ES3 Lecture 12

Realtime audio on mobile devices

Recommended reading

Real sound synthesis for interactive applications by Perry Cook [2002]
short, but complete and well written introduction to audio synthesis

Julius O. Smith has three very good (but technical) online books on audio processing
Introduction to Digital Filters with Audio Applications by Julius O Smith [2009]

www.dsprelated.com/dspbooks/filters

Mathematics of the DFT with Audio Applications by Julius O Smith

www.dsprelated.com/dspbooks/mdft

Physical Audio Signal Processing by Julius O Smith

www.dsprelated.com/dspbooks/pasp

Spectral Audio Signal Processing by Julius O Smith

www.dsprelated.com/dspbooks/sasp

Computer Music Tutorial by Curtis Roads

Very complete introduction to ditgal audio

Lots of very useful code snippets at musicdsp.org

Digital Audio

Sounds consist of pressure waves
variations in air pressure levels are picked up by the ears

Sounds are by their nature analog
They vary continuously in both time and value

In order to deal with them on a computer, a digital representation is required
Discrete time, and discrete value

There is a very important result that shows that if you sample (measure) an analog value
frequently enough, and with enough resolution, it can be reproduced nearly perfectly

The speed of sampling determines the maximum frequency which can be represented
Maximum frequency is 1/2 the sample rate -- the Nyquist rate

The number of levels used determine the accuracy of the signal
Fewer levels mean noisier signals

Sampling

To represent a sound, regularly spaced samples are taken
Samples have a rate and a resolution

Humans can hear at the most up to about 20000Hz
So a sampling rate of around 40000Hz can represent all audible frequencies
e.g. CD audio is sampled at 44100Hz, SACD
Lower sample rates occupy less space (obviously) but lose high frequency components

The resolution specifies the number of possible levels used. Common values are:
8 bit: 256 level, sounds crude and noisy, but was often used in old hardware
12 bit: 4096 levels, used on many old digital musical instruments
16 bit: 65536 levels, the most common digital standard. Resolution above this are not audible.

24 bit: 16777216 levels. Used in professional audio. This resolution is used because certain processing
can reduce the levels available -- this would result in noticeable degradation at 16 bit.

32 bit or 64 bit: floating point. Used for ease and speed of computation

4 4 4 4 4

PCM Data

The canonical form for audio data is PCM (pulse code modulation)
Just a sequence of integer values representing sound levels
Assumes a constant sample rate

All (well, almost all) digital audio hardware uses this internally at some stage
A/D convertors convert analog signals (e.g. from a microphone) to PCM
D/A convertors convert it back into electrical signals (to go to speakers)

It is very easy to manipulate audio data in PCM format
e.g. to mix two sounds, their PCM representations can just be added

Formats

Raw PCM data can have several forms
When working with PCM data, you need to know the format!
It has a sample rate
e.g. 44100Hz
It has a resolution or bit depth
e.g. 16 bit
It has a signedness

PCM can either be unsigned (0-65535, for example) or signed (-32768--32767, for
example)

Signed data is generally easier to work with
It has an endianness

order of bytes in machine representations of words
It has a number of channels

e.g. 1 for mono, 2 for stereo, 6 for surround

WAV files

WAV files are commonly used to store PCM data
(although they can store compressed data as well)

Just has a header specifying the features listed on previous page
and the length of the data
followed by a block of binary data with the PCM data

Lots of standard routines for reading/writing WAV files
e.g. using the AudioToolbox library on the iPhone

Compressed Formats

Raw PCM audio data is often very large
e.g. 1 minute at 44100Hz, 16 bit =5.2Mb

Lossy compressed formats remove data which are less perceptually important

Simple mulaw coding reduces the dynamic range of a signal using an exponential signal
changes in small values are more important than changes in large values

MP3 coding splits up sound files into chunks, and splits those chunks into frequency bands

throws away those that are not "perceptually important" according to a fairly complex
model

results in huge filesize reduction but often very similar sounding sounds

Compressed formats are always converted to raw PCM before playback!

