ES3 Lecture /

Sensors and location data

Sensors

Mobile devices now often have a wide array of "unusual” sensors
Motion sensors (accelerometers, magnetometers, gyroscopes)
Proximity sensors (radar, RFID, IR)

Cameras, microphones

Temperature and environmental sensors

GPS and other location sensors (cell towers, wifi triangulation)
Pressure sensors and touch sensors

Lots of exciting interaction possiblities
But using these sensors to build interfaces is hard
We'll cover some of the low-level techincal issues in sensor-based interaction

Accelerometers

Accelerometers measure linear acceleration

Because of the principle of equivalence, accelerometers necessarily measure
both acceleration from being moved and gravitational fields acting on them

This means they measure the sum of gravity and movement!
They normally measure in units of g
1g = the nominal acceleration induced by the Earth's gravity

Gravitational acceleration is 1g by definition (varies over the Earth slightly)
This is quite large compared to most movements a human makes

Human movements have high instanatenous acceleration, but very low
average acceleration

Spiky, noisy accelerations

Accelerometers (Il)

1g sphere
Can measure on 1,2, or 3 axes
Full 3-axis most useful

Treat acceleration values as vector
a =(x,y,z)

|a| = 1g if at rest (from gravity)
|a| = sqrt(x*x+y*y+z*z)

Angle of orientation:
Pitch = atan2(y,z)
Roll = atan2(x,z)

Acceleration Vector

Tilt measurement

Accelerometers can easily be used to measure tilt
e.g. the iPhone bubble level
innumerable marble-in-a-maze games

Measure angle relative to gravity

Linear accelerations (from moving)
have relatively small effect

P .--‘.‘.

-"-.-.'.I'I F‘l‘

Easily make a 2D "mouse-like" control
control mapping isn't very good though

human hands have limited tilt range and poor accuracy
marble games are hard in the real world

Screen reflection is a massive problem for tilt interfaces

Accelerometer (lll)

Issues:
Can't measure rotation about gravity!
Sensors not always mounted at centre of gravity
Consumes some battery power (continuous processing can be a problem!)
Like all sensors, may need calibration
y= Ax + B (A matrix of coefficients, B offset vector)

Usually just scaling and offseting is required
Place device in several static orientations, measure field, compute offset and scale

Measures a sum of movement and orientation
Can detect motion and direction of motion
CANNOT just integrate up accelerations to get position

Variation from slight changes in orientation end up much bigger than any
accelerations from linear motion

Uses of Accelerometers

Accelerometer possibilities:
Device orientation (landscape/portrait)
Shake detection
Simple gesture recognition
Camera horizon level checking
Tilting maze games
Tremor detection

Not possible
Position tracking
Anything involving measuring rotations about gravity

BodySpace

Track movement to body positions from accelerometer signals alone
Look for characteristic movement patterns to that region
Note: don't track position, automatically learn movements!

Store data "around the body"
a very old mnemonic...

_ videos

l introduction

papers — | J

home __

HeXx

Tilt-based text entry
Fly through hexagonal tesselation, spelling out words

Adapts a virtual "landscape" in real time to make it easier to tilt through likely
regions

Tremor Detection

Humans have persistent tremor in the 6Hz--12Hz range
Can detect if a human is holding a device by looking for this tremor

Different poses have different tremor patterns
from different muscle groups

Gait Detection

Accelerometers can pick up walking motion (for example, if held in hand or in
pocket)

Track gait patterns

Track whether and how fast someone is walking and identify walking style
Could be used for limited authentication purposes

Used in usability analysis to get high-resolution data about disturbances to walking
patterns caused by user interfaces

Increased cognitive load often leads to breakdown of walking behaviour

Magnetometers

Magnetometers measure magnetic field strength
Measured in Tesla or Gauss (1 microTesla = 10 milliGauss)
Primarily the Earth's magnetic field

The basis of an electronic compass

-

Magnetic field-vecter

Like accelerometers, usually have 3-axis measurements
Note: the magnetic field is a 3D vector -- it doesn't just point North, it points
into the ground as well (the dip angle)
Strength of the field (length of the vector) measures from 300 milliGauss to
600 milliGauss across the Earth

Strongly affected by local magnetic objects!
Do not blindly trust magnetometers

Magnetometers (Il)

Can compute heading
Combined with accelerometers, can compute full device orientation

Must watch out for disturbances!
Metal objects, such as building frames, laptops etc. strongly affect the field!
Physical range of disturbance roughly proportional to size of object
But even tiny objects can have huge deviations at close range

Check length of the magnetometer vector -- if it's not close to the expected Earth's
magnetic field, it's probably inaccurate...

