ES3 Lecture 6

Mobile Graphics: OpenGLES




What is OpenGLES?

OpenGLES is a standard API for accelerated 2D + 3D graphics
Implemented on many platforms
Standard maintained by Khronos group http://www.khronos.org/opengles/spec/

Cut-down version of OpenGL standard
Much simplified version

Implements modern features from OpenGL
Basically restricts data types (to GL_FLOAT)
Color models are always RGBA
Only allows vertex buffer objects -- no immediate mode drawing

Allows drawing of geometric primitives with coloring, lighting and texturing
Hardware does the rendering
Primitives are points, lines or triangles

Rendering with OpenGLES is timeconsuming to implement
but is standard, and offers best performance and access to features




What we'll cover

OpenGL conventions

Setting up the OpenGL state

Simple orthogonal views

Creating vertex arrays

Drawing colored lines, points and triangles
Transforming geometry

Loading textures

Using simple textures for 2D sprites




What we'll not coverl!

OpenGLES 2.0 functionality (shaders)

3D projection

Depth buffering, depth testing, clipping

Loading and working with 3D models

Lighting and materials

Stencil buffers, framebuffer objects, scissoring, fog
Multi-texturing

Mip-mapping

Anything in very much detail!




Anatomy of OpenGLES

OpenGLES (and OpenGL) are state machines
OpenGL code is a series of state changes sent to an implicit context
Changes are made immediately!

Example

English OpenGLES

Enable lighting glEnable(GL_LIGHTING);
Draw an object glDrawArray(...)

Move left 2 units glTranslatef(2,0,0)

Draw another object glDrawArray(...)

Disable lighting glDisable(GL_LIGHTING);
Set a color glColor4f(0.5, 0.5, 1, 1)

Draw a final object glDrawArray(...)




OpenGLES state

There are a huge number of states that can be set
Look up the API docs for more info

Lots of enable/disables (lighting, blending, fog, texturing)
glEnable(GL_BLEND)

Current color
glColor3f(1,0,1)

Current modelview matrix / projection matrix
glLoadldentity()

Blending modes
giBlendFunc(GL_SRC_ALPHA, GL_ONE)

Note that you don't get an object and start modifying it
You just execute calls which affect a hidden implicit context



OpenGLES

OpenGL and OpenGLES are C API's
wrappers exist for many other languages too

No objects or object orientation
On the iPhone, for example, no use of Objective-C features in the API

All OpenGLES functions begin gl
All OpenGLES constants begin GL_

//Note use of gl* function name and GL constants
//0penGL/0penGLES constants are often very longwinded

glEnable(GL BLEND);
glBlendFunc(GL SRC ALPHA, GL ONE MINUS SRC ALPHA);




Drawing something

OpenGLES can only draw three things:

e 77 [l

Points and lines can just be colored
points can also have limited texturing (point sprites)

Triangles can be colored, can be lit and have textures mapped on

There are various ways in which the geometry can be simplified (e.g. lines and
triangles often share vertices)




OpenGLES colors

OpenGLES colors are always specified as RGB triples or RGBA triples
The "A" is alpha (transparency)

Values range from 0.0 -- 1.0
glColor3f(1.0, 0.0, 0.0) sets the current color to pure red, for example
glColoraf(1.0, 0.0, 1.0, 0.5) is semi transparent pink

The default color is black!
Remember to set it, or you will never see anything




A Vertex

In OpenGlL, all primitives are constructed from vertices
A vertex is a point on the primitive
Vertex 1
A vertex has:
A position (in 2 or 3 dimensional space) (mandatory)
A color (RGB or RGBA) (optional)

A normal (optional)
Defines the way light reflects at that point

A texture co-ordinate (optional)
Defines which part of a 2D texture is linked to that point

Vertex 3




Vertex buffers

OpenGLES requires that you store the vertices (points) making up primitives in advance
These arrays of vertices are known as vertex buffers

Many geometric primitives can be drawn from a single buffer (e.g. hundreds of triangles in a
single array)

Need only a single function call to push the data to the GPU
Commonly, one "model" (a game character, for example) will be stored in one buffer

These arrays are just flat arrays of C floats
Must be 2 or 3 floats per vertex, depending on whether vertices are 3D
We'll always use 3D vertices for simplicty

// represents (1,5,7)
GLfloat vertices[3] = {1.0, 5.0, 7.0};

// represents (1,5,7), (10,10,10)
// Note that the structure is not represented in the array
GLfloat other vertices[3] = {1.0, 5.0, 7.0, 10.0, 10.0, 10.0};




Colors in vertex buffers

The minimum data required to render an primitive is the position of its vertices
Each vertex can also be colored
Note: not just each primitive!

