ES3 Lecture 1

Introduction to mobile and
embedded development

Course overview

Introduction to mobile development
Development platform overview

iPhone development (4 lectures)
Python/Qt/Maemo development (3 lectures)
Introduction to mobile HCI

Mobile networking

OpenGLES -- 2D and 3D accelerated graphics
Sensors

Course Topic

Mobile and embedded systems
Focus on mobile development

You should be a competent iPhone and Maemo developer by the end
of the course

Understand the challenges of developing for mobile platforms

Have a clear understanding of the core technologies involved
mobile networking, mobile graphics, mobile interface design, mobile sensors

Be able to go from a blank screen to the App store!

It's assumed you can program reasonably well in C and Python and have a decent
knowledge of object-oriented programming

Course Overview

1 lecture (Mondays @ 12)
2 hour lab (Tuesdays @ 2)
1 lecture (sometimes) (Wednesday @ 12)
Email: jhw@dcs.gla.ac.uk

Assessment will be coursework alone! There is NO exam

3 pieces of minor coursework (10% each)
1 individual project (70%)

1
2
3
4
5
6
7
8
9

I
o

Schedule

Intro to mobile dev.

iPhone |
iPhone I
iPhone IV
Maemo |
Maemo Il
Mobile HCI
OpenGLES
Sensors

Networking

Tuesday

iPhone lab
iPhone Lab
iPhone Lab
Maemo Lab
Maemo Lab

Maemo Lab

OpenGLES lab

iPhone sensors lab

Project Lab

Wednesday
Mobile platforms

iPhone Il

Individual Project

Your project
Must be on Maemo or iPhone platform
Should be challenging -- choose something interesting!

Proposal by week 5
Start work by week 6 (at the very latest)

Hand in at end of term

Assessed on code + report
Focus on quality and ambitiousness of product

Minor Coursework

3 minor pieces
Week 4 basic iPhone application
Week 7 basic Maemo application
Week 9 OpenGLES + sensors

Should take around 2 hours each
Not massive development
Skeleton code will be provided

What's special about mobile devices?

They move around
The context of use is highly variable

Connectivity is usually very important
Communication and networking are key

Usually very constrained in many ways
Limited hardware -- processing power, storage, battery life
Limited software -- OS, language, debugging tools, libraries
Development is hard -- often slow, clumsy and frustrating

What's different

Coding, interface design, evaluation are all very different from desktops
Need to work with tricky constraints
But be able to work in a wide range of difficult environments!
Testing and evaluating can be very difficult
Networking complicates testing enormously
Development tools are sometimes primitive
Getting coverage of usage environments is hard
Capturing and analysing data can be challenging

Context

Devices aren't used in a fixed context like a desktop
An idea which seems good in the lab might be awful on the bus

Can't rely on user attention
User attention will vary during use
e.g. while walking or while talking to friends

Constant risk of interrupts from phone calls, SMS, etc.
Applications must be able to deal with this
State must persist in a reliable way

Platforms and cost

Lots of mobile platforms
often just one API
write once, debug everywhere
you probably won't ever see most of the platforms your software is likely to run
on, never mind test them

Platforms are constantly changing
New features will be added or removed
There is a constant struggle to be up-to-date

Impact of poor coding

Mistakes can have really serious consequences
Financial cost impact -- mobile data can be incredibly expensive
Imagine a bug that sent SMS sending into an infinite loop

Could cost end-user thousands of pounds
And the developer would be liable!

Safety issues
Devices are used in unknown contexts, possibly dangerous

Driving, walking, etc
Attention must be managed
Think of impact of draining battery life (no ability to make emergency calls...)

Hardware constraints

Limited CPU power
Maybe an ARM chip (620MHz ARM in iPhone, 600MHz ARM in N90O,

434MHz on N97)
powerful, but not exactly on par with a desktop

Or maybe a much more limited device
Like an 8-bit 40MHz PIC or Atmel chip on an embedded device
Just a few integer instructions on 8 bit values

Or something unusual
Like a Parallax Propeller
20MHz but on 8 parallel 32 bit cores

Processing Consiraints

In general, CPU power will be limited
Very often no floating point unit (not true on the iPhone!)
This means operations on floating point numbers will be VERY slow

GPU acceleration may or may not be available
But it will be slower than desktop systems
Recently, OpenGLES becoming common. We'll cover it later...

Sometimes calls for lower level languages (C, even assembly)
But most work can still be done in high-level code with occasional custom
modules

Writing in fixed point is sometimes necessary (and unpleasant and bug prone)

Interesting resources

Doing mathematical operations on limited devices?
Math Toolkit for Real-Time Programming / Jack Crenshaw

This is a pretty good guide to clever ways of computing numerical functions like log,
sin, polynomials quickly and accurately

FXTBook / Jorg Arndt

Hardcore but powerful numerical algorithms (e.g. CORDIC for fast
sin/cos/tan, FFT algorithms...)