Buffers

Almost all digital audio hardware (and audio APIs) use buffers
Data is passed to the hardware in blocks
e.g. of 2048 samples

APIs never have methods like outputNextSample()
Instead, you fill a whole buffer of data and pass that in

Audio data is expensive to process and is absolutely time critical
a variation of a few microseconds will corrupt the sound
hardware takes care of streaming data to the D/A from the buffer
buffering eliminates any errors in timing

so long as the buffer is longer than any timing variation

You must be able to fill the buffers fast enough
otherwise the audio hardware will glitch, usually with sonically devastating results

Buffering

The disadvantage of buffering is latency

The longer the buffer is, the longer between an event being detected (e.g. a tap) and a
sound being output

2048 sample bufferis 46ms at 44100Hz (reasonable)

65536 sample bufferis 1.49 seconds (not reasonable!)

In very sensitive tasks (like drumming) humans can detect latency down to around 5ms

2ms latency is usually desirable in professional musical applications

output
only 88 sample buffer at 44100Hz! P

spare

Most APIs have a callback system = B =

You register a function to fill buffers

Each time the audio API runs out of data, it automatically calls your function to fill the
buffer

If there were only one buffer, this would lead to glitches between buffers!
Usually have at least two buffers
The API asks you to fill a buffer which is not currently being output

Simple Example

Using an imaginary Objective-C API:

// 1n 1init...
[soundDriver registerCallbackTarget:self action:fillBuffer];

- (void) fillBuffer(int length, SIntl6 *buffer)
{
for(int i=0;i<length;i++)
{
// produces pure tone at high A (440Hz) (assuming 44100Hz sampling rate)

double v = sin((440*i*2*M PI)/44100.0);

// Buffer is signed 16 bit integers
// multiply floating point value -1 .. 1 by 32767 to fit to range
buffer[i] = v * 32767;

Every time the hardware needs more data, it calls fillBuffer; and gets some more
data

Floating-point and integer

PCM data is usually integer
On many devices, integer operations are much much faster than floating point operations
but not on modern desktop processors -- floating point is faster!

Unfortunately, it's much easier to work with sampled data in floating point
Either have to do processing in floating point and convert at the end...
Or use integer versions of routines

Large literature exists on efficiently implementing audio synthesis and processing effects
using only integer instructions

Problems often resolve around loss of precision
e.g. sum together 64 16 bit integers and divide by 64 to get the average...
result has only 10 bits of resolution!

Playing a sample back

The simplest thing to do is to play back pre-recorded sound

We will assume the pre-recorded sound is PCM, with the same format as the output API (i.e.
same sample rate, bit depth, same number of channels)

Otherwise will have to convert!
Converting between sample rates accurately is very hard....
Although converting between signedness, endianness and bit-depth is very easy

All that needs be done is to copy the data into the buffers

Simple Playback

SIntl6e *PCMSample;
int samplelLength;
int samplePointer = 0;

// Assume this loads a sample into PCM sample
loadSample (PCMSample, &samplelLength);

- (void) fillBuffer(int length, SIntl6 *buffer)
{
for(int i=0;i<length;i++)
{
if(samplePointer<samplelLength)
buffer[i] = PCMSample[samplePointer++];
else
buffer[i] = 0;

Mixing samples

Having one sample playing is useful, but often multiple layers needed
e.g. in a musical instrument, many notes can be playing at once

Can just add together samples (possibly scaling them down to reduce volume) to mix them
together

Often need to exactly specify starting point of sample
since we are dealing with buffers, we can't just start the sample at the fillBuffer function
call
timing of samples will be limited to multiples of the buffer length

sounds bad, gives a staccato machine gun effect when many samples are triggered
sound playback should never depend on buffer length!

The solution to this is to maintain a queue of currently active samples

Each with a starting offset, representing the number of samples from now to start the
sample

Event Queues

Each element of the queue is of the form (time, sampleData)
(-210, <SampleData Ox45AD>)
(51, <SampleData 0x5010>)
(1813, <SampleData 0x5014>)
(

4003, <SampleData 0x5018>)

Queue is maintained in sorted order
A negative time indicates a currently playing sample

On each fillBuffer, decrement the time by the length of the buffer
if it is or becomes negative, will need to be mixed into the buffer

if -time > sample length, remove the sample from the queue (because it
finished)

Better sample player

- (void) fillBuffer(int length, SIntl6 *buffer)
{
//it's faster to do the loops in the other order, but this is clearer
for(int i=0;i<length;i++)
{
int v = 0;
for(SoundEvent *event in queue)
{
// add in currently playing samples
if(event.time-i<0 && - (event.time-i) < event.length)
v = Vv + event[-(event.time-1i)];

