ES3 Lecture 8

Location-based technologies and navigation

Location Awareness Technologies

- There are lots of location awareness technologies
 - Give a location relative to a reference frame
- We will consider Earth-relative positioning
 - Rather than room or object-relative positioning
- Most obvious technology is GPS
 - Satellite constellation gives location most places on Earth
- Other technologies like WiFi positioning or cell tower location use existing ground based infrastructure
 - Triangulate distances to get location estimate

Location awareness issues

• Technical:

- quality and accuracy of fix
 - how close is the given position to the true device location?
- update time
 - how quickly do positions update, and how long does it take to get an inital fix?
- how to navigate on the Earth
 - given a pair of positions, which way should you go? How far apart are two points on the Earth's surface?
- routing
 - how can you quickly get from A to B given obstacles and constraints?
- Social issues:
 - privacy
 - Who is position information shared with, and what control do users have over this?

How GPS works

- There are 31 GPS satellites in *geosynchronous* (not *geostationary*!) orbit around the Earth
 - Each has an atomic clock knows its position relative to the earth at any given time
 - Time, ephemeris (accurate current location) and almanac (general information about all satellite orbits) is continously broadcast
- Receivers get the times and positions from the satellites
- By computing difference in received times, location can be deduced
 - Further away satellites have longer delays

GPS coverage

- GPS transmissions are effectively line-of-sight
 - If satellites are occluded by objects or are over the horizon, no signal will be recieved
 - This is why GPS doesn't work indoors or even under heavy foliage
- GPS satellites are not evenly distributed around the Earth
 - Fewer near the polar regions
 - The UK is in quite a poor coverage area

GPS Fix

- At least 3 satellites must be reliable received to get a fix
 - More satellites mean a faster and more reliable fix
- If a GPS unit has not been initialised in the current location recently, it needs to update all information about satellites before a fix can be made
 - This is slow, and can take several minutes
- The satellite orbital position data must be received from the satellites (ephemeris)
- GPS has slow transmission rates
 - 50 bits/second (encoded with CDMA)
 - It takes a long time to download all the relevant data
 - One "frame" takes 30 seconds (but only transmitted every 90 seconds)
 - Contains time and ephemeris, but only 1/25th of the almanac in each frame

GPS Noise

- GPS positions can be inaccurate
 - Too few satellites makes it hard to get an accurate fix
 - Reflections off objects can introduce errors (multipath errors)
 - Shadowing from buildings can interrupt signals
 - Ionosphere introduces unpredictable delays
 - Solar activity periodically disrupts GPS
 - (big solar storms occur occasionally, with a cycle of about 11 years or so)
- GPS reports how accurate it thinks values are
 - dilution of precision, or DOP
 - not always very good estimates of uncertainty, but better than nothing
- GPS is much more accurate in latitude/longitude than it is in altitude

Typical (measured) GPS noise

• From Strachan and Murray-Smith, "Bearing-based selection in mobile spatial interaction", Pers. Ubiq. Comp. 2008

AGPS

- AGPS (assisted GPS) allows much faster fixes
 - Satellite almanac, current accurate time, and ephemeris information is sent via other networks
 - Usually via cell networks
- With AGPS, lock-on times can go from several minutes to a few seconds
 - Most mobile handsets support AGPS for faster fixes
 - Cell towers also allow crude positioning
 - Used to correct for ionospheric distortions

DGPS

- Differential GPS (DGPS) is a technology for extremely accurate positioning using GPS
 - Often used for geological surveys, where shifts of the Earth crust in the order of a few tens of cm are involved
- Ground based references at known locations are used to correct errors in the GPS
 - Each ground station basically compares GPS estimate of where it is to true known location
 - This correction is broadcast to DGPS receivers
 - They obtain a GPS fix, then apply the correction the ground reference stations transmitted
- Requires significant infrastructure
 - Not commonly used for standard location tracking
 - but offers very high accuracy when needed

Wifi triangulation

- Location of nearby WiFi hotspots can be used to get position
 - Each has a worldwide unique MAC address
 - If multiple hotspots can be seen, signal strength can be used to improve fix
- Needs a database of WiFi hotspots
 - this data needs to be constantly collected
 - some companies offer money for GPS-fixed WiFi locations
- Relatively easy to implement, works even indoors
 - Needs no hardware beyond WiFi receiver
 - Signal strength does not vary smoothly with distance though (occlusions etc.)

