Android development

This

Create a simple Android interface
Use XML interface layouts

Access the filesystem

Play media files

Info about Android development can be found at
http://developer.android.com/index.html/

The Javadoc SDK can be found at
http://developer.android.com/reference/packages.html

Assignment

Bl @@ 12:00 Pm

Create a basic MP3 media player

Winter Chimes.mp3

Two Together.mp3

Installing Eclipse and ADT

Eclipse and ADT aren't installed on the lab machines

Installers are provided
Install Eclipse JEE x64 for OS X (eclipse-j...tar.gz)
expand it to eclipse/ your home directory
Install the Android SDK
expand to android/ in your home directory (android-sdk...zip)

Open eclipse, go to Help/Install new software...

Choose Add.. and enter Android for the name and
the adt-0.9.5.zip file for the Archive

Install...

Check the box by Developer Tools
Click next, and use the default options (DDMS and development tools)
Restart Eclipse

Create an emvulator image

Go to android/tools and run android
In the Virtual Devices tab, click New,
Call it DefaultAVD
Use platform 2.1 (APl level 7)

Use a 1024Mb SD card
Use the default (HVGA) skin
Click Create AVD

Start up Eclipse

Getting Started

Create a new project New/Other/Android/Android Project
Call it AndroidLab1

Make it target Android 2.1

Fill in application name: AndroidLabl

Package name: com.es3.labs.AndroidLabl

Make sure Create activity is ticked, and call it StartActivity

ct from Existing Ant Buildfile

e Modeling Framework

Check it works

Go to Run/Run... and choose run as Android application
After some time, this should appear:

Ml @ 12:49 Pm

The Layout

Expand src and then com.es3.labs.AndroidLabl
Look at StartActivity.java
This is where the entry point for the application will be
Note that onCreate calls setContentView on a R.layout.main

Fimport ﬂndruid.app.AcLiuityﬁﬁ

public woid
SUper.o

You can find the definition for this layout by expanding res/layout then opening
main.xml (choose the main.xml tab)

main.xml

p
andr
andr

andro 7 cat y. LAUNCHER

Manifest | Application | Permissions | Instrumentation | AndroidMan

Default Manifest

Have a look at res/AndroidManifest.xml
Choose the AndroidManifest.xml tab at the bottom to actually see the XML
Note the <activity> element and the <intent-filter> element within it

This filter marks that the StartActivity activity will receive the MAIN action
intent and has category LAUNCHER

i.e. makes it the entry point

Adding an XML layout

Go to the Layout tab of main.xml and right click the TextView
choose remove and remove it and the LinearLayout containing it

Drag a new LinearLayout onto the blank canvas
Warning: the Eclipse Ul preview is very buggy...

Adding some buttons

Drag on four new Button instances

Go to the main.xml tab and manually edit the text attribute so they are
Play/Pause, Stop, Next and Prev

Change the id attribute so the buttons are @+id/PlayButton etc.

Click on StartActivity.java (important!) then do Run/Run...

Responding to button pushes

Make StartActivity implement OnClickListener
add import android.view.View.OnClickListener to the top of StartActivity.java

and import android.view.*

You need to implement the method onClick

public void onClick(View v)

{
}

This gets passed the view that was clicked
You can get the id of a view with getlid()

Test each button to see if the id matches the view's id

Don't do anything in the blocks yet!

if(v.getId() R.id.StopButton) { }
if(v.getId() R.id.PlayButton) { }

// etc...