// remove old samples
// in practice it is dangerous to remove an element from
// a queue we are iterating over...
if(-(event.time-i)>=event. length)

[queue removeElement:event];

}

buffer[i] = v;
}
// move the buffer on
for(SoundEvent *event in queue)
event.time -= length;

}

Frequency adjustment

Frequency of samples can be adjusted by reading out samples either faster or
slower than their original rate

e.g. by reading out at 1/2 speed, pitch is lowered by half

this is a naive way to adjust pitch and results in significant artifacts, but is cheap
to implement

Volume modulation is just multiplication by a constant
multiply by 0.5 to half level

Adding two field, event.rate and event.volume it is easy to create a sample player
with adjustable frequency and volume

Frequency shifting sample player

- (void) fillBuffer(int length, SIntl6 *buffer)
{
for(int i=0;i<length;i++)
{
int v = 0;
for(SoundEvent *event in queue)
{
// add in currently playing samples
int position = event.time - i * event.rate;
if(position <0 && -position < event.length)
v = v + event[-position] * event.volume;

// remove old samples
if(position>=event. length)
[queue removeElement:event];
}
buffer[i] = v;
}
// move the buffer on
for(SoundEvent *event in queue)
event.time -= length*event.rate;

}

Generating tones

Often we want to do something more interesting than just playing back pre-
recorded data

Synthesizing audio in realtime for example
Signals can be generated directly as needed

Tones can be generated with signals who have a basic period of 1/frequency of the
desired tone

i.e. repeat (in some sense) after 1/(frequency/sample rate) samples
a tone is different from a noise in that it has a harmonic structure
it appears to have a clear pitch when listened to

A tone at 261Hz (middle C on a piano) has a period of ~167 samples at 44100Hz

Lots and lots of functions and technigues can be used to generated sounds!

Sound basics

Most sounds have three important properties

pitch
the fundamental pitch which the sound appears to have
obviously some sounds are unpitched entirely

amplitude
the level (and variation in level) of a sound

timbre
the "other quality" of sound
woodwind vs piano, steel vs carpet

Sine wave

The simplest, purest tone is a sine wave
just a single frequency
very easy to generate (as in the first example)

(computing sin(x) is quite expensive, normally precomputed tables are used)

v = sin((frequency*phase*2*pi)/(samplerate)
ranges from -1 to 1, must be scaled to fit the bit depth
phase is a variable that increases by 1 for each sample produced

Lots of synthesis techniques use the idea of a phasor
Just a value which increments at each sample
The increment is by frequency/(sample rate)
Increases by 1.0 every period

v = sin(phasor)
phasor += (2*pi*frequency)/samplerate

Envelopes

One of the key aspects of a sound is the way the amplitude changes over time

Most sounds become rapidly loud, then become quieter
The characteristic shape is very important

The envelope of a sound is its amplitude profile

Often described in terms of
attack time (increase at start)
decay time (decay to steady state)

Attack Decay Sustain Release

sustain level (volume while sustaining)

release time (time to go back to silent)

Amplitude

A flute has a slow attack and high sustain

A drum has a very fast attack, no sustain and slow release

Use of envelopes

Often envelopes are used to modify the amplitude of sounds
an envelope can be multiplied by a sample for example, to impose that envelope on to it

Envelope generators just produce slowly varying sample patterns according to an envelope
definition

Often used for other parameters in synthesis
for example, the "brightness" of a sound can be defined by an envelope
lots of sounds are very bright in their attack and then become less bright
brass instruments have the opposite envelope (brighter after attack)

Envelopes vary slowly over a range of seconds, rather than the fast oscillations of tone
generators

Synthesis types

There are many common synthesis types, including:

Wavetable synthesis
sample playback, usually with sample layering and pitch shifting
widely used in electronic instruments (e.g. for acoustic instruments)

Subtractive synthesis
generates tones with very basic tones and then filters them
most explicitly electronic-sounding instruments use this principle

FM synthesis
generates tones by modulating phase of a sine wave by another sine wave
flexible and powerful, widely used in the 80's...

