
ES3 Lab 1ES3 Lab 1
Beginning iPhone development

Resources

• The image files used in this lab are at

▫ http://www.dcs.gla.ac.uk/~jhw/es3/lab1.zip

This lab

• XCode:

▫ Learn how to create an iPhone project

▫ Build and run on the simulator

▫ Understand the files that will be created for you

▫ Adding frameworks

▫ Adding resources

▫ Setting the icon, and start-up image

• Development:

▫ Add some simple controls programatically

▫ Display an image

▫ Use basic animation

▫ Custom view drawing

Exercise

• Push a button, make the sprite move to positions loaded from a file (and play

sounds while it does)

Instal l ing XCode

• Lab machine have this, but if you're on your own laptop...

▫ Need OS X 10.6 (Snow Leopard)

▫ Need to sign up for a (free) developer account at developer.apple.com

▫ Then go to developer.apple.com/iphone and download iPhone SDK 3.1.2 (as of

December 2009)December 2009)

▫ Download the (2.2Gb!) disk image and install it

• That's it: everything, including the IDE, simulator and all other tools are installed

for you

XCode t ips

• Use autocomplete (tab to complete)

• If you press], XCode will insert a matching [in the right place

• Alt-Cmd-Up to switch between .h and .m files

• Alt-Dbl-click on a name to look it up in the API

• Shift-Cmd-B Build the project• Shift-Cmd-B Build the project

• Alt-Cmd-Enter Run the project

• Shift-Cmd-R show the console

Creat ing a project

• Start XCode, then File/New project...

▫ Create a Window-based project

Creat ing a project

• Give it a name and a project will be created. XCode should

look like below

XCode layout

main.m

• This contains the main function which is the entry point for an Objective-C

application.

• In general, you never need to use this. Just starts UIApplication

▫ UIApplication is linked to AppDelegate via InterfaceBuilder (magic for just now)

• Note that this is where the autorelease pool is created for memory management...

iPhoneLab1AppDelegate.m

• Main application class

▫ Everything is launched from here, in applicationDidFinishLaunching

iPhoneLab1AppDelegate.h

A t ip: NSLog

• Use NSLog to write things to the console (Run/Console to show the console)

• Works like printf

▫ Note that NSString's are written out using the %@ specifier, not %s

if(badErrorCode)if(badErrorCode)
NSLog(@"Something really bad happened in doSomething!\n");

//Using the format
int i;
i = 8;
NSLog(@"i=%d\n", i);

Creat ing a UI

• Add a new class (right-click classes/Add new file...)

▫ Make it a subclass of UIViewController

▫ Call it SimpleView

• In Lab1AppDelegate.h, add a SimpleView instance variable

• Add a property for it. Make it (nonatomic, retain)

� Remember, properties go after the instance variable block!

▫ To finish adding the property, add @synthesize viewController immediately

after @implementation IphoneLab1

SimpleView *viewController;

@property (nonatomic, retain) SimpleView *viewController;

@implementation IphoneLab1
@synthesize viewController;

Creat ing a UI

• In Lab1AppDelegate.m instantiate the SimpleView and add it's view to the window

▫ Put it in applicationDidFinishLaunching, before [window makeKeyAndVisible];

self.viewController = [SimpleView alloc];
[self.window addSubView:self.viewController.view];

• Note that you add the view member to the window, not the UIViewController

class itself

• The window object is the top level container for all UI components

• The use of self in the assignment is ESSENTIAL

▫ otherwise the property won't be used, and the retain mechanism won't work!

• appDidFinishLaunching is the main entry point for your code

Adding some components

• To make a UI, first of all create a view -- a UIView instance

▫ Like most UI components, UIView is initialized with a frame

▫ Rectangle which specifies size and position of component

▫ The CGRectMake(x,y,width,height) function creates such rectangles!

• We're doing programmatic UI creation, so we need to add the creation code to

loadView in SimpleView.m . This is called when the view is created.