Hacker's Delight / Henry S. Warren

Nothing to do with hacking, lots of algorithms for low-level fast
integer operations

Storage Constraints

Limited RAM the norm
Maybe 128Mb on a mobile phone
Maybe 128 bytes on an embedded system
being lazy with storage isn't an option...

Backing storage can be slow
Flash memory is ubiquitous
But it often has huge write time (20--100ms) and it has to write whole
blocks at a time
Wears out after 10,000 -- 100,000 writes

Wear levelling -- which tries to spread out writes -- can help improve device lifespan
But means that Flash memory slows down over time!

Human Computer Interaction

Devices are small: this means their screens are too
Complex GUI elements like overlapping windows aren't reasonable

Keypads are small too, and might only have a small number of keys (e.g.
numeric)

Interaction often based around a few buttons, touchscreen interactions or using
other sensors
Same application may need to support many input options in a consistent way

Optimizing interfaces becomes important
massive menu hierarchies become unreasonable, for example

Lots of interesting possibilities
capacitive sensors, accelerometers, pressure sensors, vibrotactile output....

Power

Power consumption is critical
Everything revolves around battery life
This impacts computational power -- slower CPUs use less power

Many devices spend almost all their time "sleeping" in a very low power
mode.

Only waking up for maybe 10ms in a 2 second cycle (e.g. to handle GSM
connections)

This has a big impact on how applications can do computations!

Networking is a massive power draw, especially transmitting

Using efficient protocols and minimizing unnecessary communication is
essential

Power (II)

Screen illumination is very expensive too

So using visual feedback for everything is not necessarily the best
choice

Battery life is hard to estimate without testing on a device
This adds to the complexity of building software

Building systems based around operating only with very short timeslices
can be difficult

Getting it wrong doesn't result in any errors -- except the battery will
die when you test it.

Networking

Networking is essential to many mobile services

Network access varies continuously
Must be robust to gaining/losing network connections
And work as well as possible when networking goes out

Must be parsimonious in use of data transfer

Big power draw, and can be very expensive (in monetary cost to end
user) for some transport options (like 3G or GPRS)

Can be complicated and messy to use, especially Bluetooth
Bluetooth is guaranteed to cause problems
Security, pairing, synchronizing devices
Usually will fail mysteriously

Limited Operating Systems

Generally, libraries and operating systems cut down
Limited multi-threading support
Limited GUI components
No command line or console (this is sometimes painful when
debugging)

Your favourite library won't be there
For computational geometry, numerical methods, database access, PDF
writing, whatever
Either roll your own, try and port an existing piece of software, or just
don't implement that functionality

Emulators and debugging tools

Debugging and testing is the worst thing about developing for embedded
and mobile systems

Testing in emulators is great
Except they never work like real devices

Some are pretty good (iPhone) and some are awful (Symbian)

If it works on the Symbian emulator, it's just about guaranteed not to work on the
phone

The features that make devices exciting, like GPS, sensors, multitouch
can't be tested because they can't be realistically simulated

Battery life also can't be tested

Debugging

Remote debuggers allow testing of software on real device

Communicate remotely with desktop, allowing normal debugger
functions

Usually incur a big speed penalty
Occasionally behave in strange ways

Bugs may only occur when the debugger is not running!

But if available, make testing much easier

Documentation

Documentation for mobile devices is usually bad and incomplete

Devices change very fast
Phones completely change in a year
And no-one likes writing documentation

Apple manage quite well by having a very similar platform for OS X and the iPhone
Not many versions of the iPhone

Android, Windows Mobile, Symbian suffer from device variability
One API, but endless implementations
Most of which are incorrect or incomplete with respect to the API

Internet forums are often the best or only source of reliable information
Unless you have some other access to gurus...

Licensing and security issues

Many platforms require signing for devices

This aids security -- packages can be traced to individual developers and
capabilities can be restricted

Makes writing viruses and other malware much harder
But it can be a real pain for developers

Signing can be difficult, can be expensive and may be arbitrarily restricted by
vendors (e.g. Apple!) or network operators

Usually developers can get limited rights to sign applications for their own device

Even still, this is time-consuming and can be fraught with problems like expiring
certificates

Capabilities of the device (full file system access, DRM operations) may be
restricted to certain "trusted" vendors (like network operators)

Memory and power management

Memory is very constrained
Management of resources is essential

This can be time-consuming (and sometimes leads to unpleasant API's
which enforce resource management, such as Symbian's model)

Applications must be designed with power consumption in mind
Can be restrictive
Busy waits or polling are out!

Tools available to profile power use

Unexpected results sometimes
pressing a key results in a big power spike on Nokia N95s

some phones will draw massive power futilely trying to get GPS fix indoors for
example

Summary

Hardware is limited: processing power and storage become much more
relevant

Always think about power consumption
You cannot rely on having 100% CPU time
Interface design needs to be done differently with mobile devices

Networking is essential, but robustness is critical

Platforms, operating systems and libraries are often lacking

Debugging can be hard
Emulators help, but they are far from a panacea

