org/10.1093/bioinformatics/btq228
http://www.tiobe.com/tiobe-index/python/
http://www.tiobe.com/tiobe-index/python/

	Abstract
	1 Introduction
	1.1 ALPyNA

	2 Background
	2.1 Parallelism in Python
	2.2 Automatic Parallelization
	2.3 Benefits of Deferring to Runtime

	3 Compiler Implementation
	3.1 Application Programmer Interface (API)
	3.2 Compiler Frontend
	3.3 Compiler Backend

	4 Benchmarks
	5 Evaluation
	5.1 Experimental Setup
	5.2 Performance

	6 Related Work
	7 Conclusions
	A Appendix
	A.1 Code Listings

	Acknowledgments
	References