• Build this and run it

▫ If you don't get a red screen, something went wrong

- (void)loadView {
self.view = [[UIView alloc] initWithFrame:CGRectMake(0,0,320,480)];
self.view.backgroundColor = [UIColor redColor];

}

Task: Add a button

• The UIButton class is a simple push button

• Add this to SimpleView

▫ Remember to create an instance variable and property, synthesize it, allocate

and initialize it in loadView

� To create a UIButton, use [UIButton buttonWithType:UIButtonTypeRoundedRect]

� Don't use the alloc / initWithFrame method� Don't use the alloc / initWithFrame method

� Set the frame instance variable afterwards

▫ Set the title using UIButton:setTitle:withType

� Use UIControlStateNormal for the type

• Now, also change the SimpleView background to black! (red is rather ugly)

mybutton.frame = CGRectMake(...

Adding a resource

• Add files to your project by right clicking the resource tab in the left hand pane

• Add pacman.png from the resource zip

▫ Just click through the dialogs -- the defaults will work

Drawing the image

• To draw the image, we need to load it and draw it

• We'll make a custom UI component which displays an image

• Add a new class ImageView

▫ Choose "Subclass of UIView" in the dropdown menu

Task: Load the image and display i t

• Use an instance of UIImage to load the image

• Add a new method to ImageView -- initWithImage:at:, taking a filename and a

position

▫ assume .png extension for the filename

return a value of type ImageView * -- i.e. self! ▫ return a value of type ImageView * -- i.e. self!

• Use NSBundle methods to get the path to the resource

▫ Remember, you can get the main bundle with [NSBundle mainBundle]

• Load the image into an instance variable of UIImage* in ImageView

▫ Remember to make and synthesize a property

• Then, at the end of initWithImage method, call [self initWithFrame:frame],

calculating the rectangle for the image given the image size and the position

specified

Drawing the image

• Add the following to the method drawRect

- (void) drawRect:(CGRect)rect
{

[self.viewImage drawInRect:rect]; // use your image member in place of viewImage

}

• This just draws the image on the control

Task: Load the image and display i t

• In SimpleView, add an instance variable and property for a ImageView* object

▫ Remember to #import "imageview.h" in SimpleView.h

• In loadView, instantiate it with

//Use the pacman image
self.imageView = [ImageView initWithImage:@"pacman" at:CGPointMake(100,50)];

• Add it as a subview, in the same way as the button was added

• Build it, and check that it appears on screen

Responding to a button push

• Need to add a target/action for the button

▫ do this in loadView of SimpleView

▫ make it send a message to the SimpleView instance when the finger comes up over the

button

[pushButton addTarget:self action:@selector(buttonPushed:)
forControlEvents:UIControlEventTouchUpInside];

• This will send a buttonPushed message to the current instance of SimpleView

▫ Add a blank method with this name to the prototype and body of the class (.h and .m

files)

▫ Note that it must take one parameter of type id -- the object that sent the message

▫ If you want, add a logging command with NSLog and check the method is called when

you press the button

forControlEvents:UIControlEventTouchUpInside];

- (void) buttonPushed:(id)sender;

Task: P laying a Sound

▫ Add the AudioToolbox framework to your app (right click frameworks, choose Add

/Existing framework...)

▫ Add #import <AudioToolbox/AudioServices.h> to the top of SimpleView.h

▫ Add bleep_sound.wav to the resources▫ Add bleep_sound.wav to the resources

▫ Add a variable of type SystemSoundID to SimpleView.h and a property for it (remember

to synthesize it!). Don't make it a retain property - it's not an Objective C object!