Color arrays are just the same as vertex arrays
flat C arrays of floats
must have 4 components (either RGB or RGBA)
only linked to vertex positions by same ordering!

You don't have to use color buffers

can just specify a drawing color which will appy to all primitives drawn until the
next color is specified

but needed if you want per-primitive or per-vertex coloring

// Represents one vertex color (red, with one half transparency)
GLfloat colorBuffer[4] = {1.0, 0.0, 0.0, 0.5};




Indexed triangles

A mesh of triangles usually share lots of vertices

OpenGLES uses indexed drawing to take advantage

of this redundancy
You provide a list of vertices
Then for each triangle, list just the 3 indices of these

vertices needed
Index list always has 3*(number of triangles) elements

An index is an 8-bit or 16-bit integer
much smaller than a fully specified <x,y,z> floating point triple




Indexed lines

The same applies to lines
Lines quite often (not as much as triangles) share points

So you specify a list of vertices
and then a pair of vertex indices for each line

Note that vertices specify position (at a minimum)

the can also specify color
and texture co-ordinates, and normals...



Drawing a line

In OpenGLES there are four basic steps in drawing
Create a simple C array for the vertex data

create arrays for the indices if needed
Enable the vertex arrays
Set the current array pointer to your array from 1
Tell OpenGLES to render

// Create a position array
—GLfloat vertices = {0,50,0, 320,50,0};
//Create an index array
—>GLubyte indices = {0, 1};

// Enable the position vertex data
glEnableClientState(GL VERTEX ARRAYS);

// Set the pointer

// First parameter is number of elements in one position
// Here, 3 for XYZ

glVertexPointer(3, GL FLOAT, 0, &(vertices[0]));

glDrawElements(GL LINES, 2, GL UNSIGNED BYTE, &(indices[0]));




Drawing lots of lines (slow)

We could draw lots of lines like this

// Set up all the data here...
// Assume vertices is a list of vertices giving line pairs

// Draw the lines

for(int 1=0;i<nlLines;i++)

{
// move forward two vertices for each line
glVertexPointer(3, GL FLOAT, 0, &(vertices[0+2*i]));
glDrawElements(GL LINES, 2, GL UNSIGNED BYTE, &(indices[0]));




Drawing lots of lines (fast!)

Every call to gIDrawArrays/glDrawElements actually copies data to the GPU

glVertexPointer etc. doesn't actually do anything
it just tell OpenGLES where to copy from when the draw command comes

It's much more efficient to make one call to giDrawElements

// Set up all the data here...

// Assume vertices is a list of vertices giving line pairs

// NOW: indices must have 2*nLines elements

// specifying the start and end indices of each line in vertices

glVertexPointer(3, GL FLOAT, 0, &(vertices[0]));
glDrawElements(GL LINES, 2*nLines, GL UNSIGNED BYTE, &(indices[0]));




Drawing a triangle

The minimum to draw an indexed triangle:
Specify the vertices (as an array of floats)
Specify the indices (as as an array of chars or shorts -- you choose which!)
Specify a color
Tell OpenGLES where the vertices are
Enable vertex arrays
Request that the triangle(s) be drawn

// Three vertices * 3 components = 9

// Z is always zero because we are drawing in 2D

GLfloat triangle[9] = {200,100,0, 160,200,0, 300,100,0};
GLubyte trianglelndices = {0, 1, 2};

glColor4f(1,0,0,1); // Red, no transparency

// 3 components per vertex

glVertexPointer(3, GL FLOAT, 0, &(triangle[0]));
// Enable vertex array drawing
glEnableClientState(GL VERTEX ARRAY);

// Draw three indices worth
glDrawElements (GL TRIANGLES, 3, GL UNSIGNED BYTE, &(triangleIndices[0]));




Solid coloring the triangle

Color of the triangle can be specified per vertex as well
This code will do the same as the previous

il Carrier = 10:56 AM

// Three vertices * 3 components = 9

// Z is always zero because we are drawing in 2D

GLfloat triangle[9] = {200,100,0, 160,200,060, 300,100,0};
// RGBA, RGBA ...