Regular calibration of the magnetometer readings is essential if location is
changing

Edited Operating Instiuctions

The MKI111 Prismatic Compass 1939-1945

Manual supplied with grateful thanks
Dr.A.N. McClean of Bristol

THE WAR OFFICE
26/GS Trg Publications/2121 WO Code No 8868
Manual of Map Reading

Air Photo Reading
And Field Sketching

Ll -

Section 60 Compass Errors
3 Local magnetic atfraction is quite a different thing. Tt is due to the presence of iron
or iron ore nearby. The compass is a sensifive instument and quite small quantities of
iron have a swprisingly large effect on its behaviow. A wristwatch on your wrist
when you are using it will throw it out. A steel helmef on your head will cause
entirely wrong readings. Steel spectacle frames will affect it. Take the precaution of
seeing that anything of the sort is at a safe distance before your start. Small articles
will be safe in a trouser pocket. but large articles. such as a rifle. should be two or
three yards away. The table below shows the safe distances from various conumnon
objects:
Tank 75 yards
Heavy Gun 60 yards
Field Gun 40 yards
Dannaert Fence 10 yards
Steel Helmet 3 vyards
Keys/ whistle efc Vaard
4 Tron on the swrface can be avoided but there may be iron below ground that cannot
be seen. Buried pipelines. shells. mines efc. will all affect the compass if they are
close. You may get an obviously incorrect reading. which will warm you that
something is wrong but often this error is not big enough to be immediately obvious.

Calibrating a Magnetomter

Magnetic field should be constant in length at all orientations

Can compensate for misscaling of sensor readings by rotating the sensor about
and measuring the length of the vector

Normalize so the length is == 1 at all angles

Just get user to wave the device around
measure maximum and minimum field values for each axis

Scale and offset each axis so that the measured values fit in the range -1 ... 1

True North vs North

Magnetic poles are not aligned with Earth's
Deviation from true North varies across the Earth
At the moment, the poles are at roughly 82'N 118'W and 63'S 137'E
Moving all the time

Need to compensate if getting heading
Local field strength and dip angle varies too

Maps of field variations are available

The iPhone, for example, has a field map built in and compenates for magnetic
deviations automatically using location awareness

Magnetic field map

Getting full device orientation

Between the accelerometer and magnetometer the unambigous orientation of
the device can be obtained (if it is at rest)

Acceleration gives direction of gravity vector (A)
Magnetometer gives direction of magnetic vector (M)

>

These never point in the same direction (for all practical purposes) @

Simple techinque:
get average of vectors S=(A+M)/2
get difference of vectors D=A-M
get cross product of Q=S x M

AN

S

D_______———
R\
>
Cmm————

S, D, Q are three orthogonal vectors

can construct a rotation matrix from them just by stacking them together
Need to align this matrix with real world by calibrating...

Gyroscopes

Gyroscopes measure angular velocity
That is, how fast something is rotating around an axis
They do not measure orientation!
Can be used in combination with acceleration and magnetometers

MEMS gyroscopes are tiny on-chip sensors

MEMS gyroscopes often suffer from drift
Especially from temperature variations

These slow variations mean that integrating up angular velocities does not give
reliable estimates of orientation

Fusing together estimates from magnetometers, accelerometers and gyroscopes
requires fairly sophisticated algorithms (particle filters, Kalman filters...)

Smoothing and Filtering

It is usually necessary to filter signals from sensors
Sensors often have lots of noise, often concentrated in high frequencies

User interfaces using unfiltered signals, for example, will often be very jittery
and unusable

If you want to measure the change in the value of a signal (i.e. its derivative),
filtering is especially critical
The derivative of a signal with high-frequency noise will have lots of high-
frequency noise

To the point that the values are likely to be useless

Filter types

There are lots of ways of processing signals

All reflect assumptions about how you believe the underlying value you are
trying to measure behaves

They are not magical black boxes
Bad filtering will make things worse, not better

THINK FIRST, FILTER LATER!

An accelerometer in the hand moves smoothly because muscles do; so the
filtering should reflect that

Most common filters change the frequency content of a signal
e.g. removing high-frequency noise, or low-frequency "drift"

There are lots of ways of designing and implementing filters
We'll cover a very few of the most useful types briefly

Linear filters

We always assume data a series of measurements regularly sampled in time
e.g. acceleration at t=0.01, t=0.02, t=0.03 etc.

