
ES3 Lecture 4ES3 Lecture 4
iPhone development: Resource

management, libraries and sensors

Containers : Mutable and Immutable

• Containers can either be immutable (cannot change, insert or remove items after

creation) or mutable (change after creation)

• Mutable versions inherit from immutable ones

▫ All built in containers have a mutable and immutable version

Because of the inheritance, any method taking an immutable collection can ▫ Because of the inheritance, any method taking an immutable collection can

take a mutable collection in its place

• Immutable versions have a performance benefit

Basic Containers

• Ordered arrays (roughly like Java vectors):

▫ NSArray, NSMutableArray

▫ Can slice and enumerate. Mutable arrays can have objects removed and

inserted

▫ Key methods:

filteredArrayUsingPredicate -- returns array of elements where predicate is true� filteredArrayUsingPredicate -- returns array of elements where predicate is true

� objectEnumerator -- returns an enumerator

� count -- returns size of array

� objectAtIndex -- gets a specific object

� reverseObjectEnumerator -- reads the array backwards!

� indexOfObject -- searches for an object and returns its index

� makeObjectsPerformSelector -- applies a function to an array

� sortedArrayUsingFunction:context -- sorts an array

� arrayWithObjects -- creates a new array with a list of objects

Basic Containers

• Sets (unordered collections):

▫ NSSet, NSMutableSet

▫ Similar to arrays, but no indices or reverse enumerator

• Dictionaries (hash tables, associative arrays)• Dictionaries (hash tables, associative arrays)

▫ NSDictionary, NSMutableDictionary

� keyEnumerator, objectEnumerator -- iterate over keys or values

� setObject:forKey -- inserts/replaces an object

� objectForKey -- gets an object given a key

Enumerat ion

• Generally, NSEnumerator used to iterate through objects

▫ Idiom goes like this:

NSArray *array = [NSArray arrayWithObjects:first,second,nil];
NSEnumerator *arrayEnumerator = [array objectEnumerator];
id value;
while(value=[arrayEnumerator nextObject])
{

• If an object implements the NSFastEnumerator protocol (the built in containers

do), you can do the much more elegant:

{
// do something with value
}

for(id value in array)
{
// do something with value
}

An aside

• Why isn't there syntactic sugar for containers, since there is for NSString?
//In an ideal world...
@[firstCar, secondCar, thirdCar]; // makes an NSMutableArray
@(firstCar, secondCar, thirdCar); // makes an NSArray
@{@"first"=firstCar, @"second"=secondCar}; // makes an NSMutableDictionary
@<firstCar, secondCar, thirdCar>; // makes an NSSet

▫ Only Apple knows

� But it's pretty inconvenient sometimes

� Writing a few simple macros can help (despite the fact that C-style macros

are generally evil)

Model-View-Control ler pattern

• A key idea in Cocoa programming is the model-view-controller pattern

• Data (the model) is separated from how it is displayed (the view) and how it is

interacted with (the controller)

These components communicate by sending messages• These components communicate by sending messages

▫ Usually three separate classes

• Model has no knowledge of view or controller

• View and controller usually has knowledge of model

View

Model

Controller

Boxing and Unboxing

• Raw C types can't go in containers

▫ Can't put an int in an NSArray

• "Boxing" solves this problem

▫ Creates a wrapper around raw types

▫ NSNumber can convert to and from raw C number types

NSValue converts to and from any C value (structs etc.)

▫ NSNull represents a null value

int i=4;
double d=3.5;
NSNumber *numberI = [NSNumber numberWithInt:i]; // pack into an NSNumber
NSNumber *numberD = [NSNumber numberWithInt:d];
double k = [numberD doubleValue]; //take it back out
NSArray *array = [NSArray arrayWithObject:numberI]; // fine

CGPoint pt = CGPointMake(5,5);
NSValue *value = [NSValue value:&pt withObjCType:@encode(typeof(pt))];
CGPoint pt2;
[value getValue:&pt2]; // better hope that pt2 is of the right type!

Boxing and Unboxing (I I)

• Works, but is verbose

• Java does this automatically, would be nice if Objective-C did it too...

