
ES3 Lecture 1ES3 Lecture 1
Introduction to mobile and

embedded development

Course overview

• Introduction to mobile development

• Development platform overview

• iPhone development (4 lectures)

• Python/Qt/Maemo development (3 lectures)

• Introduction to mobile HCI• Introduction to mobile HCI

• Mobile networking

• OpenGLES -- 2D and 3D accelerated graphics

• Sensors

Course Topic

• Mobile and embedded systems

• Focus on mobile development

▫ You should be a competent iPhone and Maemo developer by the end

of the course

▫ Understand the challenges of developing for mobile platforms

▫ Have a clear understanding of the core technologies involved

� mobile networking, mobile graphics, mobile interface design, mobile sensors

▫ Be able to go from a blank screen to the App store!

• It's assumed you can program reasonably well in C and Python and have a decent

knowledge of object-oriented programming

Course Overview

• 1 lecture (Mondays @ 12)

• 2 hour lab (Tuesdays @ 2)

• 1 lecture (sometimes) (Wednesday @ 12)

• Email: jhw@dcs.gla.ac.uk• Email: jhw@dcs.gla.ac.uk

• Assessment will be coursework alone! There is NO exam

• 3 pieces of minor coursework (10% each)

• 1 individual project (70%)

Schedule

Week Monday Tuesday Wednesday

1 Intro to mobile dev. --- Mobile platforms

2 iPhone I iPhone lab iPhone II

3 iPhone III iPhone Lab ---

4 iPhone IV iPhone Lab ---4 iPhone IV iPhone Lab ---

5 Maemo I Maemo Lab Maemo II

6 Maemo III Maemo Lab ---

7 Mobile HCI Maemo Lab ---

8 OpenGLES OpenGLES lab ---

9 Sensors iPhone sensors lab ---

10 Networking Project Lab ---

Individual Project

• Your project

▫ Must be on Maemo or iPhone platform

▫ Should be challenging -- choose something interesting!

• Proposal by week 5• Proposal by week 5

▫ Start work by week 6 (at the very latest)

• Hand in at end of term

• Assessed on code + report

• Focus on quality and ambitiousness of product

Minor Coursework

• 3 minor pieces

▫ Week 4 basic iPhone application

▫ Week 7 basic Maemo application

▫ Week 9 OpenGLES + sensors

• Should take around 2 hours each

▫ Not massive development

▫ Skeleton code will be provided

What's special about mobi le devices?

• They move around

▫ The context of use is highly variable

• Connectivity is usually very important

▫ Communication and networking are key▫ Communication and networking are key

• Usually very constrained in many ways

▫ Limited hardware -- processing power, storage, battery life

▫ Limited software -- OS, language, debugging tools, libraries

▫ Development is hard -- often slow, clumsy and frustrating

What's di f ferent

• Coding, interface design, evaluation are all very different from desktops

• Need to work with tricky constraints

• But be able to work in a wide range of difficult environments!

• Testing and evaluating can be very difficult

▫ Networking complicates testing enormously▫ Networking complicates testing enormously

▫ Development tools are sometimes primitive

▫ Getting coverage of usage environments is hard

▫ Capturing and analysing data can be challenging

Context

• Devices aren't used in a fixed context like a desktop

▫ An idea which seems good in the lab might be awful on the bus

• Can't rely on user attention

▫ User attention will vary during use

▫ e.g. while walking or while talking to friends

• Constant risk of interrupts from phone calls, SMS, etc.

▫ Applications must be able to deal with this

▫ State must persist in a reliable way

Plat forms and cost

• Lots of mobile platforms

▫ often just one API

▫ write once, debug everywhere

▫ you probably won't ever see most of the platforms your software is likely to run

on, never mind test them

• Platforms are constantly changing

▫ New features will be added or removed

▫ There is a constant struggle to be up-to-date

Impact of poor coding

• Mistakes can have really serious consequences

▫ Financial cost impact -- mobile data can be incredibly expensive

▫ Imagine a bug that sent SMS sending into an infinite loop

� Could cost end-user thousands of pounds

� And the developer would be liable!

• Safety issues

▫ Devices are used in unknown contexts, possibly dangerous

� Driving, walking, etc

▫ Attention must be managed

▫ Think of impact of draining battery life (no ability to make emergency calls...)

Hardware constraints

• Limited CPU power

▫ Maybe an ARM chip (620MHz ARM in iPhone, 600MHz ARM in N900,

434MHz on N97)

� powerful, but not exactly on par with a desktop

▫ Or maybe a much more limited device

� Like an 8-bit 40MHz PIC or Atmel chip on an embedded device

� Just a few integer instructions on 8 bit values

▫ Or something unusual

� Like a Parallax Propeller

� 20MHz but on 8 parallel 32 bit cores

Process ing Constraints

• In general, CPU power will be limited

• Very often no floating point unit (not true on the iPhone!)

• This means operations on floating point numbers will be VERY slow

• GPU acceleration may or may not be available• GPU acceleration may or may not be available

▫ But it will be slower than desktop systems

▫ Recently, OpenGLES becoming common. We'll cover it later...

• Sometimes calls for lower level languages (C, even assembly)

▫ But most work can still be done in high-level code with occasional custom

modules

• Writing in fixed point is sometimes necessary (and unpleasant and bug prone)

Interest ing resources

• Doing mathematical operations on limited devices?

▫ Math Toolkit for Real-Time Programming / Jack Crenshaw
� This is a pretty good guide to clever ways of computing numerical functions like log,

sin, polynomials quickly and accurately

▫ FXTBook / Jorg Arndt

� Hardcore but powerful numerical algorithms (e.g. CORDIC for fast

sin/cos/tan, FFT algorithms...)

