
ES3 Lecture 6ES3 Lecture 6
Mobile Graphics: OpenGLES

What is OpenGLES?

• OpenGLES is a standard API for accelerated 2D + 3D graphics

▫ Implemented on many platforms

▫ Standard maintained by Khronos group http://www.khronos.org/opengles/spec/

• Cut-down version of OpenGL standard

▫ Much simplified version

▫ Implements modern features from OpenGL

� Basically restricts data types (to GL_FLOAT)

� Color models are always RGBA

� Only allows vertex buffer objects -- no immediate mode drawing

• Allows drawing of geometric primitives with coloring, lighting and texturing

▫ Hardware does the rendering

▫ Primitives are points, lines or triangles

• Rendering with OpenGLES is timeconsuming to implement

▫ but is standard, and offers best performance and access to features

What we' l l cover

• OpenGL conventions

• Setting up the OpenGL state

• Simple orthogonal views

• Creating vertex arrays

• Drawing colored lines, points and triangles• Drawing colored lines, points and triangles

• Transforming geometry

• Loading textures

• Using simple textures for 2D sprites

What we' l l not cover!

• OpenGLES 2.0 functionality (shaders)

• 3D projection

• Depth buffering, depth testing, clipping

• Loading and working with 3D models

• Lighting and materials• Lighting and materials

• Stencil buffers, framebuffer objects, scissoring, fog

• Multi-texturing

• Mip-mapping

• Anything in very much detail!

Anatomy of OpenGLES

• OpenGLES (and OpenGL) are state machines

• OpenGL code is a series of state changes sent to an implicit context

• Changes are made immediately!

• Example

English OpenGLES

Enable lighting glEnable(GL_LIGHTING);

Draw an object glDrawArray(...)

Move left 2 units glTranslatef(2,0,0)

Draw another object glDrawArray(...)

Disable lighting glDisable(GL_LIGHTING);

Set a color glColor4f(0.5, 0.5, 1, 1)

Draw a final object glDrawArray(...)

OpenGLES state

• There are a huge number of states that can be set

▫ Look up the API docs for more info

• Lots of enable/disables (lighting, blending, fog, texturing)

▫ glEnable(GL_BLEND)

• Current color

▫ glColor3f(1,0,1)

• Current modelview matrix / projection matrix

▫ glLoadIdentity()

• Blending modes

▫ glBlendFunc(GL_SRC_ALPHA, GL_ONE)

• Note that you don't get an object and start modifying it

▫ You just execute calls which affect a hidden implicit context

OpenGLES

• OpenGL and OpenGLES are C API's

▫ wrappers exist for many other languages too

• No objects or object orientation

▫ On the iPhone, for example, no use of Objective-C features in the API

• All OpenGLES functions begin gl

• All OpenGLES constants begin GL_

//Note use of gl* function name and GL_ constants
//OpenGL/OpenGLES constants are often very longwinded

glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);

Drawing something

• OpenGLES can only draw three things:

▫ points

▫ lines

▫ triangles

• Points and lines can just be colored

▫ points can also have limited texturing (point sprites)

• Triangles can be colored, can be lit and have textures mapped on

• There are various ways in which the geometry can be simplified (e.g. lines and

triangles often share vertices)

OpenGLES colors

• OpenGLES colors are always specified as RGB triples or RGBA triples

▫ The "A" is alpha (transparency)

• Values range from 0.0 -- 1.0

• glColor3f(1.0, 0.0, 0.0) sets the current color to pure red, for example

• glColor4f(1.0, 0.0, 1.0, 0.5) is semi transparent pink

• The default color is black!

