
ES3 Lab 5ES3 Lab 5
Android development

This Lab

• Create a simple Android interface

• Use XML interface layouts

• Access the filesystem

• Play media files

• Info about Android development can be found at

http://developer.android.com/index.html

• The Javadoc SDK can be found at

http://developer.android.com/reference/packages.html

Assignment

• Create a basic MP3 media player

Instal l ing Ecl ipse and ADT

• Eclipse and ADT aren't installed on the lab machines

▫ Installers are provided

� Install Eclipse JEE x64 for OS X (eclipse-j...tar.gz)

� expand it to eclipse/ your home directory

� Install the Android SDK

� expand to android/ in your home directory (android-sdk...zip)

• Open eclipse, go to Help/Install new software...

▫ Choose Add.. and enter Android for the name and

the adt-0.9.5.zip file for the Archive

▫ Install...

• Check the box by Developer Tools

▫ Click next, and use the default options (DDMS and development tools)

▫ Restart Eclipse

Create an emulator image

• Go to android/tools and run android

▫ In the Virtual Devices tab, click New,

▫ Call it DefaultAVD

▫ Use platform 2.1 (API level 7)

▫ Use a 1024Mb SD card

▫ Use the default (HVGA) skin

▫ Click Create AVD

• Start up Eclipse

Gett ing Star ted

• Create a new project New/Other/Android/Android Project

▫ Call it AndroidLab1

▫ Make it target Android 2.1

▫ Fill in application name: AndroidLab1

▫ Package name: com.es3.labs.AndroidLab1

▫ Make sure Create activity is ticked, and call it StartActivity

Check i t works

• Go to Run/Run... and choose run as Android application

▫ After some time, this should appear:

The Layout

• Expand src and then com.es3.labs.AndroidLab1

▫ Look at StartActivity.java

▫ This is where the entry point for the application will be

▫ Note that onCreate calls setContentView on a R.layout.main

• You can find the definition for this layout by expanding res/layout then opening

main.xml (choose the main.xml tab)

main.xml

Defaul t Mani fest

• Have a look at res/AndroidManifest.xml

▫ Choose the AndroidManifest.xml tab at the bottom to actually see the XML

▫ Note the <activity> element and the <intent-filter> element within it

▫ This filter marks that the StartActivity activity will receive the MAIN action

intent and has category LAUNCHER

i.e. makes it the entry point� i.e. makes it the entry point

Adding an XML layout

• Go to the Layout tab of main.xml and right click the TextView

▫ choose remove and remove it and the LinearLayout containing it

• Drag a new LinearLayout onto the blank canvas

▫ Warning: the Eclipse UI preview is very buggy...

Adding some buttons

• Drag on four new Button instances

▫ Go to the main.xml tab and manually edit the text attribute so they are

Play/Pause, Stop, Next and Prev

▫ Change the id attribute so the buttons are @+id/PlayButton etc.

• Click on StartActivity.java (important!) then do Run/Run...

Responding to button pushes

• Make StartActivity implement OnClickListener

▫ add import android.view.View.OnClickListener to the top of StartActivity.java

▫ and import android.view.*

• You need to implement the method onClick
public void onClick(View v)

▫ This gets passed the view that was clicked

▫ You can get the id of a view with getId()

• Test each button to see if the id matches the view's id

▫ Don't do anything in the blocks yet!

public void onClick(View v)
{

}

if(v.getId() == R.id.StopButton) { }
if(v.getId() == R.id.PlayButton) { }
// etc...

Adding the l is teners

• For each button

▫ Look up the Button instance using findViewById()

� e.g. findViewById(R.id.PlayButton)

▫ Add the listener to it using setOnClickListener

• Now the listener will be called when the button is pushed

Adding audio playback

• We need audio playback support

▫ this is in android.media.*

▫ import this

• Create an instance variable in StartActivity of type MediaPlayer

▫ Instantiate it in onCreate()

• in onCreate(), we need to load all the available MP3 files

▫ first we list all available files

▫ then we identify MP3 files

▫ we add these to a list

player = new MediaPlayer();

L is t ing avai lable f i les

• Create an instance method of StartActivity called listAvailableMP3s()

• File objects are used to access file system info (imported from java.io.File)