• You can hack some macros to do this more simply

▫ Not sure this is a good idea though...

• Note the use of @encode to convert a C type to a string representing it's type

▫ This happens at compile time

▫ In combination with GCC's typeof extension, can get type of expressions

Except ions

• Objective-C has exceptions

▫ Be aware that they have a huge performance penalty if the exception occurs

▫ Not for flow control!

• @try -- begin an exception block

• @catch -- catch an exception of a given type

• @finally -- specify a block to executed whatever happens (optional)

• @throw -- throw an exception

@try
{
[obj doSomething];

} @catch(NumberOverflowExecption *e) {
// catch a number overflow exception
}
@catch(NSException *e) {
//Catch a general exception
}
@finally{
// clean up...
}

Except ions

• Multiple catch clauses possible

▫ Must be ordered from most specific to least specific

▫ the first @catch block which is of a compatible type with it's argument will get

the exception

▫ @catch(id e) catches everything

Exceptions don't have to be sublcasses of NSException, but they should be� Exceptions don't have to be sublcasses of NSException, but they should be

� The API always throws NSException exceptions

• @throw just takes an object to throw

• NSException has a handy class method raise which creates and raises and

exception -- so you don't need to explicitly use @raise

NSException *exception = [NSException exceptionWithName:@"AudioUnavailable"
reason:@"Device is in use" userInfo:nil];
@throw exception;

Categor ies

• Categories are a unusual Objective-C feature

▫ Allow classes to be extended without subclassing

▫ Without even having the source code!

• You can add new methods to a class

▫ All instances then respond to this new method

▫ All instances which are subclasses will get the method too

▫ CANNOT add new instance variables

• Just use @interface with an existing class name and (category)
@interface NSArray (random)
- (id) randomElement;
@end

@implementation NSArray(random)
- (id) randomElement {
int i = rand() % [self count];
return [self objectAtIndex:i];

}
@end

Categor ies (I I)

• Every NSArray will now respond to randomElement!

• Can be used to spread a class definition over several source files

▫ Define one main part

▫ Then categories for each sub-section

▫ Probably isn't a good idea to have such a big class in the first place though!

• It's conventional to name your source files ClassName+CategoryName.m / .h

▫ NSArray+random.m and NSArray+random.h for example

• Remember, no variables can be added -- just methods

Message Forwarding

• Sometimes it's useful for objects to do something other than raise an error when

sent a message that does not relate to one of their methods

• Most usefully, it can pass that message on to another object

▫ If you override the forwardInvocation: method you can receive any messages

which are not mapped to methods and handle them however you wantwhich are not mapped to methods and handle them however you want

• For example, you could make a container that broadcasts messages to any of its

elements...

- (void) forwardInvocation:(NSInvocation *)invocation
{

for(id object in self) //assume we confrom to NSFastEnumeration
{
if([object respondsToSelector:[invocation selector]]) {

[invocation invokeWithTarget:object];
}

}
}

F i les and data

• Each application has it's own space it can read/write to

▫ You can read from the bundle, but not write to it

• Use NSHomeDirectory to get the home directory of an application

//Get path of output.txt

• NSData manages blocks of raw data (just a chunk of bytes)

▫ Can read and write from files

▫ Convert to and from strings

//Get path of output.txt
NSString *outputPath = [NSHomeDirectory() stringByAppendingPathComponent:@"output.txt"];

NSString *filename = [[NSBundle mainBundle] pathForResource:@"data" ofType:@"raw"];
NSData *fileData = [NSData dataWithContentsOfFile:filename];
// do something with fileData
[fileData writeToFile:filename atomically:NO];

//Convert to and from ASCII string
NSString *dataString =[[NSString alloc] initWithData:fileData encoding:NSASCIIEncoding];
NSData *newData = [dataString dataUsingEncoding:NSASCIIEncoding];

NSFi leHandle

• Low-level access to files with NSFileHandle

//Get path of output.txt
NSString *outputPath = [NSHomeDirectory() stringByAppendingPathComponent:@"output.txt"];
NSFileHandle *outputHandle = [NSFileHandle fileHandleForWritingAtPath:outputPath];
NSString *dataToWrite = @"This the data to write out!\n";
NSData *rawBytes = [dataToWrite dataUsingEncoding:NSASCIIStringEncoding];
[outputHandle writeData:rawBytes];

