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Abstract. Brain-Computer Interfaces (BCIs) are systems capable of decoding
neural activity in real time, thereby allowing a computer application to be di-
rectly controlled by the brain. Since the characteristics of such direct brain-to-
computer interaction are limited in several aspects, one major challenge in BCI
research is intelligent front-end design. Here we present the mental text entry
application ‘Hex-o-Spell’ which incorporates principles of Human-Computer In-
teraction research into BCI feedback design. The system utilises the high visual
display bandwidth to help compensate for the extremely limited control band-
width which operates with only two mental states, where the timing of the state
changes encodes most of the information. The display is visually appealing, and
control is robust. The effectiveness and robustness of the interface was demon-
strated at the CeBIT 2006 (world’s largest IT fair) where two subjects operated
the mental text entry system at a speed of up to 7.6 char/min.

1 Introduction

Brain-computer interfaces (BCIs) translate brain signals into control commands. The
measured brain signals reflect, to some extent, the intentions of a subject. The control
commands may be used for a computer application or a neuroprosthesis. There is a
variety of BCI systems being developed that use signals recorded from the scalp, the
surface of the cortex, or from inside the brain. It has been shown that invasive BCI
systems enable monkeys, and recently also humans, to operate a robotic arm ([3,4]).
Furthermore it was demonstrated that noninvasive BCI systems enable healthy subjects
as well as patients to control an internet browser or simple word processing software
(15.6,7]).

Since a principle motivation of the development of BCls is to provide paralyzed
patients with independent communication tools, BCI-driven spelling devices are an im-
portant topic in BCI research. The Tubingen BCI group developed a system that could
be operated by patients suffering from amyotrophic lateral sclerosis ([8]). Binary de-
cisions of the BCI were used to select letters in a procedure where the alphabet was
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iteratively split into halves. The achieved spelling rate was about 0.5 char/min. With
a similar front-end but a different BCI approach, a spelling application of the Graz
group could be operated by one patient suffering from severe cerebral palsy at about 1
char/min ([9]). In [10] a spelling application is proposed that is based on a three-class
BCI. While one class can be used to scroll through the alphabet which is presented on
two ‘assembly lines’ left and right of the cursor, the other two classes are used to select
the character from either the left or the right line. Since scrolling is uni-directional, miss-
ing the desired character necessitates scrolling through the whole alphabet for another
chance. Two out of three BClI-trained users are able to operate the device at spelling
speed 2.35 resp. 1.62 char/min (average for 5 words).

Furthermore there are BCI spelling devices that are based on the detection of poten-
tials that are evoked by external stimuli rather than endogeneously altered mental states.
Most prominent is the approach proposed by Donchin et al. ([11]) using the P300 com-
ponent. Here all characters are presented inxé@natrix. The symbol on which the
user focuses her/his concentration can be be predicted from the brain potentials that
are evoked by random flashing of rows and columns. The role of directing the gaze to
the desired letter is so far not investigated. Further developments (e.g., [12,13]) suggest
that high spelling rates can be achieved using this approach. In the online experiments
that have been reported so far, many repetitions of the stimuli have been used in order
to increase the signal-to-noise ratio for P300 detection. Accordingly the spelling speed
could not exceed about 6 char/min even at 100% classification accuracy. Nevertheless
offline analyses show that in principle fewer averages could be used, such that up to 15
char/min could be possible. Still, this has to be shown in practice.

Although the proof-of-concept of BCI systems was given decades ago (e.g. [14]),
several major challenges are still to be faced. One of those challenges is to develop BCI
applications which take the specific characteristics of BCI communication into account.
Apart from being prone to error and having a rather uncontrolled variability in timing,
its bandwidth is heavily unbalanced: BCI users can perceive a high rate of information
transfer from the display, but have a low-bandwidth communication in their control
actions, cf. Fig. 1 (a).

The Berlin Brain-Computer Interface (BBCI) is an EEG-based BCI system which
operates on the spatio-spectral changes during different kinds of motor imagery. It uses
machine learning techniques to adapt to the specific brain signatures of each user,
thereby achieving high quality feedback already in the first session ([15]). The men-
tal text entry systenilex-o-Spelwhich is presented here adapts modern, dynamic text
entry methods into a suitable form for brain-computer control.