• To play a sound, you must first get a reference to it

• AudioToolbox is a C-framework, so you must convert URLs to CFURLs

NSString *bleepSoundPath = [[NSBundle mainBundle] pathForResource:@"bleep_sound"
ofType:@"wav"];
CFURLRef bleepSoundURL = (CFURLRef) [NSURL fileURLWithPath:bleepSoundPath];
AudioServicesCreateSystemSoundID(bleepSoundURL, &bleepSound); // note the use of &

SystemSoundID bleepSound;

Playing the Sound

• It's easy to play the sound

▫ Add this to the code that responds to the button press, so that the sound plays in sync

with the animation

AudioServicesPlaySystemSound(bleepSound);

▫ Build it, and check that the sound plays correctly

• Note: there are many iPhone audio API's, which are much more powerful than AudioToolbox

(just plays short wave files)

▫ Especially OpenAL, gives flexible multichannel audio playback with spatialization,

streaming etc.

Making an animation

• Use the iPhone's simple and powerful animation effect

• This involves basically just setting up a transformation, and telling the iPhone to

start it up

• We'll make our sprite do a spinning zoom out and fade out, before reversing back

in againin again

▫ Sounds hard, but it's just a few lines of code!

• Create a doSpin method in SimpleView

Animations

• You create an animation by placing changes to be displayed between a [UIView

beginAnimation] and [UIView commitAnimation] (which will start the animation

sequence)

▫ All you need to do is specify how things should look at the end -- Cocoa will do

the actual animationthe actual animation

• Add this to doSpin, and add a call to doSpin from buttonPushed

• Nothing will happen!

[UIView beginAnimatons:@"spin" context:nil];
[UIView commitAnimations];

Animations

• You need to specify at least how long the animation will last, and some changes to

make

▫ Add the following

[UIView beginAnimatons:@"spin" context:nil];[UIView beginAnimatons:@"spin" context:nil];
[UIView setAnimationDuration:0.5]; // 0.5 seconds

[UIView setAnimationBeginsFromCurrentState:YES];
// this is just to make it start from where we are

[UIView setAnimationRepeatAutoreverses:YES];
// make it reverse automatically

[UIView setAnimationRepeatCount:1];
//Just play it once...

//Now make it fade out
self.imageView.alpha = 0;

[UIView commitAnimations];

Test i t !

• If you press the button now, the sprite should fade out, then in again

▫ Except it disappears at the end...

▫ ...because we set the alpha to zero

▫ We need to reset after the animation has finished

• This is easy -- animations can send messages when they stop

▫ Add this before commitAnimation

• This will send an animationStopped message to self when it finishes

▫ Create an animationStopped method in SimpleView

▫ In it, just set the alpha of imageView to 255 (fully opaque)

[UIView setAnimationDidStopSelector:@selector(animationStopped:)];
[UIView setAnimationDelegate:self];

Make i t spin and zoom!

• Now, if you test it, the sprite should smoothly return to it's original state

• We can add one last effect -- spin and zoom

▫ Changes to position, size and rotation are made by changing the transform

property of a control

The CGAffineTransformMake* methods make it easy to create such transforms▫ The CGAffineTransformMake* methods make it easy to create such transforms

• Add this before commitAnimation

• Note that you only specify the endpoint of the animation -- nothing about how it

will execute

▫ Makes it very easy to use

CGAffineTransform spin = CGAffineTransformMakeRotation(360); // spin 360 degrees
CGAffineTransform zoom = CGAffineTransformMakeScale(10,10); // scale 10 times
CGAffineTransform spinZoom = CGAffineTransformConcat(spin, zoom); // join them
self.imageView.transform = spinZoom;

Now try i t . . .

• And note that the same problem occurs with the state sticking

• Add a line to animationStopped to set the imageView's transform to

CGAffineTransformIdentity

▫ This is the no transformation state

Pol ish: s tar t up image and icon

• If you add a 320x480 image called Default.png to the resources, it will be shown

as app loads

▫ Increases apparent load speed -- all apps should use this according to Apple

guidelines.

• Similarly, add a 57x57 PNG image called Icon.png, and it will become the icon• Similarly, add a 57x57 PNG image called Icon.png, and it will become the icon

▫ Note: you don't include the gloss/rounded corner effect -- the iPhone does this

for you

• Add the provided Default.png and Icon.png to the resources

▫ They will automatically be used by the app

• Build, and check that the icon is right, and that the background appears as it loads

Resul t