▫ Remember to set it, or you will never see anything

A Vertex

• In OpenGL, all primitives are constructed from vertices

• A vertex is a point on the primitive

• A vertex has:

▫ A position (in 2 or 3 dimensional space) (mandatory)

Vertex 1

▫ A color (RGB or RGBA) (optional)

▫ A normal (optional)

� Defines the way light reflects at that point

▫ A texture co-ordinate (optional)

� Defines which part of a 2D texture is linked to that point
Vertex 2Vertex 3

Vertex buf fers

• OpenGLES requires that you store the vertices (points) making up primitives in advance

▫ These arrays of vertices are known as vertex buffers

• Many geometric primitives can be drawn from a single buffer (e.g. hundreds of triangles in a

single array)

▫ Need only a single function call to push the data to the GPU▫ Need only a single function call to push the data to the GPU

▫ Commonly, one "model" (a game character, for example) will be stored in one buffer

• These arrays are just flat arrays of C floats

▫ Must be 2 or 3 floats per vertex, depending on whether vertices are 3D

▫ We'll always use 3D vertices for simplicty

// represents (1,5,7)
GLfloat vertices[3] = {1.0, 5.0, 7.0};

// represents (1,5,7), (10,10,10)
// Note that the structure is not represented in the array
GLfloat other_vertices[3] = {1.0, 5.0, 7.0, 10.0, 10.0, 10.0};

Colors in vertex buf fers

• The minimum data required to render an primitive is the position of its vertices

• Each vertex can also be colored

▫ Note: not just each primitive!

• Color arrays are just the same as vertex arrays

▫ flat C arrays of floats

▫ must have 4 components (either RGB or RGBA)

▫ only linked to vertex positions by same ordering!

• You don't have to use color buffers

▫ can just specify a drawing color which will appy to all primitives drawn until the

next color is specified

▫ but needed if you want per-primitive or per-vertex coloring

// Represents one vertex color (red, with one half transparency)
GLfloat colorBuffer[4] = {1.0, 0.0, 0.0, 0.5};

Indexed t r iangles

• A mesh of triangles usually share lots of vertices

• OpenGLES uses indexed drawing to take advantage

of this redundancy

▫ You provide a list of vertices

Then for each triangle, list just the 3 indices of these▫ Then for each triangle, list just the 3 indices of these

vertices needed

▫ Index list always has 3*(number of triangles) elements

• An index is an 8-bit or 16-bit integer

▫ much smaller than a fully specified <x,y,z> floating point triple

Indexed l ines

• The same applies to lines

▫ Lines quite often (not as much as triangles) share points

• So you specify a list of vertices

▫ and then a pair of vertex indices for each line

1

• Note that vertices specify position (at a minimum)

▫ the can also specify color

� and texture co-ordinates, and normals...

2

3

Drawing a l ine

• In OpenGLES there are four basic steps in drawing

1. Create a simple C array for the vertex data

1. create arrays for the indices if needed

2. Enable the vertex arrays

3. Set the current array pointer to your array from 1

4. Tell OpenGLES to render4. Tell OpenGLES to render

// Create a position array
GLfloat vertices = {0,50,0, 320,50,0};
//Create an index array
GLubyte indices = {0, 1};

// Enable the position vertex data
glEnableClientState(GL_VERTEX_ARRAYS);

// Set the pointer
// First parameter is number of elements in one position
// Here, 3 for XYZ
glVertexPointer(3, GL_FLOAT, 0, &(vertices[0]));

glDrawElements(GL_LINES, 2, GL_UNSIGNED_BYTE, &(indices[0]));

Drawing lots of l ines (s low)

• We could draw lots of lines like this

// Set up all the data here...
// Assume vertices is a list of vertices giving line pairs

// Draw the lines
for(int i=0;i<nLines;i++)for(int i=0;i<nLines;i++)
{

// move forward two vertices for each line
glVertexPointer(3, GL_FLOAT, 0, &(vertices[0+2*i]));
glDrawElements(GL_LINES, 2, GL_UNSIGNED_BYTE, &(indices[0]));

}

Drawing lots of l ines (fast !)

• Every call to glDrawArrays/glDrawElements actually copies data to the GPU

▫ glVertexPointer etc. doesn't actually do anything

� it just tell OpenGLES where to copy from when the draw command comes

• It's much more efficient to make one call to glDrawElements

// Set up all the data here...
// Assume vertices is a list of vertices giving line pairs
// NOW: indices must have 2*nLines elements
// specifying the start and end indices of each line in vertices

glVertexPointer(3, GL_FLOAT, 0, &(vertices[0]));
glDrawElements(GL_LINES, 2*nLines, GL_UNSIGNED_BYTE, &(indices[0]));

Drawing a t r iangle

• The minimum to draw an indexed triangle:

▫ Specify the vertices (as an array of floats)

▫ Specify the indices (as as an array of chars or shorts -- you choose which!)

