
ES3 Lab 7ES3 Lab 7
Real-time physically modelled sound

synthesis

This Lab

• You will build a fairly realistic physically-modelled guitar

• User interface will be provided, along with a simplified audio driver

• You will have to implement all the synthesis code!

Outl ine of s teps

• Get the template, and check that it works

• Synthesise a simple sine wave

• Construct a digital delay line class

• Fill it with noise and make it recirculate to generate a simple "pluck"

• Create a guitar string class

• Link it to the UI

• Set the string tuning from the UI

• Make six strings

• Implement a realistic modelled pluck

• Add a pick position model

Resul t

Structure of provided code

• lab7.zip has the template code

▫ SoundHandler

� provides the basic sound driver and wave loading functions

▫ DigitalGuitarAppDelegate

� the app delegate, just creates a GuitarViewController and shows it

▫ GuitarSynthesizer

� the skeleton synthesizer, opens up the audio driver

� you have to fill in the fillBuffer method to make sounds!

▫ UIFretBoard

� provides a fretboard display (allows you to tap on strings)

� sends messages to the GuitarSynthesizer when frets change

▫ UIGuitarView

� provides a control which can be strummed

� sends messages to GuitarSynthesizer saying which string has been plucked

▫ GuitarViewController

� just instantiates the UIGuitarView and UIFretBoard and shows them

� links the GuitarSynthesizer instance to UIGuitarView and UIFretBoard

Your task

• You will only need to modify GuitarSynthesizer

▫ All the rest of the provided classes should remain unchanged!

▫ You will have to create new classes though, to represent the string models

• You just have to create a simple waveguide string model, which can be used in

GuitarSynthesizer to produce sounds when it receives pluck events from the GuitarSynthesizer to produce sounds when it receives pluck events from the

UIGuitarView

Gett ing Star ted

• Build the project and run it

• Note that the UI is like a guitar folded in half

▫ the fretboard runs horizontally instead of vertically

▫ as does the strumming area

• You should be able to click on notes in the fretboard (top half) and circles will

indicate where fingers are "down"

UIGuitarView

UIFretBoard

Creat ing a sound

• To test the sound is working, add some simple code to generate a tone in the fillBuffer

method of GuitarSynthesizer

▫ At the moment, the buffer is filled with zeros (which is obviously silent...)

• After the "INSERT SYNTHESIS CODE HERE" comment, replace the v=0.0 with• After the "INSERT SYNTHESIS CODE HERE" comment, replace the v=0.0 with

▫ Change the 440 to something else for a different frequency

▫ the divide by 44100.0 is because we are using a 44100.0 sample rate

▫ the scale by 2*M_PI is because a sine wave takes an increment of 2pi to make a full cycle

� so this function does a full cycle 440 times a second

• Note that the code immediately below automatically rescales v to -32768 -- 32767

▫ we are using a 16 bit, 44100Hz PCM format

▫ we will work with floating point numbers in the range -1.0 -- 1.0 and rescale at the end

▫ all your computation should work with double values in -1.0 -- 1.0

v = sin(i*440*2*M_PI / (44100.0));

F i rs t sounds!

• Test it!

▫ You should hear a clear tone

• Note: the tone will have continuous, annoying clicks

• Think about why this is happening

▫ Hint: what happens when one buffer finishes and another one starts?

• Fix it, by introducing a new member variable...

On to s t r ings

• OK, sound is working

▫ you can safely comment out the sine generation now

• A simple physical model uses a single delay and some attenuation and filtering

• We need to create a delay line

▫ this is an object which takes a value and returns the value passed n steps ago

▫ where n is the length of the delay

Creat ing a delay l ine

• A delay line is very simple

▫ It can be modelled as just an array of previous samples

▫ Each step, we put a new sample on the start of the line

� and read out the sample n steps ago

• Create a new class DelayLine to represent the delay line

▫ It will need a double * member variable to store the delayed samples▫ It will need a double * member variable to store the delayed samples

� Note: we use C arrays for efficiency here, not NSArrays!