▫ In listAvailableMP3s, create a new File object with "/media" as the path

� This is the Android path for media files like videos and music

▫ the listFiles method lists files in a directory (returns an array of File[])▫ the listFiles method lists files in a directory (returns an array of File[])

� note: you only want MP3 files, so you'll probably want to create FIlenameFilter class to filter the

files read (see the API docs)

▫ check each element is an actual file (not a directory) with isFile()

▫ Return the files and store them in a class instance

▫ Copy the file names into a second array (this will be shown onscreen)

• This is the track list for the player

Copying f i les onto the device

• Obviously the device doesn't actually have any mp3 files yet

▫ Get some (use your own or find some royalty-free music)

• Copy files over by going to Window/Open perspective...

▫ choose Other.../DDMS

▫ use the to phone button (tiny button at top-right, with an arrow pointing onto the phone)▫ use the to phone button (tiny button at top-right, with an arrow pointing onto the phone)

• Copy the files to /sdcard

Media player usage

• Set the data source, prepare the media player, and begin playback
player.setDataSource(path);
player.prepare();
player.start();

• Pause with player.pause() and stop with player.stop()

Pause, Stop, Previous, Next

• Add a boolean variable to represent the play/pause state

▫ e.g. isPlaying

▫ it should initially false

▫ Make it toggle when the play/pause button is pushed

� If it's False, start playing (as above), make it false

� If it's True, then call player.pause(), make it true

• Similarly, if the stop button is pressed, call player.stop()

• Create a variable to represent the current track index

▫ For previous, decrement the track index, stop the current file, play the next file

� if track index<0 make track index the last file

▫ And similarly for next

• Test it!

▫ You should have a fully functioning (if limited) media player!

Track view

• Go to the main layout (res/layout/main.xml)

▫ Edit the XML directly and add a new LinearLayout around the whole thing

� You can copy and paste the existing LinearLayout, but remember to change the ID!

▫ Set the layout's orientation attribute to vertical

<LinearLayout android:orientation="vertical" android:id="...

• After the first LinearLayout is closed add a <ListView> element

▫ set its id attribute to @+id/TrackView

▫ Set the layout_height of the inner LinearLayout to "100px" instead of "fill_parent"

• The rough XML structure should look like this

<LinearLayout vertical>
<LinearLayout horizontal>

<Button play>
<Button stop>
<Button prev>
<Button next>

</LinearLayout>
<ListView>

</LinearLayout>

Track View

• Each element of the ListView must be a View

▫ Conventionally a TextView

• Configure the appearance of each of the rows by creating an XML file to represent the layout

of one row

• Go to res/layout and right-click, New..

▫ Choose other, Android XML

▫ Set the file to track.xml

▫ Make the root element a TextView (drop down at the bottom)

▫ Click Finish

• Edit the generated XML file and change the layout_width attribute to "fill_parent" so that

the list elements extend across the whole screen

Accessing the Track View

• Import android.widget.*

• In onCreate() get hold of the ListView reference using findViewById on R.id.TrackView

▫ You'll need to cast the result to ListView

• Link the ListView to the track array • Link the ListView to the track array

▫ ListViews use ListAdapaters to connect data to the list

▫ We want to use an ArrayAdapter

� Takes as arguments a context (this), the text object to use for each row (R.layout.track), and the array to use

• Add a method updateTrackView which uses setSelection to match the ListView's selection

to the current track index

▫ Call it in onCreate(), and after the track index is updated when the buttons are pressed

trackList.setAdapter(new ArrayAdapter<String>(this, R.layout.track, tracks.toArray());

Highl ight ing the current t rack

• We want to highlight the track that is currently playing

▫ Do this by setting the TextView's color

� You can get the child TextView's in the ListView by using getChildAt(index)

▫ Get all TextView instances from the ListView

� set their colors to gray� set their colors to gray

� use setTextColor()

▫ Get the current TextView instance from the ListView

� Set the color of this to white

Extra funct ional i ty

• Make the media player automatically go to the next file when it finishes (look at the

MediaPlayer methods to see how to do this)

• Add a shuffle mode, with a button to toggle it

▫ This means that next and the auto-advance when a track finishes should go to a random

tracktrack

▫ But prev should go to the previous track

� keep a list of previous tracks!

• Allow the user to tap on the list to select a track

▫ add a listener to the list, make it set the track index and start playing the new track