▫ Specify a color

▫ Tell OpenGLES where the vertices are

▫ Enable vertex arrays▫ Enable vertex arrays

▫ Request that the triangle(s) be drawn

// Three vertices * 3 components = 9
// Z is always zero because we are drawing in 2D
GLfloat triangle[9] = {200,100,0, 160,200,0, 300,100,0};
GLubyte triangleIndices = {0, 1, 2};

glColor4f(1,0,0,1); // Red, no transparency
// 3 components per vertex
glVertexPointer(3, GL_FLOAT, 0, &(triangle[0]));
// Enable vertex array drawing
glEnableClientState(GL_VERTEX_ARRAY);

// Draw three indices worth
glDrawElements(GL_TRIANGLES, 3, GL_UNSIGNED_BYTE, &(triangleIndices[0]));

Sol id color ing the t r iangle

• Color of the triangle can be specified per vertex as well

▫ This code will do the same as the previous

// Three vertices * 3 components = 9
// Z is always zero because we are drawing in 2D
GLfloat triangle[9] = {200,100,0, 160,200,0, 300,100,0};
// RGBA, RGBA ...
GLfloat colors[9] = {1.0,1.0,0.0,1.0, 1.0,1.0,0.0,1.0, GLfloat colors[9] = {1.0,1.0,0.0,1.0, 1.0,1.0,0.0,1.0,
1.0,1.0,0.0,1.0};
GLubyte triangleIndices = {0, 1, 2};

glVertexPointer(3, GL_FLOAT, 0, &(triangle[0]));
glColorPointer(4, GL_FLOAT, 0, &(colors[0]));
// Enable vertex array drawing
glEnableClientState(GL_VERTEX_ARRAY);
// Enable color array
glEnableClientState(GL_COLOR_ARRAY);

// Draw three indices worth
glDrawElements(GL_TRIANGLES, 3, GL_UNSIGNED_BYTE,

&(triangleIndices[0]));

Smooth color ing the t r iangle

• If each vertex color is different, OpenGLES automatically interpolates between the

colors

GLfloat triangle[9] = {200,100,0, 160,200,0, 300,100,0};
// RGBA, RGBA ...// RGBA, RGBA ...
// Now yellow, blue, red at the vertices
GLfloat colors[9] = {1.0,1.0,0.0,1.0, 0.0,0.0,1.0,1.0,

1.0,0.0,0.0,1.0};
GLubyte triangleIndices = {0, 1, 2};

glVertexPointer(3, GL_FLOAT, 0, &(triangle[0]));
// Note first parameter is 4 because we are
// using 4-component colors
glColorPointer(4, GL_FLOAT, 0, &(colors[0]));
// Enable vertex array drawing
glEnableClientState(GL_VERTEX_ARRAY);
// Enable color array
glEnableClientState(GL_COLOR_ARRAY);

// Draw three indices worth
glDrawElements(GL_TRIANGLES, 3, GL_UNSIGNED_BYTE,

&(triangleIndices[0]));

Project ions, v iew

• OpenGLES translates from world space to screen co-ordinates

▫ you draw in (an arbitrary) co-ordinate system

▫ map to screen co-ordinates via a series of matrices

• ModelView matrix transforms local coordinates to global coordinates (e.g.

represents camera location)represents camera location)

• Projection matrix transforms these coordinates to normalized 2D coordinates

▫ in perspective, this involves a perspective divide

▫ makes far away points closer together

• Viewport transforms normalized 2D coordinates

▫ Just scales coordinates to fit pixel draw window

• We will only cover the simple orthographic 2D (straight on) display

Matr ices

• Matrices just represent transforms compactly

• A single 4x4 OpenGL matrix can represent any combination of:

▫ 3D translations (movement)

▫ 3D rotations

▫ 3D scaling (including non-uniform)▫ 3D scaling (including non-uniform)

▫ 3D shearing (very rare!)

