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Sensors and location data



Sensors

• Mobile devices now often have a wide array of "unusual" sensors

▫ Motion sensors (accelerometers, magnetometers, gyroscopes)

▫ Proximity sensors (radar, RFID, IR)

▫ Cameras, microphones 

▫ Temperature and environmental sensors

▫ GPS and other location sensors (cell towers, wifi triangulation)

▫ Pressure sensors and touch sensors

• Lots of exciting interaction possiblities

▫ But using these sensors to build interfaces is hard

▫ We'll cover some of the low-level techincal issues in sensor-based interaction



Accelerometers

• Accelerometers measure linear acceleration

▫ Because of the principle of equivalence, accelerometers necessarily measure 

both acceleration from being moved and gravitational fields acting on them

• This means they measure the sum of gravity and movement!

They normally measure in units of g▫ They normally measure in units of g

▫ 1g = the nominal acceleration induced by the Earth's gravity

• Gravitational acceleration is 1g by definition (varies over the Earth slightly)

▫ This is quite large compared to most movements a human makes

▫ Human movements have high instanatenous acceleration, but very low 

average acceleration

▫ Spiky, noisy accelerations



Accelerometers  ( I I )

• Can measure on 1,2, or 3 axes

▫ Full 3-axis most useful

• Treat acceleration values as vector

a =(x,y,z)

Y
1g sphere

• |a| = 1g if at rest (from gravity)

▫ |a| = sqrt(x*x+y*y+z*z)

• Angle of orientation:

▫ Pitch = atan2(y,z)

▫ Roll = atan2(x,z)

XZ

Acceleration Vector



T i l t  measurement

• Accelerometers can easily be used to measure tilt

▫ e.g. the iPhone bubble level

▫ innumerable marble-in-a-maze games

• Measure angle relative to gravity

▫ Linear accelerations (from moving)

have relatively small effect

• Easily make a 2D "mouse-like" control

▫ control mapping isn't very good though

� human hands have limited tilt range and poor accuracy

� marble games are hard in the real world

▫ Screen reflection is a massive problem for tilt interfaces



Accelerometer  ( I I I )

• Issues:

▫ Can't measure rotation about gravity!

▫ Sensors not always mounted at centre of gravity

▫ Consumes some battery power (continuous processing can be a problem!)

▫ Like all sensors, may need calibration

� y= Ax + B (A matrix of coefficients, B offset vector)

� Usually just scaling and offseting is required

� Place device in several static orientations, measure field, compute offset and scale

• Measures a sum of movement and orientation

▫ Can detect motion and direction of motion

▫ CANNOT just integrate up accelerations to get position

▫ Variation from slight changes in orientation end up much bigger than any 

accelerations from linear motion



Uses of  Accelerometers

• Accelerometer possibilities:

▫ Device orientation (landscape/portrait)

▫ Shake detection 

▫ Simple gesture recognition 

▫ Camera horizon level checking

▫ Tilting maze games

▫ Tremor detection

• Not possible

▫ Position tracking

▫ Anything involving measuring rotations about gravity



BodySpace

• Track movement to body positions from accelerometer signals alone

▫ Look for characteristic movement patterns to that region

▫ Note: don't track position, automatically learn movements!

• Store data "around the body"

▫ a very old mnemonic...



Hex

• Tilt-based text entry

▫ Fly through hexagonal tesselation, spelling out words

• Adapts a virtual "landscape" in real time to make it easier to tilt through likely 

regions



Tremor Detect ion

• Humans have persistent tremor in the 6Hz--12Hz range

▫ Can detect if a human is holding a device by looking for this tremor

• Different poses have different tremor patterns

▫ from different muscle groups



Gait  Detect ion

• Accelerometers can pick up walking motion (for example, if held in hand or in 

pocket)

▫ Track gait patterns

▫ Track whether and how fast someone is walking and identify walking style

� Could be used for limited authentication purposes

• Used in usability analysis to get high-resolution data about disturbances to walking 

patterns caused by user interfaces

▫ Increased cognitive load often leads to breakdown of walking behaviour



Magnetometers

• Magnetometers measure magnetic field strength 

▫ Measured in Tesla or Gauss (1 microTesla = 10 milliGauss)

▫ Primarily the Earth's magnetic field

� The basis of an electronic compass

• Like accelerometers, usually have 3-axis measurements

Y

XZ

Magnetic field vector

• Like accelerometers, usually have 3-axis measurements

▫ Note: the magnetic field is a 3D vector -- it doesn't just point North, it points 

into the ground as well (the dip angle)

▫ Strength of the field  (length of the vector) measures from 300 milliGauss to 

600 milliGauss across the Earth

• Strongly affected by local magnetic objects!

▫ Do not blindly trust magnetometers



Magnetometers  ( I I )

• Can compute heading

▫ Combined with accelerometers, can compute full device orientation

• Must watch out for disturbances!