▫ Hacker's Delight / Henry S. Warren

� Nothing to do with hacking, lots of algorithms for low-level fast

integer operations

Storage Constraints

• Limited RAM the norm

▫ Maybe 128Mb on a mobile phone

▫ Maybe 128 bytes on an embedded system

▫ being lazy with storage isn't an option...

• Backing storage can be slow

▫ Flash memory is ubiquitous

▫ But it often has huge write time (20--100ms) and it has to write whole

blocks at a time

▫ Wears out after 10,000 -- 100,000 writes

� Wear levelling -- which tries to spread out writes -- can help improve device lifespan

� But means that Flash memory slows down over time!

Human Computer Interact ion

• Devices are small: this means their screens are too

▫ Complex GUI elements like overlapping windows aren't reasonable

▫ Keypads are small too, and might only have a small number of keys (e.g.

numeric)

Interaction often based around a few buttons, touchscreen interactions or using • Interaction often based around a few buttons, touchscreen interactions or using

other sensors

▫ Same application may need to support many input options in a consistent way

• Optimizing interfaces becomes important

▫ massive menu hierarchies become unreasonable, for example

• Lots of interesting possibilities

▫ capacitive sensors, accelerometers, pressure sensors, vibrotactile output....

Power

• Power consumption is critical

• Everything revolves around battery life

• This impacts computational power -- slower CPUs use less power

• Many devices spend almost all their time "sleeping" in a very low power

mode.mode.

▫ Only waking up for maybe 10ms in a 2 second cycle (e.g. to handle GSM

connections)

� This has a big impact on how applications can do computations!

• Networking is a massive power draw, especially transmitting

▫ Using efficient protocols and minimizing unnecessary communication is

essential

Power (I I)

• Screen illumination is very expensive too

▫ So using visual feedback for everything is not necessarily the best

choice

• Battery life is hard to estimate without testing on a device• Battery life is hard to estimate without testing on a device

▫ This adds to the complexity of building software

• Building systems based around operating only with very short timeslices

can be difficult

▫ Getting it wrong doesn't result in any errors -- except the battery will

die when you test it.

Networking

• Networking is essential to many mobile services

• Network access varies continuously

▫ Must be robust to gaining/losing network connections

▫ And work as well as possible when networking goes out

• Must be parsimonious in use of data transfer

▫ Big power draw, and can be very expensive (in monetary cost to end

user) for some transport options (like 3G or GPRS)

• Can be complicated and messy to use, especially Bluetooth

▫ Bluetooth is guaranteed to cause problems

▫ Security, pairing, synchronizing devices

▫ Usually will fail mysteriously

L imited Operat ing Systems

• Generally, libraries and operating systems cut down

▫ Limited multi-threading support

▫ Limited GUI components

▫ No command line or console (this is sometimes painful when

debugging)debugging)

• Your favourite library won't be there

▫ For computational geometry, numerical methods, database access, PDF

writing, whatever

▫ Either roll your own, try and port an existing piece of software, or just

don't implement that functionality

Emulators and debugging tools

• Debugging and testing is the worst thing about developing for embedded

and mobile systems

• Testing in emulators is great

▫ Except they never work like real devices▫ Except they never work like real devices

▫ Some are pretty good (iPhone) and some are awful (Symbian)

� If it works on the Symbian emulator, it's just about guaranteed not to work on the

phone

▫ The features that make devices exciting, like GPS, sensors, multitouch

can't be tested because they can't be realistically simulated

▫ Battery life also can't be tested

Debugging

• Remote debuggers allow testing of software on real device

▫ Communicate remotely with desktop, allowing normal debugger

functions

• Usually incur a big speed penalty• Usually incur a big speed penalty

• Occasionally behave in strange ways

▫ Bugs may only occur when the debugger is not running!

• But if available, make testing much easier

Documentat ion

• Documentation for mobile devices is usually bad and incomplete

• Devices change very fast

▫ Phones completely change in a year

▫ And no-one likes writing documentation

• Apple manage quite well by having a very similar platform for OS X and the iPhone

▫ Not many versions of the iPhone

• Android, Windows Mobile, Symbian suffer from device variability

▫ One API, but endless implementations

▫ Most of which are incorrect or incomplete with respect to the API

• Internet forums are often the best or only source of reliable information

▫ Unless you have some other access to gurus...

L icensing and secur i ty issues

• Many platforms require signing for devices

▫ This aids security -- packages can be traced to individual developers and

capabilities can be restricted

▫ Makes writing viruses and other malware much harder

▫ But it can be a real pain for developers

• Signing can be difficult, can be expensive and may be arbitrarily restricted by

vendors (e.g. Apple!) or network operators

• Usually developers can get limited rights to sign applications for their own device

▫ Even still, this is time-consuming and can be fraught with problems like expiring

certificates

▫ Capabilities of the device (full file system access, DRM operations) may be

restricted to certain "trusted" vendors (like network operators)

Memory and power management

• Memory is very constrained

▫ Management of resources is essential

▫ This can be time-consuming (and sometimes leads to unpleasant API's

which enforce resource management, such as Symbian's model)

• Applications must be designed with power consumption in mind

▫ Can be restrictive

▫ Busy waits or polling are out!

• Tools available to profile power use

▫ Unexpected results sometimes

� pressing a key results in a big power spike on Nokia N95s

� some phones will draw massive power futilely trying to get GPS fix indoors for

example

Summary

• Hardware is limited: processing power and storage become much more

relevant

• Always think about power consumption

▫ You cannot rely on having 100% CPU time

• Interface design needs to be done differently with mobile devices• Interface design needs to be done differently with mobile devices

• Networking is essential, but robustness is critical

• Platforms, operating systems and libraries are often lacking

• Debugging can be hard

▫ Emulators help, but they are far from a panacea