GLfloat colors[9] = {1.0,1.0,0.0,1.0, 1.0,1.0,0.0,1.0,
1.0,1.0,0.0,1.0};

GLubyte trianglelIndices = {0, 1, 2};

glVertexPointer(3, GL FLOAT, 0, &(triangle[0]));
glColorPointer(4, GL FLOAT, 0, &(colors[0]));

// Enable vertex array drawing
glEnableClientState(GL_VERTEX ARRAY);

// Enable color array
glEnableClientState(GL_COLOR _ARRAY);

// Draw three indices worth
glDrawElements (GL TRIANGLES, 3, GL UNSIGNED BYTE,
&(triangleIndices[0]));




Smooth coloring the triangle

If each vertex color is different, OpenGLES automatically interpolates between the
colors

il Carrier = 10:57 AM

GLfloat triangle[9] = {200,100,0, 160,200,0, 300,100,0};

// RGBA, RGBA ...

// Now yellow, blue, red at the vertices

GLfloat colors[9] = {1.0,1.0,0.0,1.0, ©0.0,0.0,1.0,1.0,
1.0,0.0,0.0,1.0};

GLubyte trianglelndices = {0, 1, 2};

glVertexPointer(3, GL FLOAT, 0, &(triangle[0]));
// Note first parameter is 4 because we are

// using 4-component colors

glColorPointer(4, GL FLOAT, 0, &(colors[0]));

// Enable vertex array drawing
glEnableClientState(GL _VERTEX ARRAY);

// Enable color array
glEnableClientState(GL_COLOR_ARRAY);

// Draw three indices worth
glDrawElements(GL TRIANGLES, 3, GL UNSIGNED BYTE,
&(triangleIndices[0]));




Projections, view

OpenGLES translates from world space to screen co-ordinates
you draw in (an arbitrary) co-ordinate system
map to screen co-ordinates via a series of matrices

ModelView matrix transforms local coordinates to global coordinates (e.g.
represents camera location)

Projection matrix transforms these coordinates to normalized 2D coordinates
in perspective, this involves a perspective divide

makes far away points closer together

Viewport transforms normalized 2D coordinates
Just scales coordinates to fit pixel draw window

We will only cover the simple orthographic 2D (straight on) display




Matrices

Matrices just represent transforms compactly

A single 4x4 OpenGL matrix can represent any combination of:
3D translations (movement)
3D rotations
3D scaling (including non-uniform)
3D shearing (very rare!)

Matrices can be composed by multiplication!
i.e. the product of two matrices results in the composition of the transforms
(rotationl * scalel) creates a matrix which rotates by rotation1 and then scales by scalel

OpenGL provides useful functions for rotating, translating and scaling which implicitly create
matrices for you

You will not have to work with matrices explictly




Camera and objects

transformed

transform process

Local
Coordinates

ModelView
Matrix

Global
Coordinates

Projection
Matrix

Normalized
Coordinates

Viewport
Transform

Screen
Coordinates

A

Perspective divide, clipping

Rasterization




Normalized coordinates

OpenGL always considers the screen to extend from (-1,-1) to (1,1)
Note well: OpenGL's y coordinate starts at the bottom of the screen!
This is not the way conventional graphics systems work

In an orthogonal view, the projection matrix just rescales coordinates
(0,0) ,(screen_width, screen_height) --> (-1, -1), (1,1)

Normally you will set a projection matrix and a viewport once

ModelView matrix is constantly changed to lay out objects in the world




Common OpenGLES siructure

Initialise (once)
Set viewport
Set projection
Set drawing states (lighting enabled, fog enabled...)

Every frame
Clear the screen
Reset modelview matrix
Set the camera position (if camera moves)
For each object:
store the modelview matrix
transform to the objects location/scale/rotation
draw the object
restore the modelview




Clearing the screen

To clear the screen
set the clear color
clear the color buffer

glClearColor(0,0,0,1); // Clear to black
glClear(GL COLOR BUFFER BIT); // clear the color buffer

There are other buffers you can clear (depth buffer in particular)
but for 2D drawing, only the color buffer is likely to be important




Setting up a viewport

The viewport is specified in pixel space
It specifies a region of pixels to draw into
OpenGLES code never needs to know about actual onscreen pixel sizes
glViewport is how mapping from normalized coordinates to pixels is done

Usually it is just set to the entire device size
glViewport(0,0,screen width,screen height);

But you can specify other regions, for example for split screen displays
set left hand viewport, draw, set right hand viewport, draw

your draw functions are completely unchanged!
// Left hand side
glViewport(0,0,screen width/2,screen height);
doDrawSomeStuff();

// Right hand side
glViewport(screen width/2,0,screen width,height);
doDrawSomeOtherStuff()