The idea for Hex-0-Spell was taken from the Hex system ([16,17], see Fig. 1 (b)),
which was designed for use on mobile devices augmented with accelerometers, where
tilt control was used to maneuver through a hexagonal tesselation. The system adapted
the response dynamics in order to make control behaviour for likely actions easier than
unlikely ones, without altering the ideal path for any given word trajectory. This was
intended to maintain a level of stability in the patterns required to generate letter se-
quences, such that the user could "bootstrap" from closed-loop to open-loop control.
The adjustment was based upon a continuously-updating language model which in-
ferred the next character given the previous text sequence. Hex-o-spell was adapted
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Fig. 1. (a) Left: Asymmetry of BCI communication. (b) Right: Text entry systdexfor mobile
devices.

from this original system, replacing the two-dimensional tilt control with a rotation/forward
switching input (see Section 2.1) and introducing layout rearrangement in place of the
adaptive dynamics (see Section 2.2). In BCls, where there is enormous asymmetry in
the bandwith of the channels in the control loops (see Fig. 1 (a)), high-quality language
models are essential to extract every drop of salient information from the user, using
the large display bandwidth to make the user aware of the effect of their actions in com-
bination with the language model. Although these introduce continual changes which
may be difficult to predict (from the point of view of the user), the consequent reliance
on continuous feedback may be tolerable given the extremely limited bit rates. Users
have to move so slowly that they have plenty of time to search the space for changes.

2 Methods

The decoding of mental states from brain activity as used in the Berlin Brain-Computer
Interface system is described in another contribution in this volume, see [18], and in
earlier publications ([15,19]). In short, the BBCI detects the user-specific spatio-spectral
changes of the EEG during motor imagination of, e.g., the left or the right hand or the
feet. Applications are controlled by a continuous control signal. Typically this is the
graded classifier output which discriminates two motor imagery classes. It has been
demonstrated that the machine learning approach which is realized in the BBCI allows
to achieve high quality feedback already in the very first session without subject training
([15,19,20)). Bit rates (measured during one dimensional cursor control) range between
6 and 40 bits per minute. The intention-to-control delay is difficult to quantify. The
reaction time from stimulus presentation to significant BCI control is between 750 and
1750 ms with a large intra-subject trial-to-trial variability (compared to 300 to 450 ms
in a 2 alternative forced choice task with finger movement responses to visual stimuli).
Note that there is a non-negligible percentage of the population for which BCI con-
trol does not work well enough to control applications. Since this phenomenon is re-



ported from all BCI laboratories it seems not to be a problem of data analysis but rather
inherent in the neurophysiological properties of the scalp EEG in some subjects. An
investigation of this issue will require a large experimental approach which is definitely

one of the burning issues in BCI research.

2.1 Character Selection Procedure in Hex-0-Spell

The challenge in designing a mental text entry system is to map a small number of BCI
control states (typically two) to the high number of symbols (26 letters plus punctuation
marks) while accounting for the low signal to noise ratio in the control signal. The more
fluid interaction in the BBCI system was made possible by introducing an approach
which combined probabilistic data and dynamic systems theory based on our earlier
work ([16]) on mobile interfaces.

Here we take the example that the text entry system is controlled by the two mental
statesimagined right hand movemeand imagined right foot movementhe initial
configuration is shown in the leftmost plot of Fig. 2. Six hexagonal fields surround
a circle. In each of them five letters or other symbols (includiag for backspace)
are arranged. For the selection of a symbol there is an arrow in the center of the cir-
cle. By imagining a right hand movement the arrow turns clockwise. An imagined foot
movement stops the rotation and the arrow starts extending. If this foot imagination per-
sists, the arrow touches the hexagon and thereby selects it. Then all other hexagons are
cleared and the five symbols of the selected hexagon are moved to individual hexagons
as shown in the rightmost screenshot of Fig. 2. The arrow is reset to its minimal length
while maintaining its original direction. Now the same procedure (rotation if desired
and extension of the arrow) is repeated to select one symbol. Note that there are only
5 symbols for choice in the second step, cf. rightmost screenshot of Fig. 2. Choosing
the empty hexagon makes the application return to the first step without selection. This

right hand imagery: turn arrow foot imagery: extend arrow level two of selection
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Fig. 2. The mental text entry system 'Hex-0-Spell’. The two states classified by the BBCI system
(bar on the right in each screenshot) control the turning and growing of the grey arrow respectively
(see also text). Letters can thus be chosen in a two step procedure. If the classifier output is
undecided (orange bar between the thresholds), the arrow maintains its direction and its length
dimishes continuously to minimum.



transition allows a sort of limited undo. Misspelt characters can be erased by selecting
the backspace symbol ‘<.

There are several parameters that can be adapted to the specific capacities of the
user, like the turning and the growing speed of the arrow.

2.2 The Language Model

A language model can ease the use of text entry systems effectively if it is incorporated
in an intuitive way. The language model determines a probability distribution on all
symbols, given the letters that have been written so far. Such probability distribution
can be used to construct (and dynamically adapt) the decision tree, such that more
probable symbols and be reached faster.