• Matrices can be composed by multiplication!

▫ i.e. the product of two matrices results in the composition of the transforms

▫ (rotation1 * scale1) creates a matrix which rotates by rotation1 and then scales by scale1

• OpenGL provides useful functions for rotating, translating and scaling which implicitly create

matrices for you

▫ You will not have to work with matrices explictly

View t ransform process

Camera and objects

transformed

Projection

Matrix

Normalized

Coordinates

Viewport

Transform

Screen

Coordinates

Global

Coordinates

ModelView

Matrix

Local

Coordinates

Perspective divide, clipping Rasterization

Normal ized coordinates

• OpenGL always considers the screen to extend from (-1,-1) to (1,1)

▫ Note well: OpenGL's y coordinate starts at the bottom of the screen!

▫ This is not the way conventional graphics systems work

• In an orthogonal view, the projection matrix just rescales coordinates

▫ (0,0) ,(screen_width, screen_height) --> (-1, -1), (1,1)

• Normally you will set a projection matrix and a viewport once

• ModelView matrix is constantly changed to lay out objects in the world

Common OpenGLES st ructure

• Initialise (once)

▫ Set viewport

▫ Set projection

▫ Set drawing states (lighting enabled, fog enabled...)

• Every frame

▫ Clear the screen

▫ Reset modelview matrix

▫ Set the camera position (if camera moves)

▫ For each object:

� store the modelview matrix

� transform to the objects location/scale/rotation

� draw the object

� restore the modelview

Clear ing the screen

• To clear the screen

▫ set the clear color

▫ clear the color buffer

glClearColor(0,0,0,1); // Clear to black
glClear(GL_COLOR_BUFFER_BIT); // clear the color buffer

• There are other buffers you can clear (depth buffer in particular)

▫ but for 2D drawing, only the color buffer is likely to be important

Sett ing up a viewport

• The viewport is specified in pixel space

▫ It specifies a region of pixels to draw into

▫ OpenGLES code never needs to know about actual onscreen pixel sizes

▫ glViewport is how mapping from normalized coordinates to pixels is done

• Usually it is just set to the entire device size• Usually it is just set to the entire device size

• But you can specify other regions, for example for split screen displays

▫ set left hand viewport, draw, set right hand viewport, draw

▫ your draw functions are completely unchanged!

glViewport(0,0,screen_width,screen_height);

// Left hand side
glViewport(0,0,screen_width/2,screen_height);
doDrawSomeStuff();

// Right hand side
glViewport(screen_width/2,0,screen_width,height);
doDrawSomeOtherStuff()

Sett ing the basic OpenGL state

• At a minimum an OpenGLES initialisation routine must set a viewport

• A projection of some kind is usually set

▫ Perspective for 3D, orthographic for 2D

• The various enable/disables for features used are given

• Specific implementations may require other setup

▫ creating color buffers, binding them etc...

▫ Usually there will be boilerplate for you

� (e.g. XCode generates all the boilerplate to get a simple drawing going)

Camera and Project ion

• We will only use a simple orthographic projection

• This emulates a 2D display with a coordinate system from (0,0) to (screen_width,

screen_height)

▫ Camera is effectively "straight on" to the screen

(0,0,0)

(320,480,0)

Orthographic Project ion

• To set the orthographic projection

▫ set the matrix mode to GL_PROJECTION

▫ clear the projection matrix

▫ use glOrthof to set the extent of the view

▫ set the matrix mode back to GL_MODELVIEW

// set the matrix mode to work with projection matrices
glMatrixMode(GL_PROJECTION);
glLoadIdentity(); // clear the matrix

// arguments are left, right, bottom, top, near z and far z
glOrthof(0, 320, 0, 480, -1, 1);

// go back to working with the modelview matrix
glMatrixMode(GL_MODELVIEW);

Modelview matr ix

• We can easily transform things in OpenGLES by changing the modelview matrix

▫ we do not change each of the vertices of the object!

• glTranslatef(x,y,z) moves everything by x,y,z

• glRotatef(angle, xaxis, yaxis, zaxis) rotates by angle about xaxis, yaxis, zaxis

▫ 3D rotations are tricky!