Most common filters are linear
They are of the form y(t) = al*x(t-1) + a2*x(t-2) + ... + b1*y(t-1) + b2*y(t-2)
i.e. just weighted sums of the previous inputs and previous outputs

The weights al...an and b1..bn are fixed and define the filter

Filters are often called FIR if they have only terms involving previous inputs
i.e. only ak*x(t-k) terms

Called IIR if they also have terms involving previous outputs
i.e. including bk*y(t-k) terms

Moving Average

A "moving average" filter just takes the average of a runinng window of samples
removes high frequency noise

y(t) = [x(t-n) + x(t-n-1) + ... + x(t)] / n
only parameter is n

Simple to implement, but requires storage for previous values
This is an FIR filter (no terms involving previous filter outputs)

Frequency cutoff falls off slowly with increasing n

Simple one-pole filter

A very simple and useful IIR filter is the one-pole filter
also called an exponential smooth
Crude, but often does the job if high-frequency noise needs removed

Form (x is smoothed value, y is input value)
x = alpha * x + (1-alpha) * vy
Only the current value needs to be stored!
Alpha goes from 0.0 -- 1.0
0.0 is no filtering, 1.0 and x never changes

Note that alpha is very nonlinear 0.7 is much smoother than 0.5 and 0.9 is
much much smoother than 0.7

As a rough guide, the following formula is reasonable way to calculate alpha
alpha = 1 - (exp(-smoothing)/exp(1))

smoothing goes from 0--infinity

One-pole filter

Designing custom filters

There are lots of filter design tools
normally for designing frequency response of filters
Usually you can specify the type, frequencies and steepness
Types:
lowpass (remove high-frequencies)
highpass (remove low-frequencies)
bandpass (remove everything except for a band of frequencies)
notch (remove a band of frequencies -- opposite of bandpass)

The frequencies specify when the filter starts cutting out
The steepness specifies how quickly frequencies are removed
Steeper filters remove "more" frequencies but can introduce artifacts

Median Filter

If the sensor signals are contaminated with spikes rather than constant noise linear filters
aren't so good
They spread out the noise rather than removing it

Median filters take a running window of data and replace the centre value with the median
of that window

Cleanly removes spikes while preserving other components
X(t) = median(x(t-n) ... x(t+n))

only parameter is n

Other order based filters like the maximum filter, the minimum filter or even a (max-min)/2
filter can be implemented

Physically-modelled interfaces

One way of designing sensor based interfaces is to simulate physical properties

Rather than build a complicated recognition system, simulate a mechanical
system which can be stimulated

User learns to control the interface based on feedback
Feedback is easy to design -- simulate real physical properties

Multimodal feedback (audio, vibrotactile, visual...) can be linked to a common
model

Information can be encoded in the model
The user can explore the model by putting energy in

Physically-modelled interfaces

Integration is the key element of physical interfaces
Objects in the real world have roughly Newtonian dynamics
Force -> acceleration -> velocity -> position

Interaction is by introducing forces
Real physical objects can only be affected by forces
You can't set an objects velocity!

Feedback is the result of kinetic energy (i.e. velocity, assuming mass is fixed)

Simple models, like springs with friction can result in realistic and engaging
interactions

Look at the "bounce" on iPhone menus, for example

Isomorphism Errors

Unusual sensing often leads to interaction issues
This is a huge research topic -- we can't do it justice here

One common problem is a mismatch between what a user thinks is being sensed
and what actually is being sensed
People often think motion sensors measure position relative to their local
coordinate frame
When actually there is often no position sensing, and it is instantaneous
motion and orientation which have effects

Physically-modelled interfaces can mitigate that problem because users focus on
control of the feedback
Not control of the physical world

Camera Input

Mobile device cameras can be used for input

Usually either for motion detection or phicon tracking

Motion detection just uses an estimate of the optical flow in the camera frame
i.e. how much the whole thing is moving
result is a bit like the accelerometer readings

Phicon tracking uses computer vision to track markers (phicons)
These markers are tracked in full 3D position and orientation

Can be used for augmented reality purposed by overlaying 3D models on the
camera images

Input (11)

Audio Processing: Blowing

Most mobile devices have microphones
These can be used for input beyond clumsy speech recognition

Blowing is probably the simplest such use
Used on the Nintendo DS for example, and on some iPhone apps

Very easy to detect
Blowing appears as very loud noise
Noise is easy to distinguish -- broad frequency spectrum
If we have a broad spectrum, total power ~= how hard we are blowing

Audio Processing: Detecting noise

Simple techinque:
use FFT to estimate spectrum
can use quite crude spectrum

Work out standard deviation of frequencies and total power of signal in a running
window

if standard deviation is high (i.e. broad spectrum) and power is above a
threshold, then the power gives the blowing strength

Advanced blowing detection

Some researchers have extended the techinque using machine learning to classify
the noise patterns

Can detect where around a screen you are aiming your breath with a single
microphone!

A bit crude in terms of resolution, but impressive use of simple sensing hardware

BLUI: low-cost localized blowable user interfaces Shwetak N. Patel, Gregory D.
Abowd, UIST'07

