Audio- Speech

Joemon Jose http://www.dcs.gla.ac.uk/~jj/teaching/demms4

Slides - ©Steve Brewster

Audio

- Differences between images and audio
 - We can drop frames from video
 - Not with audio! Why?
- What is sound
 - Wave phenomenon
 - Without air there is no sound
 - Sound is a pressure wave- it takes on continuous values
 - We must digitise it to get process tem in a computer

Page 3

Non-Speech Sound

- What is sound?
- Sampling sounds
- Synthesizing sounds
- MIDI
- Sound in interface design

How Do We Hear?

- Ear has three parts
 - inner ear
 - middle ear
 - outer ear
- Outer ear
 - Pinnae and ear canal
- Middle ear
 - ear drum connects to inner ear
 - amplification
- Inner ear
 - Cochlea vibrations stimulate auditory nerve

Digital Sound Recording and Playback

- Convert *analogue* signal into *digital* signal for storage and manipulation ("sampling")
- Convert digital signal to analogue for playback
- Sampler may be PC or dedicated h/w sampler

How Do We Hear?

- Humans can hear 20Hz to 20kHz frequency range
- Can hear differences of around 1.5Hz
- Hearing loss occurs with age
 - age 50 max 14kHz, at age 70 max 10kHz
 - important for interface design

Sampling - Sample Rate

• Signal measured at a set of distinct times -

. sample rate

• 16 samples per cycle

· Resulting sample data

Sampling - Aliasing

- Higher the sampling rate, the higher the match between the original signal and that reconstructed from sample data
- Sample rate must be greater than 2 x frequency
 - aliasing problems
 - distortion

Aliasing

• 10Hz sound, 5 samples/Sec.

• Resulting sample data

Aliasing

- Good sampling rate is 44,100 samples/second
 - maximum frequency is therefore 22,050Hz
 - humans can only hear up to ~20,000Hz
 - can therefore filter sound source to avoid aliasing
- New DVD Audio specification
 - 192kHz sample rate / 24bit sample size (max)
 - max frequency 96,000Hz

Sampling - Sample Size

- Larger the bit size the better the amplitude range (*dynamic range*)
 - usually 8 bit (only 256 possible values)
 - or 16 bit (65,535 possible vales)
- Quantization problems
 - with 8 bit numbers cannot represent many amplitude levels
 - can result in noise
- Lower quality can affect usability

Sample Formats

- Many, many formats for sampled sound
- CD quality 44.1kHz, 16bit (per channel)
 - $-44,100 \times 2 \times 60 = 5.2 \text{ MB/minute}$
 - .wav for PC, AIFF for Mac
- Medium quality 22kHz, 8 bit
- Low quality 11kHz, 8 bit, mono
 - $-11,000 \times 60 = 660 \text{KB/minute}$

44.1kHz, 16bit

11kHz, 8bit

5.5kHz, 8bit 🐠

MP3 Compression

- Can reduce file sizes by a factor of 12
- Bitrate number of bits for one second of audio
 Bitrate Quality MB/min

Bitrate Quality MB/min 1411 CD 10.584 192 good CD quality MP3 1.440 112 hear CD quality MP3 0.840 64 FM quality MP3 0.240 32 AM quality MP3 0.240

Sample Formats

- New DVD Audio specification
 - 34MB/min per channel (max)
- Telephony quality 8kHz, 8bit, mono
 - mu-law : samples encoded logarithmically in 8 bits
 - -> 12 bit linear range

Audio Compression

- Want high quality sounds but need to reduce size
- MP3
 - MPEG-1 (Motion Pictures Expert Group) Audio Layer 3
- Uses a range of perceptual coding techniques to reduce file size but keep quality
 - lossy compression

Sound Synthesis

- Important factor is number of sounds generated together
 - multitimbral
 - 64 or 32 voice are common

MIDI - Musical Instrument Digital Interface

- Allows real-time control of electronic musical instruments
 - synthesisers, samplers, etc.
- Specifies a h/w interconnection scheme + protocol for data communications + grammar for encoding musical performance data

Sound Synthesis

- Many synthesisers available
 - mostly controlled by MIDI (see below)
 - maybe separate h/w, a sound card or s/w synthesiser built into PC
- Many different types of synthesis techniques
 - additive synthesis
 - FM synthesis
 - wavetable
 - physical modelling

MIDI

- MIDI data is like a 'piano roll' gives note on, off, instrument info
- Much less information is contained than for samples
 - MIDI files much smaller than sample files
- MIDI does not encode timbre so synthesis is left up to synthesiser
 - things may sound different when played back