Setting the basic OpenGL state

At a minimum an OpenGLES initialisation routine must set a viewport
A projection of some kind is usually set
Perspective for 3D, orthographic for 2D

The various enable/disables for features used are given

Specific implementations may require other setup
creating color buffers, binding them etc...
Usually there will be boilerplate for you

(e.g. XCode generates all the boilerplate to get a simple drawing going)




Camera and Projection

We will only use a simple orthographic projection

This emulates a 2D display with a coordinate system from (0,0) to (screen_width,
screen_height)

Camera is effectively "straight on" to the screen

(320,480,0)




Orthographic Projection

To set the orthographic projection
set the matrix mode to GL_PROJECTION
clear the projection matrix
use glOrthof to set the extent of the view
set the matrix mode back to GL_ MODELVIEW

// set the matrix mode to work with projection matrices
glMatrixMode (GL PROJECTION);
glLoadIdentity(); // clear the matrix

// arguments are left, right, bottom, top, near z and far z
glOrthof (0, 320, 0, 480, -1, 1);

// go back to working with the modelview matrix
glMatrixMode (GL MODELVIEW) ;




Modelview matrix

We can easily transform things in OpenGLES by changing the modelview matrix
we do not change each of the vertices of the object!

glTranslatef(x,y,z) moves everything by x,y,z
glRotatef(angle, xaxis, yaxis, zaxis) rotates by angle about xaxis, yaxis, zaxis
3D rotations are tricky!
glRotatef(angle, 0, 0, 1) does 2D rotation for our purposes
glScalef(x,y,z) scales everything by x,y,z

These transforms apply to everything drawn after that point
Transforms are order dependent

scale then translate is different than translate then scale!
transforms are applied in reverse order to the way they are written




Transforms

If you want to make a unit sized square 32 units across and move it 10 units left

glTranslatef(-10, 0, 0);
glScalef (32, 32, 1);

If you do this:
glScalef (32, 32, 1);

glTranslatef(-10, 0, 0);
You will make it 32 units across and move it 320 units left!
likely nothing will appear at all!

Never scale any axis by zero!
the results might be very strange
don't do glScalef(32,32,0), even if you're not using the z component




Transforms

Each transform actually multiplies the current matrix (usually modelview) by a matrix for the
transform

glLoadldentity() loads the identity matrix into the current matrix
i.e. resets it completely

Summary:

To move or transform something in OpenGLES, multiply the modelview matrix by a
transform, then draw your object

Do not manually transform vertices!
Change the "camera" position by setting the modelview matrix before drawing anything




Pushing and popping matrices

It is very common to want to transform one object to a location, then another to
another position and so on
But when we apply glTranslatef etc., the modelview matrix is changed from
then on

OpenGLES provides a matrix stack
the state of the matrix can be preserved and restored
glPushMatrix stores the current transform
glPopMatrix restores it

This means you can draw objects relative
to each other in a hierarchical manner

Push, draw on object, pop

[push, draw an motorcycle, [push, draw a wheel, pop], [push, draw a wheel, pop], pop]




Drawing a strip of triangles

OpenGLES very often uses triangle strips

triangles which all share an edge with the previous triangle
: ) 4
each new triangle only needs 1 vertex!

this is very efficient

1

Note that now you don't always need indices
The vertices are already ordered
You can still use indexed drawing if you want to order the array differently

There are also triangle fans, where each triangle shares a common point and
an edge with the previous triangle




Drawing a square with strips

Squares are made up of two triangles 1:01

One common edge
Triangle strips mean need to only specify 4 vertices

instead of redundant 6 for naive triangles

. . 3:0,0
Squares are commonly used for drawing flat images

// Set up the arrays
GLfloat vertices = {6,1,0, 1,1,0, ©0,0,0 1,0,0};

// Enable the array pointers
glEnableClientState(GL VERTEX ARRAY);

// Set the array pointers
glVertexPointer(3, GL FLOAT, 0O, vertices);

// Draw the strip
glDrawArrays(GL TRIANGLE STRIP, 0, 4);




Texturing Basics

OpenGLES supports texturing
An image is stretched across triangles so as to simulate a texture

To use textures you need
an image representing the texture
a way of mapping the texture to the primitives

Texture coordinates tell OpenGLES how to map a 2D image onto triangles
Texture coordinates always go from (0,0) to (1,1)
Each vertex of a primitive can specify a texture coordinate