The implemented language model is a modified partial predictive-match (PPM)
model ([21,22]), which comes close to the maximum possible compression for English
([23]). A tree of probabilities is stored, givingpm(Xn | Xn—K ;- - -, Xn—1) a&s probabil-
ity for the N-th letter, given the& previous letters. In the Hex-o-Spell implementation
this PPM model (withK =2) was combined with a modified PPM where the prefix
is variable length, and runs from the start of the word. l.e., we used the probability
Rppm(Xn | X1, - .., Xn—1) of the N-th letter in a word, given all previous letters of that
word. These two probability models are combined by a relative weighting that depends
on the relative position of the letter in a word. The relative weight$fppy decrease
linearly from 1 for the first letter to 0.5 for the 6th and all subsequent letters. The lan-
guage models have been trained on a large corpus of German newspaper articles and
some novels.

From an information-theoretic point of view the whole arrangement of symbols to
the positions in the six hexagons should be controlled by the language model ([17]
describes how this optimisation was carried out for the original Hex system). We de-
cided not to do so, since such policy would reduce the potential for learning and require
significant search times. S/he would need to search the whole screen before each se-
lection to find the desired symbol. Instead we keep the grouping of the symbols to the
six hexagons fixed (e.g. letter ‘A’ to ‘E’ are always in the topmost hexagon, see Fig. 2).
Only the arrangement of the symbols within one hexagon is controlled by the language
model. In this arrangement the probability of a letter according to the language model
is matched with the rank of the position which reflect how easy that position can be
reached. The symbol that is in ‘straight-forward’ direction can be reached most easily,
since in this case the user just needs to go on with the ‘go straight’ command. For the
position clockwise next to it, switching to the turn state is required for°at@, and
so on, cf. Fig. 3. On the other hand the language model dictates that after one symbol
has been selected the arrow will point to that hexagon which contains the most probable
next letter.

The right part of Fig. 3 illustrates the language model (here trained for the German
language as described above) during the writing of the word ‘BERLIN’. In the very
first step the language model reflects the distribution of letters beginning a word. The
second row shows the situation when the second letter is selected. According to the
language model, the letter ‘E’ is the most probable second letter in a word starting
with ‘B’. This has to following two consequences. After selection of ‘B’ (using the ‘go
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Fig. 3. Language model at work: The sketch on left shows the ranking of the positions within
one hexagon. The position that can be reached in straight-forward direction from the center is
the easiest to go to (no state switch needed). Then the ranking proceeds clickwise. The figure
on the right illustrates how the language model influences the operation during the spelling of
‘BERLIN’. Each row corresponds to the selection of one letter. Groups of five subsequent char-
acters are placed within one hexagon, see leftmost screenshot of Fig. 2. Red shading indicates the
group containing the most probable letter, i.e. these characters are in the hexagon to which the
arrow initially is directed to. The ranking of probabilities within each group determine the relative
position of the corresponding characters within one hexagon as indicated in the left subplot. A
red circle marks the letter that actually needs to be written. (The probabilities were extracted for
the German language.)

straight’ state in the end) the arrow is reset pointing to the hexagon containg the ‘E’, and
the ‘E’ is placed in ‘straight forward’ direction within the hexagon (topmost position).
This way the mere continuation of the previous mental state (corresponding to the ‘go
straight’ command) leads to the selection of ‘E’. In the example the probability of the
backspace symbol was chosen to be 0.1. In practice this value is set according to the
control capability of the user.

2.3 Comments on the Design of Hex-o-Spell

Hex-O-Spell is unusual in that it uses that the user applies binary control to produce
discrete output, but does so through a continuous control process. Control is effected by
imagining motor movements; but these are based upon the feedback from the interface,
which has a continuously changing state. This state is the result of the integration the
output of the classifier identifying the imagined movements, which is integrated and
then thresholded to into a decision between rotation/forward motion with fixed speeds.
Fig. 4 shows the structure of this control loop.

Hex-o0-Spell could also be modified to work as a T9-style system, with only a single
transition for each character rather than a pair. Given that PPM models can compress
English to approximately 2 bits per character and choosing one from six transitions
gives ~ 2.585 bits, this should be quite practical. [24] describes a functioning entry



Visual Feedback

Imagination Classifier Integration Selection

= ) ”
e e

Text Output
Fig. 4. The structure of the control loop in Hex-O-Spell, indicating the transformation of a discrete
user intention into a continuous variable which is fed back to the user, while simultaneously
generating discrete symbols.

system using only four transitions followed by a decoding step. Despite of its increment
of information transfer rate, it has to be explored whether BCI users are interested in
this form of predictive text entry. There are anecdotal reports of patients who preferred
a slower spelling system than using a system which suggested word completions based
on a probabilistic model.