▫ And a variable representing the length of the delay line

• Add methods to initialise the delay line (initDelay), get the current delayed output (getOutput), put a

new value onto the delay line (newSample), and set the delay length (setDelay)

▫ newSample should take a double, getOuput should return one

Delay Line

Damping

Allocat ing delay memory

• The delay array is a C array

▫ Allocate it in initDelay with calloc (like malloc, but zeros the array)

▫ Remember to free it in dealloc!

▫ Note: you should allocate an array of a fixed length (maxDelay) which should be say 2048 samples

(this is much longer than we'll ever use)

▫ We will use some subset of this when the delay is shorter, but we don't want to have to keep

samples = calloc(sizeof(*samples), maxDelay);

▫ We will use some subset of this when the delay is shorter, but we don't want to have to keep

reallocating arrays...

▫ You will need an instance variable to represent the currently used delay length, which can be set by

setDelay

• Every time we get a sample, we could shift the whole array down, then put the new sample on the end...

▫ This is terribly inefficient!

• Instead, we use a pair of indices

▫ A read head and a write head

▫ The write head follows behind the read head

▫ both heads wrap around when they reach the end

Read headWrite head

Delay L ine

• Create instance variables for the readHead and writeHead

▫ just ints: they represent indices in the samples array

• Initialise the read head to 1 and the write head to 0

• every time newSample is called

▫ write the new value into samples[writeHead]▫ write the new value into samples[writeHead]

▫ increment readHead and writeHead

▫ check if readHead or writeHead is equal to the delay line length

� if so, reset it to zero (so it wraps around)

• To get the current output, just return samples[readHead]

• One subtle issue: if you change the delay line length and make it smaller, both readHead and

writeHead might be greater the new delay length, and both get reset to 0

▫ This would be very bad!

▫ Always check if readHead == writeHead, and if so, reset them to 1 and 0, respectively

Making a noise!

• Add a method fillWithNoise to DelayLine

▫ fill each element of samples with a number between -1.0 and 1.0

▫ this can be done with

� r = arc4random()/(double)0xffffffff)*2.0-1.0

• Now, in GuitarSynth, add an instance of DelayLine

▫ Initialise it, and set it to 140 samples long

▫ Call fillWithNoise on it immediately

▫ in the fillBuffer routine, we need to:

� read out the current value of the delay line, and feed back that value scaled by some value <1.0

� this represents the damping of the string -- closer to 1 is more "resonance"

� try 0.99

� the new sample output (v) is the value we read from the delay line

• Try it!

▫ it should sound like a "pling"

SynthDelegate

• The UIGuitarView object communicates with the synthesizer

▫ The view sends the synthesizer a message when a string is stroked

▫ This connection is already establsihed in the template (in GuitarViewController)

• GuitarViewController instantiates both the synth and the UIGuitarView

▫ in loadView it sets the synth delegate to the GuitarSynthesizer▫ in loadView it sets the synth delegate to the GuitarSynthesizer

▫ It also links the UIFretBoard object (which we'll use later)

• The UIGuitarView sensd a stringPlucked message to its delegate

▫ It has parameters for the string number (0-5), the x-position of the pluck (0.0 -- 1.0) (we

will use this later), and the velocity of the pluck

• GuitarSynthesizer needs to respond to this message

▫ fill in the empty method definition

▫ for the moment, just call fillWithNoise on the delay line

▫ later, we will use the other parameters to control the sound

Creat ing Digi talSt r ing

• Create a class to encapsulate a whole string model (a single string of the guitar)

▫ The guitar will eventually need six of these

▫ Call it DigitalString

• It should be initialised with a and a damping value

▫ It should have a newSample method which returns a new sample▫ It should have a newSample method which returns a new sample

� computed exactly as it was in the fillBuffer method

▫ And a setDelay method, which sets the delay of the delay line

▫ And a pluck() method, which takes a velocity (i.e. how hard it is plucked)

� should range from 0.0 -- 1.0

▫ Modify the DelayLine's fillWithNoise to take a scale parameter

� pass the scale parameter from pluck to fillWithNoise

� just multiply the random value by this scale!

• Now replace the instance of DelayLine in GuitarSynthesizer with a DigitalString

▫ call pluck on it every time a string is touched (when a pluckString message is recveived)

� use the velocity passed in from the UIGuitarView and pass it to pluck

▫ and use newSample to compute the new output in fillBuffer

6 st r ing gui tar

• Instead of one single DigitalString, add an array of 6 DigitalStrings to

GuitarSynthesizer

▫ remember to initialise all of them!