Using textures

In OpenGLES textures are part of the hidden context like everything else

You manipulate them using a name
In OpenGLES a name is just an integer which uniquely identifies an object

When a new texture is created, first generate a new name
This does not allocate any space or load anything -- it just generates an ID!

int newTexture;
glGenTextures(1l, &newTexture);

When modifying or using the texture, you must bind it
this makes it the "current" active texture

glBindTexture(GL TEXTURE 2D, newTexture);

All future drawing operations or texture modifiers will work on this texture




Using Textures

Textures are only used if texturing is enabled
Otherwise primitives will be drawn in solid colors

Must set this before executing a draw command
256px

glEnable(GL_TEXTURE_2D); // enable texturing
140px__0.56,0.78

OpenGLES textures must have sizes which are powers of 2
e.g. 64x64 or 512x256
Do not have to be equal powers of 2
Maximum size is often 1024x1024

If you want to use a texture smaller than this, you just create a slightly larger
texture with a blank border

Then use coordinates which map to a the subsection where your texture is




Texture Atlas

If many textures must be drawn, it is very inefficient to load a large number of
separate textures

You would have to draw one primitive, bind a new texture, draw another
primitive etc.

A texture atlas is just a number of textures on a grid on a texture
Select texture just be setting coordinates
Map different parts of a model to different textures




Drawing a textured square

OpenGLES doesn't support drawing squares or quads 0,1

two triangles will do though

triangle strips make this easy

0,0

Specify vertice positions and texture coordinates in same order

// Set up the arrays

GLfloat textureCoords = {0,1, 1,1, 0,0,
GLfloat vertices = {0,1,0, 1,1,0, 0,0,0
// Bind the texture

glBindTexture{GL TEXTURE 2D, textureName);
glEnable(GL TEXTURE 2D);

// Enable the array pointers
glEnableClientState(GL VERTEX ARRAY);
glEnableClientState(GL TEXTURE COORD ARRAY);

// Set the array pointers

glVertexPointer(3, GL FLOAT, 0, vertices);
glTexCoordPointer(2, GL FLOAT, 0, textureCoords);
// Draw the strip

glDrawArrays(GL TRIANGLE STRIP, 0, 4);




Vertex ordering

Note: ordering of vertices is important!
texture will be twisted if you specify it twisted

Correct!




Smmm s e
e

.

S

. .
-

.

=
=

=
=

=
=

-
-
-

Y
e
.
.

.
’

.
’

glBlendFunc(GL_SRC ALPHA, GL ONE MINUS SRC ALPHA)

[
c
c
(@
L
O
(@
L
Q
O
()
L
-

t stores the transparency along with the rgb components

the default one above just gives standard transparency

the blending function allows lots of effects
glColoraf(r,g,b,a) sets a 4 component color

e.g. for putting masks around sprites

i.e. transparency

jus

glEnable(GL BLEND)
Every color has a fourth component for transparency

OpenGL natively supports blending

Textures can have alpha channels

You must enable it




Fading and tinting textures

Note that textures and colors are automatically combined by OpenGLES
If the current color is white, the texture is rendered as is

If the current color is non-white, the color is multiplied by the texture
by default, at least

Textures can therefore be tinted (or made transparent) at runtime just by changing
the color

If the color is pure red, only the red component of the texture will be shown

glColor4f(1,1,1,1); // solid white
//... draw something
// will appear as normal

glColor4f(1,1,1,0.5); // white, alpha = 0.5 (half transparent)
//... draw something
// will appear semi-transparent

glColor4f(0.5,1,0.5,1); // solid light green
//... draw something
// will appear with a green tint




GLES 2.0: end of the pipeline

In OpenGLES 2.0 there is no more fixed pipeline
No transformation commands
glTranslatef, glRotatef, glPushMatrix...

No lighting commands
glMaterialfyv, glLightModel

Everything is written in shaders
Small fragments of code run on GPU
Vertex shaders transform vertices (e.g. applying rotations, translations or distortions)
Pixel shaders describe how polygons are rasterized (how to color a pixel given geometry)

Very flexible -- procedural texturing, new lighting models, special effects
But more work

Just getting an image on the screen takes a lot more code
You have to compute all matrices etc. yourself and pass them to the shaders!




GLES 2.0: end of the pipeline

New devices will move to OpenGLES 2.0
iPhone 3.0+ uses 2.0
Provides compatibiltiy with 1.1 by emulating fixed pipeline

Try creating an empty OpenGLES project in XCode
Look at the ES2Renderer.m for an example of GLES 2.0 code