Adding the listeners

For each button

Look up the Button instance using findViewByld()
e.g. findViewByld(R.id.PlayButton)
Add the listener to it using setOnClickListener

Now the listener will be called when the button is pushed

Adding audio playback

We need audio playback support
this is in android.media.*
import this

Create an instance variable in StartActivity of type MediaPlayer
Instantiate it in onCreate()

player = new MediaPlayer();

in onCreate(), we need to load all the available MP3 files
first we list all available files
then we identify MP3 files
we add these to a list

Listing available files

Create an instance method of StartActivity called listAvailableMP3s()

File objects are used to access file system info (imported from java.io.File)

In listAvailableMP3s, create a new File object with "/media" as the path
This is the Android path for media files like videos and music

the listFiles method lists files in a directory (returns an array of File[])

note: you only want MP3 files, so you'll probably want to create FllenameFilter class to filter the
files read (see the APl docs)

check each element is an actual file (not a directory) with isFile()
Return the files and store them in a class instance
Copy the file names into a second array (this will be shown onscreen)

This is the track list for the player

Copying files onto the device

Obviously the device doesn't actually have any mp3 files yet
Get some (use your own or find some royalty-free music)

Copy files over by going to Window/Open perspective...
choose Other.../DDMS

use the to phone button (tiny button at top-right, with an arrow pointing onto the phone)

Co py t h e fl I es to /sdca rd ksrc/com/labs/AndroidLabl /StartActivity.java - Eclipse - fUsers/johnwilliamson/Documents/workspace

Media player usage

Set the data source, prepare the media player, and begin playback
player.setDataSource(path);

player.prepare();

player.start();

Pause with player.pause() and stop with player.stop()

Pause, Stop, Previous,

Add a boolean variable to represent the play/pause state
e.g. isPlaying
it should initially false
Make it toggle when the play/pause button is pushed

If it's False, start playing (as above), make it false
If it's True, then call player.pause(), make it true

Similarly, if the stop button is pressed, call player.stop()

Create a variable to represent the current track index
For previous, decrement the track index, stop the current file, play the next file

if track index<0 make track index the last file

And similarly for next

Test it!
You should have a fully functioning (if limited) media player!

Track view

Go to the main layout (res/layout/main.xml)
Edit the XML directly and add a new LinearLayout around the whole thing
You can copy and paste the existing LinearLayout, but remember to change the ID!

Set the layout's orientation attribute to vertical

<LinearLayout android:orientation="vertical" android:id="...

After the first LinearLayout is closed add a <ListView> element

set its id attribute to @+id/TrackView

Set the layout_height of the inner LinearLayout to "100px" instead of "fill_parent"
The rough XML structure should look like this

<LinearlLayout vertical>
<LinearLayout horizontal>
<Button play>
<Button stop>
<Button prev>
<Button next>
</LinearlLayout>
<ListView>
</LinearlLayout>

Track View

Each element of the ListView must be a View
Conventionally a TextView

Configure the appearance of each of the rows by creating an XML file to represent the layout
of one row

Go to res/layout and right-click, New..
Choose other, Android XML
Set the file to track.xml
Make the root element a TextView (drop down at the bottom)
Click Finish

Edit the generated XML file and change the layout_width attribute to "fill_parent" so that
the list elements extend across the whole screen

Accessing the Track View

Import android.widget.*

In onCreate() get hold of the ListView reference using findViewByld on R.id.TrackView
You'll need to cast the result to ListView

Link the ListView to the track array
ListViews use ListAdapaters to connect data to the list

We want to use an ArrayAdapter
Takes as arguments a context (this), the text object to use for each row (R.layout.track), and the array to use

trackList.setAdapter(new ArrayAdapter<String>(this, R.layout.track, tracks.toArray());

Add a method updateTrackView which uses setSelection to match the ListView's selection
to the current track index

Call it in onCreate(), and after the track index is updated when the buttons are pressed

Highlighting the current track

We want to highlight the track that is currently playing

Do this by setting the TextView's color
You can get the child TextView's in the ListView by using getChildAt(index)

Get all TextView instances from the ListView
set their colors to gray
use setTextColor()

Get the current TextView instance from the ListView
Set the color of this to white

Exira functionality

Make the media player automatically go to the next file when it finishes (look at the
MediaPlayer methods to see how to do this)

Add a shuffle mode, with a button to toggle it
This means that next and the auto-advance when a track finishes should go to a random
track
But prev should go to the previous track

keep a list of previous tracks!

Allow the user to tap on the list to select a track
add a listener to the list, make it set the track index and start playing the new track