Synthesis types

Physical modelling synthesis

simple physical models of real systems (airflows in tubes, vibrating strings)
realistic and expressive, but computationally intensive

Granular synthesis

uses large numbers of very short fragments of sampled sound
sound is defined by probability distributions over parameters

Distortion Synthesis

generalisation of FM, includes things like wave shaping, phase distortion and DSF
synthesis

excellent for generating new, artificial timbres and can be expressive
computationally efficient

Wavetable

Wavetable synthesis is just playing back samples
Recordings from a real instrument or object are played back
Pitches are matched to desired pitches by pitch shifting

The code given previously is sufficient to implement a wavetable synthesizer

The amplitude of the waveform can be adjusted, often with an envelope, so that different
amplitude patterns can be achieved

Wavetable synthesizers sound very realistic (because they are samples)
But not very expressive, because there are very few ways to modulate them

Usually the pitch, an amplitude envelope and a simple filter are used to modulate the raw
samples

Sample layering

Pitch shifting samples sounds bad if the shift is more than a few percent IQ
length of sound changes, and fixed resonances shift unnaturally "

Many wavetable synthesizers use many samples of an instrument, at different pitches
choose the sample nearest to the desired pitch
then pitch shift a small amount togpriest the sample g4 _pa C5 - ES

This is quite memory intensive though
some piano synthesizers use multiple gigabytes of samples!
every key sampled at many levels of velocity

Other variations might be recorded
playing hard vs playing gently
again, closest sample is selected, and then amplitude adjustment is used to fill in levels

Subtractive

Subtractive synthesis is the (digital emulation of) the techinques used in early electronic
instruments such as Moog

Use a few simple signal generators to create basic tones
Sine waves, saw waves, square waves...
Frequency and ampltiude of tones can be enveloped

These signals are then filtered using digital filters
e.g. lowpass filters to remove high frequency content

Most "electronic” sounding instruments use subtractive synthesis
e.g. extensively used in dance music

Making good sounding subtractive synthesizers is actually really hard in the digital domain,
because the analog techniques are tricky to emulate without artifacts

¢ 4 4 4

Waveform generation

Simple "classic" waveforms are used

Originally used because they are easy
to generate in analog hardware

Traditional waveforms are sine, square,
saw and triangle

Square, saw and triangle are very rich
in harmonics

i.e. lots of high frequency content | i |

Other waveform types, such as white noise, are also used
computationally simple but frequency rich
These harmonics can be filtered to produce interesting sounds

Digital Filters

Filters are used to "sculpt" the sound by removing frequency
Lowpass filters remove high frequencies
Highpass remove low
Bandpass just keep frequencies in a particular band

The filter cutoff frequency can be adjusted throughout the sound
e.g. letting through lots of high frequency at the start of a sound and then cutting it down
usually modulated with an envelope

Interesting filters are usually resonant
enhance frequencies near the cutoff frequency
resonant filters are the characteristic "analog synthesizer" sound
filters often resonate so much they go into oscillation

Although simple digital filters are easy to implement, making good sounding filters is hard
especially since analog versions often have significant non-linearities...

Simple lowpass/highpass filter

A very simple "one-pole" lowpass filter is given by
y(t) = alpha*y(t-1) + (1-alpha)*x(t)

A corresponding highpass filter is just
z(t) = x(t) - y(t)

alpha can be set to produce a given cutoff frequency
alpha = exp(-2*pi*frequency / sampleRate)

This can't resonate though...

One that can is the State Variable Filter, which also sounds pretty good (few digital
artifacts) (see next page)

Filters can be cascaded or run in parallel for richer modulations
e.g. a bank of bandpass filters can be used to simulate a set of resonances

State Variable Filter

From musicdsp.com, originally from "Effect Design Pt. 1", J. Dattorro, J. Audio Eng.
Soc., 45:9 1997

cutoff = cutoff freq in Hz

fs = sampling frequency //(e.g. 44100Hz)

f 2 * sin (pi * cutoff / fs) //[approximately]

q resonance/bandwidth [0 < g <= 1] most res: g=1, less: =0
low = lowpass output

high highpass output

band bandpass output

notch = notch output

scale = q
low=high=band=0;

//--beginloop

low = low + f * band;

high scale * input - low - g*band;
band f * high + band;

notch = high + low;

//--endloop

FM synthesis

Frequency modulation synthesis is a simple technique for generating complex waveforms
with minimal computation

It is also the sound of the 80's due to the popularity of the Yamaha DX7!