▫ Metal objects, such as building frames, laptops etc. strongly affect the field!

▫ Physical range of disturbance roughly proportional  to size of object

▫ But even tiny objects can have huge deviations at close range

• Check length of the magnetometer vector -- if it's not close to the expected Earth's 

magnetic field, it's probably inaccurate...

• Regular calibration of the magnetometer readings is essential if location is 

changing





Calibrat ing a Magnetomter

• Magnetic field should be constant in length at all orientations

▫ Can compensate for misscaling of sensor readings by rotating the sensor about 

and measuring the length of the vector

▫ Normalize so the length is == 1 at all angles

Just get user to wave the device around• Just get user to wave the device around

▫ measure maximum and minimum field values for each axis

• Scale and offset each axis so that the measured values fit in the range -1 ... 1



True North vs North

• Magnetic poles are not aligned with Earth's

▫ Deviation from true North varies across the Earth

▫ At the moment, the poles are at roughly 82'N 118'W and 63'S 137'E 

▫ Moving all the time

• Need to compensate if getting heading

▫ Local field strength and dip angle varies too

• Maps of field variations are available

▫ The iPhone, for example, has a field map built in and compenates for magnetic 

deviations automatically using location awareness



Magnet ic f ie ld map



Gett ing fu l l  device or ientat ion

• Between the accelerometer and magnetometer the unambigous orientation of 

the device can be obtained (if it is at rest)

▫ Acceleration gives direction of gravity vector (A)

▫ Magnetometer gives direction of magnetic vector (M)

These never point in the same direction (for all practical purposes) Q• These never point in the same direction (for all practical purposes)

• Simple techinque:

▫ get average of vectors S=(A+M)/2

▫ get difference of vectors D=A-M

▫ get cross product of Q = S x M

• S, D, Q are three orthogonal vectors

▫ can construct a rotation matrix from them just by stacking them together

• Need to align this matrix with real world by calibrating...

M

A

D

S

Q



Gyroscopes

• Gyroscopes measure angular velocity

▫ That is, how fast something is rotating around an axis

▫ They do not measure orientation!

▫ Can be used in combination with acceleration and magnetometers

• MEMS gyroscopes are tiny on-chip sensors

• MEMS gyroscopes often suffer from drift

▫ Especially from temperature variations

▫ These slow variations mean that integrating up angular velocities does not give 

reliable estimates of orientation

• Fusing together estimates from magnetometers, accelerometers and gyroscopes 

requires fairly sophisticated algorithms (particle filters, Kalman filters...)



Smoothing and F i l ter ing

• It is usually necessary to filter signals from sensors

▫ Sensors often have lots of noise, often concentrated in high frequencies

▫ User interfaces using unfiltered signals, for example, will often be very jittery 

and unusable

If you want to measure the change in the value of a signal (i.e. its derivative), • If you want to measure the change in the value of a signal (i.e. its derivative), 

filtering is especially critical

▫ The derivative of a signal with high-frequency noise will have lots of high-

frequency noise

� To the point that the values are likely to be useless



F i l ter  types

• There are lots of ways of processing signals

▫ All reflect assumptions about how you believe the underlying value you are 

trying to measure behaves

▫ They are not magical black boxes

▫ Bad filtering will make things worse, not better ▫ Bad filtering will make things worse, not better 

▫ THINK FIRST, FILTER LATER!

▫ An accelerometer in the hand moves smoothly because muscles do; so the 

filtering should reflect that

• Most  common filters change the frequency content of a signal

▫ e.g. removing high-frequency noise, or low-frequency "drift"

• There are lots of ways of designing and implementing filters

▫ We'll cover a very few of the most useful types briefly



L inear f i l ters

• We always assume data a series of measurements regularly sampled in time

▫ e.g. acceleration at t=0.01, t=0.02, t=0.03 etc.

• Most common filters are linear

▫ They are of the form y(t) = a1*x(t-1) + a2*x(t-2) + ... + b1*y(t-1) + b2*y(t-2)

▫ i.e. just weighted sums of the previous inputs and previous outputs

• The weights a1...an and b1..bn are fixed and define the filter

• Filters are often called FIR if they have only terms involving previous inputs

▫ i.e. only ak*x(t-k) terms

• Called IIR if they also have terms involving previous outputs

▫ i.e. including bk*y(t-k) terms



Moving Average

• A "moving average" filter just takes the average of a runinng window of samples

▫ removes high frequency noise

• y(t) = [x(t-n) + x(t-n-1) + ... + x(t)] / n

▫ only parameter is n

• Simple to implement, but requires storage for previous values

▫ This is an FIR filter (no terms involving previous filter outputs)

• Frequency cutoff falls off slowly with increasing n



Simple one-pole f i l ter

• A very simple and useful IIR filter is the one-pole filter

▫ also called an exponential smooth

▫ Crude, but often does the job if high-frequency noise needs removed

• Form (x is smoothed value, y is input value)

• Only the current value needs to be stored!

