ES3 Lecture 10

Further Android development: Ul
design, maps, app widgets and using
OpenGLES




Menus

Android, unlike some other mobile platforms, supports menus in applications

Menus can be be either:
key-triggered Options menu (appear when the Menu key brings up a menu)
context menus (appear when a control is held for a long time)

Options menu is created dynamically
on first menu press the onCreateOptionsMenu() method of the current Activity
is called
this should populate the menu with items
when options are selected, the onOptionsMenultemSelected() method of the
current Activity is called




Context Menus

Context menus are created in much the same way
onCreateContextMenu() is created for the first time a View is long-pressed
the View is passed in
onContextltemSelected() is called when an item is selected

public void onCreateContextMenu(ContextMenu menu, View view, ContextMenulInfo info
{
super.onCreateContextMenu(menu, view, info);
if(view.id == R.id.launchItem)
{
menu.add (0, LAUNCH ID, 0, "Launch");
menu.add (0, RECALL ID, 0, "Recall");
menu.add (0, DISABLE ID, 0, "Disable");
}
}

public boolean onContextItemSelected(Menultem item)

{
}

if(item.getItemId()==LAUNCH ID) { doLaunch(item); } // etc...




Notifications

Android supports several kinds of simple notifications

"Toasts" are simple message boxes which appear for a brief time
They can be launched from Services, and will appear over the current Activity

Toast.makeText(getApplicationContext(), "Lauch failed!", Toast.LENGTH SHORT);

Notifications can also appear in the status bar

This is rather more complicated and requires a Notification to be sent to a
NotificationManager




Styles

Android allows user interface components to have styles
Styles are hierarchical
Much like the was CSS specifies styles for HTML documents

Styles are specified in XML files
stored in (any) XML file in res/values

Each style is an element <style> with a name, with a list of <item> subitems
each subitem specifies an attribute, like layout_width, or textColor

A component definition in a layout XML file can reference the style using the notation
@style/MyStyleName where MyStyleName is the name of the <style> element

Styles can inherit from other styles by specifying the parent attribute in the <style> tag

Individual attributes in specific controls can override style parameters (e.g. specifically
specify textColor)




Example style usage

In res/values/styles.xml

<resources>
<style name="RedStretch">
<item name="android:layout width">fill parent</item>
<item name="android:textColor">#ff0000</item>
</style>

<style name="RedStretch.text" parent="RedStretch">
<item name="android:typeface">serif</item>

</style>
</resources>

In res/layout/main.xml
<Button style="@style/RedStretch" android:text=@"Press Me!"/>

<Button style="@style/RedStretch" android:text=@"Press Me!" android:textColor="#00ff00"/>

Note that the second button overrides the font color




Tween Animations

Android supports animations much as the iPhone does

Like so many other things in Android, animations are usually specified in XML
files and triggered when required

Animation definitions go in res/anim

Consist of a series of animation types
rotate, translate, scale, alpha, or set
set allows grouping of animation elements (e.g. rotate and scale at the same time)

Each element specifies a duration and an interpolator

Sets allow interpolators to be shared among a number of elements (for synchronization)

Various interpolators are available, like Linearinterpolator, Accelerateinterpolator,
AnticipateOvershootinterpolator...
A bit richer than the iPhone standard interpolator types (linear, with optional
ease in/ease out)




Attributes

Animation attributes specify the change in their value
e.g. rotation specifies a start and end angle in degrees
transform attributes also specify pivots

this is the centrepoint about which transforms are made
e.g. rotation centre

Animations can be loaded using AnimationUtils.loadAnimation()
e.g. Animation spinFast = AnimationUtils.loadAnimation(this, R.anim.spinFast)

The animation is then passed to a specific View, by calling startAnimation on the view
pacmanSprite.startAnimation(spinFast)

Android also supports frame animations for general drawables (not for Views)
i.e. switching images rapidly
an <animation-list> tag is used to specify a list of drawables
can cycle continuously or loop once




OpenGLES in Android

Android supports OpenGLES with a standard set of bindings

To use OpenGLES you must explicitly use GLSurfaceView
You can use this in place of any View

Then implement a subclass of opengl.GLSurfaceView.Renderer
and assign the renderer to the View with setRenderer()
onSurfaceCreated() is called when the surface is created (i.e. at init)
onDrawFrame() is called for every redraw step

all drawing code goes in here

Each method gets passed a GL10 context object
this is an object which implements OpenGL calls
e.g. with gl _context.glColor4f(1,1,1,0.5)
or gl_context.glEnable(GL10.GL_BLEND)

Note that all constants are also class members of the GL10 object




Starting Services

Services are Android's mechanism for background computation
A Service is usually launched from an Activity and persists until it is shut down
It does not exit when the current task ends!

Services are started with Intents, as with other Android components
Context.startService() takes an Intent which specifies the service to start up

Services must be declared in the AndroidManifest.xml
Intent-filters are used to specify the Intent that the service will respond to

Services extend the Service class
Usually at least override onCreate, which is called when the Service is started




Binding to services

In order to be useful, Activities (and other Services) need to communicate with a
running Service

Entities communicate with a Service by binding to it
This opens up a communication channel

The specification of this communication channel must be laid out beforehand

This specifies the method calls the entity can use to communicate with the
service, and the type and direction (e.g. in only or in and out) of parameters

Android uses a specification language called AIDL to specify the procedure calls
that can be used
AIDL is basically like Java method prototypes




AIDL

AIDL files define a remote interface
Consist of an interface definition with a series of method definitions

Interface parameters can be primitives, Strings, CharSequences, Lists or Maps or can be
types imported from other packages

Every parameter must specify a direction
in, out or in out
primitive types can only be in (no way to write to a boolean parameter, for example)

package com.es3.labs.SampleApplication

// Must be specifically imported!
import com.es3.labs.SampleApplication.TargetType;

interface ILauncher {
void setTarget(in double latitude, in double longitude);
boolean isOnTrack();
void getTarget(out TargetType target);

}




Implementing the Interface

In order to use the AIDL file, you must provide an implementation

This is done by providing a stub
Each interface defined by the AIDL file has an automatic stub variable

You set this to a class instance which matches the interface and returns the
values

This interface object is then returned to the binding object (e.g. the Activity that
started the service) when the class is bound (with bindService)

The methods on this interface can then be called by the binding object