Idea: take a sine wave, and modulate its frequency with another sine wave
When done slowly sounds like vibrato (frequency wobble)
When done quickly, changes character (timbre) of the sound

In practice, true frequency modulation can run into nasty problems
phase modulation is used instead

Simple formula:
v = sin((phasorl + sin (phasor2) * modulation))
phasorl and phasor2 run at different frequencies
modaulation specifies how much the second waveform distorts the first

4@ 4 4 4

FM synthesis (Il)

As the modulation of the sine wave increases, the spectral richness of the signal increases
more high frequency components
if the modulator:carrier frequency is integer, the resulting sound is harmonic
if it's not, the result is inharmonic

this is hard to achieve with other methods
excellent for bell sounds, where inharmonicity is important

More complex sounds can be created by combining units together
one FM unit can be the modulator of another unit, replacing the basic sine wave
multiple FM units can be cascaded or run in parallel

Classic instruments like the DX7 had 6 "operators" (sine wave synthesizers) which could be
arranged in different patterns

other synthesizers have used 4 or 8 operators

b

14

LY BT 1 15 wrh

24

5 H]
m@_@m% m%] S o pebd @@@ vazel povendg

25 28

FM Synthesis (11l)

FM can produce a wide variety of sounds

very "sharp" compared to traditional analog synthesis
lots of high frequency components

sometimes said to have a "plasticy" tone

Using envelopes to modulate the frequency and modulation index of the different
"operators", rich changes in timbre can be created

Extremely efficient
Just needs a sine table lookup
No need for any floating point computations

Earlier synthesizers used log/exp tables so that envelope modulation could be carried out
without even using multiplies!

Physical models

Physical modelling synthesis tries to model the actual physics of an instrument or object
For example, modelling a flute by simulating the flow of air inside the flute

These models are necessarily very simplified
accurate model of airflow in a flute would be extremely complex
could never realistically be performed in realtime
usually involve delay lines to model one-dimensional waves
filters and nonlinear elements are used to interconnect these "waveguides"

Physical modelling can be very expressive, because the parameters of the simulation can be
modulated in natural ways and many types of stimulation can be applied

e.g. simulating a snare drum which responds to where and how hard you hit it
might allow brush strokes as well as stick hits

just a change of input

4 4 4

Delay Lines

Much of physical modelling synthesis extensively uses delay lines
A delay line just delays a signal by a certain number of samples
A length n delay line takes x[t] and returns x[t-n]
This can implemented very efficiently using just an array of samples

By feeding back the output of a delay line back into itself, a recirculating delay line can be
produced

This resonates at a frequency given by the length of the delay line

Multiple delay lines can be linked together

Filters and other elements can be introduced into the linkages to simulate mechanical
effects

loss of energy, or high frequency damping

Waveguide

A waveguide is a simple model for one-dimensional wave propagation
Consists of a pair of delay lines, one running in each direction

Different topologies of waveguides can be connected together
e.g. a simple drum head can be constructed like this:

| Z]]

Losses

Real wave propagation involves losses
waves do not recirculate forever

This can be simulated with simple damping

multiplying the output of each delay line with a constant < 1.0 before passing it
into the other delay line

There are also frequency dependent losses
high frequencies decay faster than low frequencies in real physical systems
putting a lowpass filter at the delay line junction simulates this property

lowpass filter must have a total gain of 1.0 or less, otherwise energy will increase!

Impulses

To actually "play" a waveguide, energy must be injected

Impulses are introduced into the delay lines
these then recirculate, gradually decaying due to the modelled losses

Simple impulses can just be a single sample with a large value (a spike), or a short
burst of white noise

More complex impulses can be used

for example, extracting impulse models from real instruments
modelling a guitar's pick

Fractional Delay Lines

Note that we often need delays with non-integer sample lengths
Otherwise, for example, notes will be out of tune!

e.g. if you want a delay line which resonates at 1808Hz at 44100Hz sampling rate, it would
need to be 24.391 samples long

24 sample long delay line is 1837Hz -- this is very significantly out of tune!

Special filters can be used to simulate delays of 0.0 - 1.0 samples

Lagrange filters, allpass filters
One of these is applied after the integer delay line to correct the tuning

You will implement a simple fractional delay line as part of the lab tomorrow

Plucked siring model

A very simple plucked string model was developed by Karplus and Strong

A delay line recirculates (feeds back), with
damping (reducing amplitude over time)
and some filtering (reducing high frequencies over time)

This simulates the signal propagating up and down the string, losing energy at its termination
points
The string is plucked simply by filling the delay line with random values

This is very crude, but sounds surprisingly good

Delay Line

“ Output

Lowpass filter