Cell tower location

- Cell towers can be used similarly
 - Mobile operators know exactly where all their towers are
 - Database already exists
- Currently connected tower gives position within several hundred metres
- If multiple towers are visible, relative signal strengths can give a better fix on position
 - Difference in time of arrival of signals can also be used (U-TDOA)
 - Angle of arrival can be measured and compared by base stations (they have multiple recievers at different angles)

Bluetooth Location

- Bluetooth is sometimes used to mark specific locations
 - If you can see a particular Bluetooth ID, you are within a few metres of it
- Unlike other services, can't practically be used for tracking over large areas
- Can be used to identify when near locations
 - For example, testing if you're near a given bus stop or shop
 - Give location specific information (timetable for local bus at this stop, for example).

Hybrid positioning systems

- Hybrid positioning systems combine multiple sources of location data
 - Usually some mix of WiFi, cell tower triangulation and GPS
- GPS is good outdoors in clear spaces
 - WiFi and cell towers are dense in urban areas where GPS fails
- Devices like the iPhone and recent Nokia smartphones have built in hybrid positioning services
 - Reliant on databases of WiFi and cell tower locations
 - Some systems are user generated (use GPS to locate fixed WiFi or cell tower points)
 - Mobile operators control cell tower data
- Gives pretty reasonable coverage throughout a variety of areas
 - Usually works okay even indoors if it's a densely populated area

Dead Reckoning

- Dead reckoning can be used for short term position updates when location services fail
- You need to know current direction (e.g. from a compass) and distance travelled
 - cars, for example, know roughly how far they have moved from the odometer
 - pedestrians can use number of footsteps (e.g. counted from accelerometer)
 - this is much more subject to error though
- Errors in dead reckoning usually accumulate quickly
 - Only really useful for filling in between very short location failures

Latitude, Longitude

- Earth coordinates are given as latitude, longitude
 - Latitude specifies how far north or south
 - 90 at North pole
 - -90 at South pole
 - Longitude specifies how far east or west
 - 0 at Greenwich
 - -180/180 at the international dateline
- Note that the ranges are different
 - Latitudes and longitudes are not equal divisions!
- 1 minute of latitude is always 1847m
- 1 minute of longitude varies with latitude
 - ~1860km at equator
 - **0m** at poles!

Great Circles

- The Earth is nearly, but not quite spherical
 - Slight bulge at equator
- The shortest path between two points on a sphere is not a straight line, but a great circle
- Flying from Glasgow to LA, the shortest route is over Iceland and Greenland, not due west-southwest!

Decimal versus minutes, seconds

- Latitude and longitude are either specified as:
 - Decimal degrees x.yy
 - Decimal minutes x'yy.zz'
 - Decimal seconds x'yy'zz.ww"
- To do computations, you must convert to decimal degrees
 - if in minutes d_decimal = degrees + minutes/60
 - if in seconds d_decimal = degrees + minutes/60 + seconds/3600
 - and vice versa
 - Decimal seconds is conventional for display
- Must also convert sign:
 - Latitude N = +ve, S = -ve
 - Longitude E = +ve, W = -ve

Decimal versus minutes, seconds

- The entrance to the department is located at 55°52'26.02"N 4°17'31.78"W
- This is in decimal seconds
- In signed decimal degrees this is: +55.873894, -4.292165

Distances and headings

- You can't just add and subtract latitudes and longitudes!
- There are basic formulas for calculating headings and distances from one position to another
 - http://williams.best.vwh.net/avform.htm lists simple algorithms used by pilots
- Note that lat, lon are given in degrees. Most implementations of mathematical functions work in radians!
 - Remember to do the conversions before computations

Distances and headings (II)

- Distance and heading between two points at lat1, lon1 -> lat2, lon2
- Assuming a spherical earth (haversine algorithm)
 - convert lat, lon from degrees to radians first!

```
distance= 2 * asin(sqrt((sin((lat1-lat2) / 2))**2 + cos(lat1) * cos(lat2) *
(sin((lon1-lon2) / 2))**2))
Value in radians
```

• Multiply by 6371000 to get distance in m (6371 km = radius of Earth)

```
heading = to_degrees(atan2(sin(lon1-lon2)*cos(lat2), cos(lat1)*sin(lat2)-
sin(lat1)*cos(lat2)*cos(lon1-lon2)))
```

- Value in radians
- This is the (initial) great circle heading
- For long distances, great circle heading changes during course!