• Reads and writes using NSData (blocks of bytes)

• Can seek inside files for random access

• Also allows reading in the background

▫ uses target-action to inform an object when the data is finished reading

[outputHandle writeData:rawBytes];

Ser ial izat ion: Archiving

• Cocoa supports object serialization under the name of archiving

• Allows Objective-C objects to be written or read from disk

▫ Stores all dependencies so that entire object graph is regenerated

• NSArchiver and NSUnarchiver are sequential archivers (read objects in a big list)

• NSKeyedArchiver and NSKeyedUnarchiver allow access as if archives were hash

tables (random access by name, for example)

▫ In general, keyed archives should always be used

• Objects can only be archived if they conform to the NSCoding protocol

Ser ial izat ion: Archiving

• It's easy to save an object using the archiveRootObject function

• And recover it with unarchiveRootObject

NSObject *object; // some object
[NSKeyedArchiver archiveRootObject:object toFile:@"object.archive"];

• You can also save multiple objects and access them via keys

▫ See the API docs for this

• Encoding and decoding of classes can be customized so that entire object graph

does not have to be written out, or certain parts of the data can be excluded

▫ See "Subclassing NSCoder"

NSObject *object = [NSKeyedArchiver unarchiveObjectWithFile:"object.archive"];

Star tup

• main() is executed -- this is the entry point for all Objective-C applications

• An instance of UIApplicationMain is created

� XCode inserts this code automatically

• The arguments to this specify a principal class (not really used much) and a delegate class

(application delegate)

▫ These are normally nil!

▫ info.plist specifies the nib file which specifies the delegate and principal

▫ Seems confusing, but you can view the connections in InterfaceBuilder

▫ In general, the XCode app creation process will automatically create a skeleton delegate

class and link it to UIApplicationMain

• Messages are then sent to the delegate, beginning with:

▫ applicationDidFinishLaunching:

� This is the entry point for user code -- it is called as soon as the application set up has been taken care of

Star tup structure

main()

UIApplication

Code starts

autorelease pool generated

UIApplication

MyApplicationDelegate instance

applicationDidFinishLaunching:

via info.plist/InterfaceBuilder

Your entry point

Appl icat ion Delegate

• There are a few really important things in the delegate

▫ applicationDidFinishLaunching:

▫ the window property -- this is the main window component

� add subview(s) to this to make them visible

� Usually just add the view of a UIViewController subclass

▫ dealloc -- called when memory is deallocated as the application shuts down

-(void) applicationDidFinishLaunching:(UIApplication *)application{
//assume we have a viewController instance variable
viewController = [[MyViewController alloc] init];
[window addSubView:viewcontroller.view];
[window makeKeyAndVisible];

}

- (void) dealloc{
[viewController release];
[window release];
[super dealloc];
}

Memory Warnings

• OS warns apps if memory is about to run out

▫ can happen because other services (like SMS or calls) have been allocated

memory

• App will receive didReceiveMemoryWarning:

This message is sent to all active UIViewController subclasses in your app▫ This message is sent to all active UIViewController subclasses in your app

• You should respond to this

▫ If you don't, the app will be closed by the OS when memory runs out

• Quick memory management note:

▫ you can get any object's retain count by sending it the retainCount message

Aside: Apple visual s ty le

• Use gradients

• Use transparency

• Use antialiasing

• Use animation

• Round corners

Aside: the Aqua ef fect

Core Locat ion

• CoreLocation allows you to find out where the phone is, and where it is pointing

(compass)

• Uses GPS, cell location and WiFi positioning

▫ Transparent interface -- all programmer gets is a position and an accuracy

estimate

• Simple API using CLLocationManager

▫ Delegate model -- you ask the manager to send messages when position or

heading changes

locationManager = [[CLLocationManager alloc] init];
locationManager.delegate = self; // must conform to CLLocationManagerDelegate

[locationManager startUpdatingLocation];

//later...