Advantages of MIDI

- Allows play back of sounds on many different types of synthesiser
 - almost!
 - General MIDI
- Separates i/p device from sound generator
 - one keyboard can play many synths
- Many different types of i/p device can be used
 - piano keyboard, computer, MIDI guitar, etc.
- MIDI can control a wide variety of devices
 - synthesiser, sampler, audio effects, lighting

MIDI Setup

- PC (maybe piano style keyboard) used to control the MIDI system
- S/w running on PC will generate MIDI messages
 - might be a sequencer or other s/w
 - these sent to synthesiser (or sampler) to play sound

Basic MIDI Commands

- MIDI messages used to pass data between MIDI devices
- Two types of command
 - channel and system
- Channel commands allow
 - turning notes on and off, setting instruments to channels, etc.
- System commands allow
 - synchronisation, system exclusive

MIDI synthesizer with MEGA32 microprocessor

MIDI Setup

• A standard MIDI setup might look like:

Sound in Interface Design

- More natural information representation
 - 'sonification' of high dimensional data
 - spatialized audio for more immersive displays
- Essential for eyes-free applications
 - aids for blind people
 - compact mobile devices
 - telephone displays
- **Sonification** is the use of non-speech audio to convey information or perceptualize data.
 - Due to the specifics of auditory perception, such as temporal and pressure resolution, it forms an interesting alternative to visualization techniques, gaining importance in various disciplines.

Sound in Interface Design

- Historically used for background music and sound effects in theatre, TV, films
- Can be used in this way in computers
 - entertainment/educational products
- Emerging modality in multimedia
 - strong technical infra-structure
 - weak design/research infrastructure

Why Use Sound in User Interfaces?

- Why use non-speech sound?
 - interdependence of vision and hearing
 - natural means of presentation
 - reduce the load on the visual sense
 - increase the bandwidth of communication
 - omni-directional
 - attention grabbing
 - your eyes can only do one thing at once

Why use Sound in User Interfaces?

- Who might benefit from sound?
 - users of graphical interfaces
 - visually disabled people
 - users of telephone-based interfaces
 - users of interfaces where eyes are busy (planes, cars)
 - mobile computer users (lack of screen space)

Auditory Icons

- Developed by Bill Gaver
- Everyday, natural sounds represent objects and actions in the interface
- Sounds have an intuitive link to what they represent
- Sounds are multi-dimensional

Sound in User Interfaces

- Technology is available now
 - DSP / MIDI / Sound cards in every PC
 - Many mobile computers make some sounds
 - Only used in games not everyday interactions
 - · games very sophisticated
- Two main types of sounds
 - auditory icons
 - earcons

Earcons

- Structured audio messages based on abstract sounds
 - A brief structured sound pattern used to represent specific item or event
 - -1989
- a five-day weather forecast on a local news program where each day's temperatures set the pitches in a five tone sequence.
- Earcons are abstract rhythmic / melodic patterns rather than everyday sounds.
- More info
 - http://www.dcs.gla.ac.uk/~stephen/generalearcons/generalearcons1.shtml

Use of Sound in User Interfaces - Mobile Computers

- Limited screen need other forms of output
- Sound can present information about what is on screen
 - could allow visual widgets to be reduced in size
 - reduce visual clutter / get more on screen
- Experimental design
 - 16 participants
 - 2-condition, within-groups design, fully counterbalanced

Mobile Computers

- Large buttons
 - 16 x 16 pixels
 - standard size
 - highlight by reverse video
- Task
 - entering 5 digit codes

Small buttons-8x8 pixels

Sound in Mobile Computers

- Conditions: Large buttons / Small buttons
- Two treatments per condition: Sound / No sound
- Hypotheses
 - sounds should allow more data to be entered for both button sizes
 - should be no increase in annoyance due to sounds
 - people should be able to walk further with sounds

Earcons Used

- Sounds constrained by device capabilities
- Silent condition no sounds
- Sound condition: Standard Palm III sounds plus enhancements
 - pen downmedium pitch

€

- pen releasehigher pitch
- mis-press errorlower pitch

Location

- Pathway by the University
- Participants had to walk 10m laps whilst entering data on 3Com Palm III

Results - Distance Walked

- More laps walked with sound
- Small buttons with sound as effective as standard silent buttons

Results – Numbers of Codes Typed

- Number of codes typed
 - in both conditions significantly more codes entered with sound than without

Sound can overcome limitations of small screens