▫ glRotatef(angle, 0, 0, 1) does 2D rotation for our purposes

• glScalef(x,y,z) scales everything by x,y,z

• These transforms apply to everything drawn after that point

• Transforms are order dependent

▫ scale then translate is different than translate then scale!

▫ transforms are applied in reverse order to the way they are written

Transforms

• If you want to make a unit sized square 32 units across and move it 10 units left

• If you do this:

glTranslatef(-10, 0, 0);
glScalef(32, 32, 1);

glScalef(32, 32, 1);
glTranslatef(-10, 0, 0);

• You will make it 32 units across and move it 320 units left!

▫ likely nothing will appear at all!

• Never scale any axis by zero!

▫ the results might be very strange

▫ don't do glScalef(32,32,0), even if you're not using the z component

glTranslatef(-10, 0, 0);

Transforms

• Each transform actually multiplies the current matrix (usually modelview) by a matrix for the

transform

• glLoadIdentity() loads the identity matrix into the current matrix

▫ i.e. resets it completely

• Summary:

▫ To move or transform something in OpenGLES, multiply the modelview matrix by a

transform, then draw your object

▫ Do not manually transform vertices!

▫ Change the "camera" position by setting the modelview matrix before drawing anything

Pushing and popping matr ices

• It is very common to want to transform one object to a location, then another to

another position and so on

▫ But when we apply glTranslatef etc., the modelview matrix is changed from

then on

• OpenGLES provides a matrix stack• OpenGLES provides a matrix stack

▫ the state of the matrix can be preserved and restored

▫ glPushMatrix stores the current transform

▫ glPopMatrix restores it

• This means you can draw objects relative

to each other in a hierarchical manner

• Push, draw on object, pop

▫ [push, draw an motorcycle, [push, draw a wheel, pop], [push, draw a wheel, pop], pop]

Drawing a s t r ip of t r iangles

• OpenGLES very often uses triangle strips

▫ triangles which all share an edge with the previous triangle

▫ each new triangle only needs 1 vertex!

▫ this is very efficient

2 4 6

• Note that now you don't always need indices

▫ The vertices are already ordered

▫ You can still use indexed drawing if you want to order the array differently

▫ There are also triangle fans, where each triangle shares a common point and

an edge with the previous triangle

1 3 5

Drawing a square with s t r ips

• Squares are made up of two triangles

▫ One common edge

▫ Triangle strips mean need to only specify 4 vertices

� instead of redundant 6 for naive triangles

• Squares are commonly used for drawing flat images
3: 0,0

1: 0,1 2: 1,1

4: 1,0

1

2

• Squares are commonly used for drawing flat images
3: 0,0 4: 1,0

// Set up the arrays
GLfloat vertices = {0,1,0, 1,1,0, 0,0,0 1,0,0};

// Enable the array pointers
glEnableClientState(GL_VERTEX_ARRAY);

// Set the array pointers
glVertexPointer(3, GL_FLOAT, 0, vertices);

// Draw the strip
glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);

Textur ing Basics

• OpenGLES supports texturing

▫ An image is stretched across triangles so as to simulate a texture

• To use textures you need

▫ an image representing the texture

▫ a way of mapping the texture to the primitives

• Texture coordinates tell OpenGLES how to map a 2D image onto triangles

▫ Texture coordinates always go from (0,0) to (1,1)

▫ Each vertex of a primitive can specify a texture coordinate

0,0

1,1

Using textures

• In OpenGLES textures are part of the hidden context like everything else

• You manipulate them using a name

▫ In OpenGLES a name is just an integer which uniquely identifies an object

• When a new texture is created, first generate a new name

▫ This does not allocate any space or load anything -- it just generates an ID!