In fillBuffer, the output value v is just the sum of the string values, divided by six

DigitalString *strings[6];

• In fillBuffer, the output value v is just the sum of the string values, divided by six

• Initialise each string to a different delay line length (but same damping)

▫ choose any delays (less than the maximum delay for the delay line!)

▫ Now, use the string index from the pluck detection to pluck the appropriate

string

• Test it!

▫ You should have a tinny sounding, hopelessly tuned, but responsive guitar!

Tuning the gui tar

• For each string, we need to work out how to tune it

▫ The tuning is given by the delay line length

▫ longer delays -> lower pitch

▫ actually delayLength = sampleRate/frequency

• Add a setNote method to DigitalStringto take a note number rather than a delay length• Add a setNote method to DigitalStringto take a note number rather than a delay length

▫ (it will still be an int though)

▫ we will compute the appropriate delay and then call setDelay

• We will use MIDI note numbers

▫ MIDI note 60 == middle C

▫ each increase by 1 is a semitone up, decrease by 1 is a semitone down

• We need to compute delayLength == sampleRate/frequency

▫ The sampleRate is 44100

▫ Computing the frequency is trickier...

Frequency computat ion

• To convert a note number to a frequency, you need to be aware that note numbers are exponential in

frequency

▫ high C (note 72) is twice the frequency of middle C (60) which is twice that of low C (note 48)

▫ Each 12 steps represents a doubling in frequency (an octave)

• As a reference point, middle C is 261 Hz by definition

▫ So we can compute other notes relative to that▫ So we can compute other notes relative to that

• The adjustment must be 1 for +12, 0.5 for -12, 0.25 for -24 and so on

▫ i.e. 2^((noteNumber-60)/12.0)

• That's it!

• Initialise the strings with note numbers now

▫ Standard open guitar strings are note numbers 40 45 50 55 59 64 (E A D G B E)

• Try it!

adjustment = pow(2.0, (noteNumber-60.0)/12.0);

frequency = 261*adjustment;

Str ing damping model

• The strings sound very "sharp" and tinny, because they have no frequency damping

▫ in real life, high frequencies decay away more quickly

• We can add a loop pass filter to the loop to simulate this

Delay Line

•

• We will use a very simple one-pole filter

▫ x = alpha*x + (1-alpha)*newSample

Delay Line

Lowpass filter

+ damping

Adding the f i l ter

• In DigitalString, add a (double) filterTemp variable to hold the previous output of the string

▫ And an alpha variable to represent the filter coefficient

• The coefficient alpha of the filter can be computed by

▫ alpha = exp(-2*M_PI*frequency/44100.0)

▫ where frequency is the filter we want to cutoff at

▫ Use 32*noteFrequency for this value -- this is fairly realistic▫ Use 32*noteFrequency for this value -- this is fairly realistic

• In newSample, add a line like

▫ filterTemp = alpha * filterTemp + (1-alpha) * v

• use filterTemp as the feedback into the delay line, and also as the return value from newSample

• Compile and test

▫ The strings should sound much better now!

Using the f retboard

• To use the fretboard, implement the method fretsUpdated in GuitarSynthesizer

▫ This will receive a int [] array with 6 elements

▫ Each element specifies the number of notes (semitones) above the base string to play for

each string

▫ an array of [0 0 2 0 0 1] means second string +2 semitones, sixth string +1 semitone, all

others unchangedothers unchanged

• The synthesizer will get a message each time the frets are changed

▫ At this point, check all DigitalString instances and see if the note needs to change

▫ If so, send them a setNote message to update their notes

� The note is the string base note + the fret offset for that string

• Test!

▫ The guitar should now be playable!

Correct ing the tuning

• One problem with this model is that the delay lines are always integer length

▫ This means the possible frequencies are quite limited

▫ Because we throw away the fractional part when computing the delay line length, the

notes are all out of tune!