[locationManager stopUpdatingLocation];

Core Locat ion

• Note you can specify

▫ desired accuracy (reduces effort taken to get fix)

▫ distance filter (so that updates only occur after position changes by a certain amount)

// set accuracy to coarsest
locationManger.desiredAccuracy = kCLLocationAccuracyThreeKilomoters;

• The delegate gets didUpdateToLocation messages

▫ give new position as latitude, longitude

- (void)locationManager:(CLLocationManager *)manager
didUpdateToLocation:(CLLocation *)newLocation fromLocation:(CLLocation
*)oldLocation
{

double newLatitude = newLocation.latitude;
double newLongitude = newLocation.longitude;
double newAltitude = newLocation.altitude;

}

locationManger.desiredAccuracy = kCLLocationAccuracyThreeKilomoters;

// only update if we move at least a kilometer
locationManager.distanceFilter = 2000

The Compass

• Request compass updates with startUpdatingHeading

[locationManager startUpdatingHeading];

// later...

[locationManager stopUpdatingHeading];

• and receive them with a call to didUpdateHeading

- (void) locationManager:(CLLocationManager *)manager didUpdateHeading:(CLHeading
*)newHeading
{

//results in degrees
double rawHeading = newHeading.magneticHeading; // raw magnetic heading
double trueHeading = newHeading.trueHeading; // compensated (with location)

}

Accelerometer

• Reading the accelerometer is easy

▫ iPhone acclerometer is 3 axis

• UIAccelerometer class used for access

▫ get the shared object, pass it a delegate, set update rate

▫ receive x,y,z accelerations...

▫ we will cover doing interesting things with it later...

UIAccelerometer accelerometer = [UIAccelerometer sharedAccelerometer];
accelerometer.updateInterval = 0.05; // seconds!
accelerometer.delegate = self; // updates go to this object
// must implement UIAccelerometerDelegate protocol

// in the delegate class
- (void) accelerometer:(UIAccelerometer *)accelerometer
didAccelerate:(UIAcceleration *)acceleration
{
NSLog(@"%f %f %f\n", acceleration.x, acceleration.y, acceleration.z);

}

Magnetometer

• Raw magnetic readings can be obtained

▫ These allow direct measurement of magnetic field

▫ Uses: detecting disturbances, full device orientation...

• Simply part of the heading update data

- (void) locationManager:(CLLocationManager *)manager didUpdateHeading:(CLHeading
*)newHeading
{

//normalized to -128 to +128
NSLog(@"%f %f %f\n", newHeading.x, newHeading.y, newHeading.z);

}

User Inteface

• User interface components form part of the UI* class hierarchy

• User interface components inherit from UIView

▫ Abstract class for drawing and handling events

▫ Can subclass it to make custom controls

UIView

• Important methods:

initWithFrame:

� creates a new view with a given frame

� lots of controls are initialized this way

� addSubview

� Add another view to this one (i.e. draw it on top)� Add another view to this one (i.e. draw it on top)

� removeSubview/bringSubviewToFront/sendSubviewToBack

� drawRect

� override this to customize drawing!

� setNeedsDisplay

� call this to force redraw

UIView

• Touch handling

▫ hitTest:point withEvent:event

▫ sends messages to subviews to find deepest target that this point touches

▫ pointInside

� returns true if the point is inside the control at all

▫ co-ordinate conversion with convertPoint methods
� screen to control co-ordinates (where am I clicking in this button?)

UIView

• Important properties

▫ frame

� rectangle control occupies

▫ transform

� specifies a transform applied before drawing� specifies a transform applied before drawing

� this can be used to rotate/scale/translate controls

� just set the transform property

� use CGAffineTransform to specify transform

▫ alpha

� specifies the control transparency

▫ backgroundColor

� background color of control (if applicable)

▫ hidden

� if you set it to YES, the control will disappear...

UIView

• Important properties

▫ multiTouchEnabled

� if YES, will receive multiple finger contacts.

� NOTE: the default value is NO!� NOTE: the default value is NO!

▫ View hierarchy

� superview

� parent of this view

� subviews

� NSArray of immediate subviews