• When modifying or using the texture, you must bind it

▫ this makes it the "current" active texture

• All future drawing operations or texture modifiers will work on this texture

int newTexture;
glGenTextures(1, &newTexture);

glBindTexture(GL_TEXTURE_2D, newTexture);

Using Textures

• Textures are only used if texturing is enabled

▫ Otherwise primitives will be drawn in solid colors

▫ Must set this before executing a draw command

glEnable(GL_TEXTURE_2D); // enable texturing

256px

140px

1,1

0.56,0.78

• OpenGLES textures must have sizes which are powers of 2

▫ e.g. 64x64 or 512x256

▫ Do not have to be equal powers of 2

▫ Maximum size is often 1024x1024

• If you want to use a texture smaller than this, you just create a slightly larger

texture with a blank border

▫ Then use coordinates which map to a the subsection where your texture is

256px

200px

0,0

Texture At las

• If many textures must be drawn, it is very inefficient to load a large number of

separate textures

▫ You would have to draw one primitive, bind a new texture, draw another

primitive etc.

• A texture atlas is just a number of textures on a grid on a texture• A texture atlas is just a number of textures on a grid on a texture

▫ Select texture just be setting coordinates

▫ Map different parts of a model to different textures

0,0

1,1
1,0.25

0,0.5

Drawing a textured square

• OpenGLES doesn't support drawing squares or quads

▫ two triangles will do though

▫ triangle strips make this easy

• Specify vertice positions and texture coordinates in same order

0,0

0,1 1,1

1,0

1

2

// Set up the arrays
GLfloat textureCoords = {0,1, 1,1, 0,0, 1,0};
GLfloat vertices = {0,1,0, 1,1,0, 0,0,0 1,0,0};
// Bind the texture
glBindTexture{GL_TEXTURE_2D, textureName);
glEnable(GL_TEXTURE_2D);
// Enable the array pointers
glEnableClientState(GL_VERTEX_ARRAY);
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
// Set the array pointers
glVertexPointer(3, GL_FLOAT, 0, vertices);
glTexCoordPointer(2, GL_FLOAT, 0, textureCoords);
// Draw the strip
glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);

Vertex order ing

• Note: ordering of vertices is important!

▫ texture will be twisted if you specify it twisted

Correct! Wrong!

The alpha channel

• OpenGL natively supports blending

▫ i.e. transparency

• You must enable it

glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);

▫ the blending function allows lots of effects

▫ the default one above just gives standard transparency

• Every color has a fourth component for transparency

▫ glColor4f(r,g,b,a) sets a 4 component color

• Textures can have alpha channels

▫ just stores the transparency along with the rgb components

▫ e.g. for putting masks around sprites

glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);

Fading and t int ing textures

• Note that textures and colors are automatically combined by OpenGLES

▫ If the current color is white, the texture is rendered as is

▫ If the current color is non-white, the color is multiplied by the texture

� by default, at least

• Textures can therefore be tinted (or made transparent) at runtime just by changing • Textures can therefore be tinted (or made transparent) at runtime just by changing

the color

▫ If the color is pure red, only the red component of the texture will be shown

glColor4f(1,1,1,1); // solid white
//... draw something
// will appear as normal

glColor4f(1,1,1,0.5); // white, alpha = 0.5 (half transparent)
//... draw something
// will appear semi-transparent

glColor4f(0.5,1,0.5,1); // solid light green
//... draw something
// will appear with a green tint

GLES 2.0: end of the pipel ine

• In OpenGLES 2.0 there is no more fixed pipeline

• No transformation commands

▫ glTranslatef, glRotatef, glPushMatrix...

• No lighting commands

▫ glMaterialfv, glLightModel▫ glMaterialfv, glLightModel

• Everything is written in shaders

▫ Small fragments of code run on GPU

▫ Vertex shaders transform vertices (e.g. applying rotations, translations or distortions)

▫ Pixel shaders describe how polygons are rasterized (how to color a pixel given geometry)

• Very flexible -- procedural texturing, new lighting models, special effects

▫ But more work

� Just getting an image on the screen takes a lot more code

� You have to compute all matrices etc. yourself and pass them to the shaders!

GLES 2.0: end of the pipel ine

• New devices will move to OpenGLES 2.0

▫ iPhone 3.0+ uses 2.0

▫ Provides compatibiltiy with 1.1 by emulating fixed pipeline

• Try creating an empty OpenGLES project in XCode

▫ Look at the ES2Renderer.m for an example of GLES 2.0 code