• We will use an allpass filter• We will use an allpass filter

▫ this filter passes all frequencies equally, but induces a phase shift (a delay)

• The formula for computing a allpass filtered sample with the type of allpass filter we will be

using is:

▫ y(t) = tau*(x(t) - y(t-1)) + x(t-1)

• Extend DelayLine, adding instance variables for tau, the previous allpass output y(t) (e.g.

called lastAllpass) and the previous delay line value (e.g. lastDelay)

Using the al lpass f i l ter

• Now, in getOutput compute the allpass output with something like:

▫ v = tau*(samples[readHead] - lastAllpass) + lastDelay;

▫ lastDelay = samples[readHead];

▫ lastAllpass = v;

• newSample remains unchanged! It's only the readout which needs to be modified

• To compute tau for a given delay, compute the fractional part of the delay (i.e. the total delay

- the integer part)

▫ tau = (1-fractionalPart) / (1+fractionalPart)

• Make sure you pass a double to the delay line setDelay when you modify it in DigitalString

(e.g. from setNote)

▫ Now delay values like 140.43 should work fine

• The strings will be in tune now -- the difference might be small, but it is important!

Better pick model

• Using white noise isn't very realistic

▫ much better results can be had by using measured impulses

• Measuring impulses is relatively hard

▫ There is, handily enough, a guitar impulse provided for you in the project

▫ It's called pluck.wav▫ It's called pluck.wav

• We need to load it into a form where we can put into the delay line

▫ loadWaveFileRaw takes a filename (without the .wav extension) and returns a WaveData

structure

▫ has the PCM data in data, and the length in nSamples

• Note: to use the values in data, you must first cast it to SInt16 *!

SInt16 *pcmData = (SInt16*) wavefile->data;
pcmData[0]; // first sample -- OK
pcmData[wavefile->nSamples-1]; // last sample -- OK
data[0]; // DO NOT DO THIS -- you must cast the data!

Using the pick model

• Add a WaveData member to GuitarSynthesizer, and load it when you initialise the

synthesizer

▫ Note: we only want one impulse to be shared among all strings

▫ it would be wasteful to load multiple copies of the impulse

• Pass a pointer (i.e. WaveData *) to the WaveData structure into each DigitalString when you • Pass a pointer (i.e. WaveData *) to the WaveData structure into each DigitalString when you

construct it

• In DigitalString add variables to represent the WaveData *structure, the current sample

index inside the impulse, and for the current pluck velocity

• Now, instead of calling fillWithNoise on the delay line in pluck

▫ set the current pick velocity to the value passed in

▫ reset the sample index for the impulse to zero (restart it)

Picking

• In newSample

▫ check if there are still samples to play in the impulse

▫ if so, copy a sample into the delay line (scaled by the current velocity), and

advance the pointer

Test it!• Test it!

• The guitar should sound much, much better

• Try using pluck-reverb.wav instead

▫ This adds some reverberation, so that the sound sustains for longer...

Model l ing pick posi t ion

• If you pluck a string near the end, it sounds different than if you pluck it in the middle

• We can simulate this using "comb filtering"

▫ comb filtering is just adding a delayed copy of a signal

▫ y(t) = x(t) + x(t-n)

• Add another delay line to the DigitalString• Add another delay line to the DigitalString

▫ Each time the strings frequency changes, set the delay length to xposition * (string delay time)

▫ xposition is the value passed into pluckString which ranges from 0.0 -- 1.0

▫ string delay time is just the length of the delay calculated for the main feedback loop

• Just feed the output from the impulse to this delay line

▫ Add the delay line output to the result just before injecting it into the delay line

• Test it!

▫ It should sound different near the middle of the string

// get impulseValue from the impulse wave...
[combDelay newSample:impulseValue];
impulseValue = v + [combDelay getOutput];
// feed impulseValue into the delay line...

Optional Ext ras

• If you're feeling ambitious:

• Make the string play a note as soon as the fret changes, so you can preview the note

▫ or make it play the whole chord on all six strings...

• Replace the UIFretView with a view that lets you select chords directly

▫ e.g. from a list view ▫ e.g. from a list view

▫ chord tables can be found online

• Put the GuitarViewController in a UITabBarController and add a controls page

▫ Add controls to select different picks

� e.g. choose either the pluck model or the simple white noise model

� noise model is better with distortion...

▫ Allow the user to select different tunings

� different tunings simply require different base values for each string

� e.g. get drop D by using the set 38, 45, 50, 55, 59, 64