• Alpha goes from 0.0 -- 1.0

▫ 0.0 is no filtering, 1.0 and x never changes

▫ Note that alpha is very nonlinear 0.7 is much smoother than 0.5 and 0.9 is 

much much smoother than 0.7 

• As a rough guide, the following formula is reasonable way to calculate alpha

▫ smoothing goes from 0--infinity

x = alpha * x + (1-alpha) * y

alpha = 1 - (exp(-smoothing)/exp(1))



One-pole f i l ter



Designing custom f i l ters  

• There are lots of filter design tools

▫ normally for designing frequency response of filters

• Usually you can specify the type, frequencies and steepness

▫ Types:

� lowpass (remove high-frequencies)

� highpass (remove low-frequencies)

� bandpass (remove everything except for a band of frequencies)

� notch (remove a band of frequencies -- opposite of bandpass)

• The frequencies specify when the filter starts cutting out 

• The steepness specifies how quickly frequencies are removed

▫ Steeper filters remove "more" frequencies but can introduce artifacts



Median F i l ter

• If the sensor signals are contaminated with spikes rather than constant noise linear filters 

aren't so good

▫ They spread out the noise rather than removing it

• Median filters take a running window of data and replace the centre value with the median 

of that windowof that window

▫ Cleanly removes spikes while preserving other components

• x(t) = median(x(t-n) ... x(t+n))

▫ only parameter is n

• Other order based filters like the maximum filter, the minimum filter or even a (max-min)/2 

filter can be implemented



Physical ly-model led inter faces

• One way of designing sensor based interfaces is to simulate physical properties

▫ Rather than build a complicated recognition system, simulate a mechanical 

system which can be stimulated

• User learns to control the interface based on feedback

Feedback is easy to design -- simulate real physical properties▫ Feedback is easy to design -- simulate real physical properties

▫ Multimodal feedback (audio, vibrotactile, visual...) can be linked to a common 

model

• Information can be encoded in the model

▫ The user can explore the model by putting energy in



Physical ly-model led inter faces

• Integration is the key element of physical interfaces

▫ Objects in the real world have roughly Newtonian dynamics

▫ Force -> acceleration -> velocity -> position

• Interaction is by introducing forces• Interaction is by introducing forces

▫ Real physical objects can only be affected by forces

▫ You can't set an objects velocity!

• Feedback is the result of kinetic energy (i.e. velocity, assuming mass is fixed)

• Simple models, like springs with friction can result in realistic and engaging 

interactions

▫ Look at the "bounce" on iPhone menus, for example



Shoogle



Isomorphism Errors

• Unusual sensing often leads to interaction issues

▫ This is a huge research topic -- we can't do it justice here

• One common problem is a mismatch between what a user thinks is being sensed 

and what actually is being sensed

People often think motion sensors measure position relative to their local ▫ People often think motion sensors measure position relative to their local 

coordinate frame

▫ When actually there is often no position sensing, and it is instantaneous 

motion and orientation which have effects

• Physically-modelled interfaces can mitigate that problem because users focus on 

control of the feedback

▫ Not control of the physical world



Camera Input

• Mobile device cameras can be used for input

• Usually either for motion detection or phicon tracking

• Motion detection just uses an estimate of the optical flow in the camera frame

▫ i.e. how much the whole thing is moving

▫ result is a bit like the accelerometer readings

• Phicon tracking uses computer vision to track markers (phicons)

▫ These markers are tracked in full 3D position and orientation

▫ Can be used for augmented reality purposed by overlaying 3D models on the 

camera images



Camera Input ( I I )



Audio Process ing:  B lowing

• Most mobile devices have microphones

• These can be used for input beyond clumsy speech recognition

• Blowing is probably the simplest such use

▫ Used on the Nintendo DS for example, and on some iPhone apps

• Very easy to detect

▫ Blowing appears as very loud noise

▫ Noise is easy to distinguish -- broad frequency spectrum

▫ If we have a broad spectrum, total power ~= how hard we are blowing



Audio Process ing:  Detect ing noise

• Simple techinque:

▫ use FFT to estimate spectrum 

� can use quite crude spectrum

• Work out standard deviation  of frequencies and total power of signal in a running 

windowwindow

▫ if standard deviation is high (i.e. broad spectrum) and power is above a 

threshold, then the power gives the blowing strength



Advanced blowing detect ion

• Some researchers have extended the techinque using machine learning to classify 

the noise patterns

▫ Can detect where around a screen you are aiming your breath with a single 

microphone!

• A bit crude in terms of resolution, but impressive use of simple sensing hardware• A bit crude in terms of resolution, but impressive use of simple sensing hardware

▫ BLUI: low-cost localized blowable user interfaces Shwetak N. Patel, Gregory D. 

Abowd, UIST'07