Hex-0-Spell is effectively éming-based interface. The time at which the transition
from the rotation state to the forward state occurs determines the letter which is selected.
The rate of communication is bounded by how accurately the user can make these
transitions, given the noise properties, delays and unfamiliarity of interaction present
in an EEG interface. The time to traverse® &bould be calibrated against the reaction
time of the user and the system; if the traversal time is much shorter than the reaction
time, selection will become impossible. The language model, which adapts the layout,
acts to minimize the time required for a selection, trading-off the minimization of the
time required to rotate to the appropriate position for selection against the time required
to scan the new layout and find the new locations of symbols. The “calmness” of this
adaptation strategy means that the user is not always in a tightly-coupled loop with the
system; rather than being a flying-like control task, the interaction is broken into smaller
chunks which the user can proceed through at their own pace. This is one advantage over
systems such as Dasher [25], which although extremely efficient control is possible with
continuous, relatively noise-free input devices such as mice or eye trackers, but is less
suited to the discrete, pulse-like control present in a BCI.

3 Results

On two days in the course of the CeBIT fair 2006 in Hannover, Germany, live demon-
strations were given with two subjects simultaneously using the BBCI system. These
demonstrations turned out to be BBCI robustness temtexcellenceAll over the fair
pavilion, noise sources of different kinds (electric, acoustic,...) were potentially jeopar-
dizing the performance. A low air humidity made the EEG electrode gel dry out and



last, but not least, the subjects were under psychological pressure to perform well, for
instance in front of several running TV cameras or in the presence of the German min-
ister of research. The preparation of the experiments started at 9:15 a.m. and the live
performance at 11 a.m. The two subjects were either playing ‘Brain-Pong’ against each
other or writing sentences with Hex-o-Spell. Except for short breaks and a longer lunch
break, the subjects continued until 5 p.m. without degradation of performance over
time which is a demonstration of great stability. The typing speed was between 2.3 and
5 char/min for one subject and between 4.6 and 7.6 char/min for the other subject. This
speed was measured for error-free, completed phrases, i.e. all typing errors that have
been committed had to be corrected by using backspace. The total number of characters
spelled in error-free phrases was up to 560 per subject per day.

For a BCI driven text entry system not operating on evoked potentials this is a world
class spelling speed, especially taking into account the environment and the fact that the
subjects did not train the usage of the BBCI text entry interface: the subjects used Hex-
O-Spell only twice before.

4 Discussion

Compared to spelling applications that have so far been coupled to BCls ([10,26,8])
Hex-o-Spell is by far most sophisticated in terms of HCI principles. Conjoint with the
powerful BBCI this mental text entry system allowed to achieve world class spelling
performance. Hopefully this demonstration initiates the advancement of BCI applica-
tions from its rather simple state to more intelligent designed front-ends.

One of the aims of Hex-0-Spell is to make the best use of the language model to
reduce the effort required to enter text, without inducing enormous cognitive load or
extensive training time. There are four common approaches to introducing language
models into text entry systems: post hoc interpretation (e.g. as used in T9); adaptive
target resizing (as in Dasher [25]); dynamics adjustment (as in the original Hex); and
layout re-ordering (used in Hex-o-Spell). Target resizing is simple to understand, but
the visual display fluctuates rapidly and significant space is required to display the re-
sized alternatives. The reinterpretation approach allows for more powerful language
modeling (because subsequent letters can affect estimates of previous ones), but the
lack of predictability of output can be confusing for users. Adaptive dynamics can be
used to produce an efficient and visually stable display, but is less suitable for the one
dimensional control inputs present in the BCl interface. The rearrangment strategy does
require visual search at every new letter input, but the minimal reorganization algorithm
used in Hex-o-Spell significantly reduces the impact of this. Compared to other poten-
tial entry styles, such as Dasher or grid selection mechanisms, Hex-o0-Spell is also very
visually compact; the hexagonal display can potentially be used as a small overlay on
top of a text being edited, giving the user an overview of the context in which they are
editing.

The prospective value of BCI research for rehabilitation is well known. In light of
the work presented here we would advocate a further point. BCI provides stimulation
to HCI researchers as an extreme example of the sort of interaction which is becom-
ing more common: interaction with ‘unconventional’ computers in mobile phones, or



with devices embedded in the environment. These have a number of shared attributes:
high-dimensional, noisy inputs, which describe intrinsically low-dimensional content;
data with content at multiple time-scales; and a significant uncontrolled variability. The
mismatch in the bandwidth between the display and control channels (as explained
in the introduction) and the slow, frustrating error correction motivate a more ‘nego-
tiated’ style of interaction, where commitments are withheld until appropriate levels
of evidence have been accumulated (i.e. the entropy of the beliefs inferred from the
behavior of the joint human-computer system should change smoothly, limited by the
maximum input bandwidth). The dynamics of a cursor, given such noisy inputs, should
be stabilized by controllers which infer potential actions, as well as the structure of
the variability in the sensed data. Hex-o-Spell demonstrates the potential of such intel-
ligent stabilising dynamics in a noisy, but richly-sensed medium. The results suggest
that the approach is a fruitful one, and one which creates the potential for incorporating
sophisticated models withoatl hocmodifications.
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