Destination given bearing and distance

- To compute a destination point, given a starting position, a heading (radians) and a distance (km):
 - again lat, lon must be converted to radians!

```
R = 6371.0 // km (radius of the earth)
lat2 = asin(sin(lat1)*cos(distance/R) + cos(lat1)*sin(distance/R)*cos(heading))
lon2 = lon1 + atan2(sin(heading)*sin(distance/R)*cos(lat1),
cos(distance/R)-sin(lat1)*sin(lat2))
```

Intermediate points

- Another useful value is the position of a point some fraction between two destinations
 - Two-thirds of the way from LA to London
- Compute distance **d** as before (converted to radians!)
- given lat1, lon1, lat2, lon2 (in radians)
- And **f**, a fraction from 0.0--1.0 representing how far along the path

```
A=sin((1-f)*d)/sin(d)
B=sin(f*d)/sin(d)
x = A*cos(lat1)*cos(lon1) + B*cos(lat2)*cos(lon2)
y = A*cos(lat1)*sin(lon1) + B*cos(lat2)*sin(lon2)
z = A*sin(lat1) + B*sin(lat2)
lat = to_degrees(atan2(z,sqrt(x**2+y**2)))
lon = to_degrees(atan2(y,x))
```

Vincenty's Algorithm

- If you need real accuracy in measuring distances given latitude, longitude, use Vincenty's algorithm
 - Accurate to 0.5mm (!)
 - Compared to several **metres** for the standard ("haversine") algorithm
- If you're measuring and summing lots of small distances (e.g. steps) the errors can add up, so Vincenty's algorithm becomes important
 - Or if you're guiding missiles...
- Algorithm is complex -- don't try and implement it yourself
 - Example (LGPL) Javascript implementation

```
*/
/* Vincenty Inverse Solution of Geodesics on the Ellipsoid (c) Chris Veness 2002-2009
                                                                                                 */
/* _ _ _ _
/*
 * Calculate geodesic distance (in m) between two points specified by latitude/longitude
* (in numeric degrees) using Vincenty inverse formula for ellipsoids
 */
function distVincenty(lat1, lon1, lat2, lon2) {
 var a = 6378137, b = 6356752.3142, f = 1/298.257223563; // WGS-84 ellipsiod
 var L = (lon2-lon1).toRad();
 var U1 = Math.atan((1-f) * Math.tan(lat1.toRad()));
 var U2 = Math.atan((1-f) * Math.tan(lat2.toRad()));
 var sinU1 = Math.sin(U1), cosU1 = Math.cos(U1);
 var sinU2 = Math.sin(U2), cosU2 = Math.cos(U2);
 var lambda = L, lambdaP, iterLimit = 100;
 do {
    var sinLambda = Math.sin(lambda), cosLambda = Math.cos(lambda);
   var sinSigma = Math.sgrt((cosU2*sinLambda) * (cosU2*sinLambda) +
     (cosU1*sinU2-sinU1*cosU2*cosLambda) * (cosU1*sinU2-sinU1*cosU2*cosLambda));
    if (sinSigma==0) return 0; // co-incident points
    var cosSigma = sinU1*sinU2 + cosU1*cosU2*cosLambda;
    var sigma = Math.atan2(sinSigma, cosSigma);
    var sinAlpha = cosU1 * cosU2 * sinLambda / sinSigma;
    var cosSgAlpha = 1 - sinAlpha*sinAlpha;
    var cos2SigmaM = cosSigma - 2*sinU1*sinU2/cosSgAlpha;
   if (isNaN(cos2SigmaM)) cos2SigmaM = 0; // equatorial line: cosSgAlpha=0 (§6)
    var C = f/16*cosSgAlpha*(4+f*(4-3*cosSgAlpha));
    lambdaP = lambda;
    lambda = L + (1-C) * f * sinAlpha *
      (sigma + C*sinSigma*(cos2SigmaM+C*cosSigma*(-1+2*cos2SigmaM*cos2SigmaM)));
  } while (Math.abs(lambda-lambdaP) > 1e-12 && --iterLimit>0);
 if (iterLimit==0) return NaN // formula failed to converge
 var uSg = cosSgAlpha * (a*a - b*b) / (b*b);
```

```
var A = 1 + uSq/16384*(4096+uSq*(-768+uSq*(320-175*uSq)));
var B = uSq/1024 * (256+uSq*(-128+uSq*(74-47*uSq)));
var deltaSigma = B*sinSigma*(cos2SigmaM+B/4*(cosSigma*(-1+2*cos2SigmaM*cos2SigmaM)-
B/6*cos2SigmaM*(-3+4*sinSigma*sinSigma)*(-3+4*cos2SigmaM*cos2SigmaM)));
var s = b*A*(sigma-deltaSigma);
```

```
s = s.toFixed(3); // round to 1mm precision
return s;
```

Pedestrian Navigation Issues

- Slow moving receivers are much more affected by multipath (reflection) effects
 - unfortunately, in cities, where most pedestrian navigation takes place, these are especially bad
- Noise effects are particularly severe
 - a few hundred metres doesn't matter much in a car...
 - but it's a lot if you are walking
- Making user aware of uncertainty is important
 - show uncertainty circle on the map (a la Google Maps)
 - or show point cloud estimates...