
HESSD ’98 80

Modeling Controller Tasks for Safety Analysis�

Molly Brown and Nancy G. Leveson
Computer Science and Engineering

University of Washington
Seattle, WA 98195-2350

fmolly,levesong@cs.washington.edu

Abstract

As control systems become more complex, the use of
automated control has increased. At the same time, the
role of the human operator has changed from primary
system controller to supervisor or monitor. Safe de-
sign of the human{computer interaction becomes more
di�cult.
In this paper, we present a visual task modeling lan-

guage that can be used by system designers to model
human{computer interactions. The visual models can
be translated into SpecTRM-RL, a blackbox speci�ca-
tion language for modeling the automated portion of
the control system. The SpecTRM-RL suite of analysis
tools allow the designer to perform formal and infor-
mal safety analyses on the task model in isolation or
integrated with the rest of the modeled system.

1 Introduction

Increased complexity of control systems and advances
in computer technology have combined to give automa-
tion a more authoritative role in control systems. As a
result, many of these control systems rely on both hu-
man and automated controllers. For these controllers
to interact e�ectively, the human{computer interaction
must be carefully.
We began looking at these issues while working

with the Terminal Area Productivity (TAP) Project
at NASA Ames [PPC97]. The TAP Project is design-
ing terminal area procedures for air tra�c using data
links in addition to voice contact to communicate tra-
jectories and routing information between the air traf-
�c controller and the aircraft.
Traditionally, HCI design has focused on the human

user's point of view: what functionality is needed to
support the tasks the human must accomplish. There

�The research described has been funded by NAG-1-
1894.

have been numerous models for human task analysis
developed to identify the knowledge and steps required
to perform each human task.
Unlike traditional task modeling methods that focus

on analyzing speci�c aspects of the HCI design, such as
steps to complete a task, user goals or knowledge rep-
resentation, our modeling technique has a more general
focus. Our technique allows the designer to model the
steps required to complete the task so she can study
how these steps interact with the rest of the system.
Speci�c environment cues required to complete a task
are modeled as conditions on transitions between steps
in a task. Depending on the visualization created to
inspect the model, the analyst can focus on the knowl-
edge needed throughout the task, on the steps required
to complete the task or on some other model aspect of
interest.
Our modeling methodology takes a system-centric

view compared to the human-centered view of other
task analysis methods. With a tighter coupling be-
tween the human and automated controllers in com-
plex systems, the human controller must be viewed as
a part of the entire system, therefore the interaction be-
tween the human and the computer should be viewed
in the context of the entire system.
Our modeling technique focuses formally analyzing

a model of the controller's tasks independently and
in the context of the complete control system model.
Throughout the evolution of our method, we had three
goals:

� To create a reasonable model of the actions of the
human controller.

� To develop a model that can be formally analyzed
with respect to safety concerns.

� To interface the model of the human controller tasks
with formal models of the rest of the complext sys-
tem.

HESSD ’98 81

To realize these goals, we created a visual task
modeling language that allows the analyst to easily
represent the necessary information about the con-
troller's tasks. These task models can be translated
into the blackbox requirements speci�cation language
SpecTRM-RL and analyzed using a suite of anal-
ysis tools. SpecTRM-RL was developed to model
all the components of control systems, therefore the
SpecTRM-RL model of the controller tasks can be in-
tegrated with the model of the other components in
the control system.
The rest of the paper is organized in the following

way: Section 2 describes the SpecTRM tool suite and
SpecTRM-RL modeling language; Section 3 describes
our approach to achieving the goals we set for our-
selves; Section 4 explains the example model that we
use throughout the paper to illustrate our task model-
ing methodology; Sections 5 and 6 describe the visual
task modeling language and how these models are cre-
ated; Section 7 demonstrates how the safety analysis
tools can be applied to these models; Section 8 dis-
cusses other work in the area of task modeling and
analysis; and Section 9 discusses the contributions of
this work and possible future questions to explore.

2 SpecTRM

The Software Safety Group at the University of Wash-
ington has developed a methodology for software spec-
i�cation called SpecTRM (Speci�cation Tools and Re-
quirements Methodology). Complex system develop-
ment relies on multiple disciplines: system engineers,
software engineers, human factors experts and ap-
plication experts. SpecTRM takes a global system
viewpoint to provide an environment to assist multi-
disciplinary teams. With a single consistent model of
the complex system, analysts from each discipline can
focus on the aspect of the system that is of interest to
them.
The center of SpecTRM is SpecTRM-RL (SpecTRM

Requirements Language), a formal requirements spec-
i�cation language for modeling blackbox behavior of
control systems [Lev98]. SpecTRM-RL supports a
wide-range of problem-solving strategies and tasks dur-
ing system development and evolution.
Models written in SpecTRM-RL can be analyzed by

the SpecTRM suite of tools. The SpecTRM tools were
developed to detect errors and potentially hazardous
behavior. The tool set is being expanded but currently
includes:

� Model execution

� Automated formal analyses, such as consistency and
completeness checks

� Automated tools to help with model exploration
during forward and backward analyses

� Deviation analysis to test the robustness of system
design to abnormal inputs

� Visualization tools to allow a wide-range of views of
the executing model

These tools provide a
exible framework in which many
complimentary analyses can be performed on a single
model to help ensure total system safety.

3 Approach

We do not attempt to model erroneous human behav-
ior, but limit our models to the expected controller
behavior (both nominal and o�-nominal) as de�ned in
operational procedures. The models also include ex-
ternal inputs representing qualities of the environment
that give rise to the human controller's decisions.
In many cases, the exact triggering conditions of a

task are not necessary to have a meaningful model of
the system. Any external or internal conditions that
are particularly salient to the executing task are ex-
plicitly modeled while all other environmental e�ects
are grouped into external conditions.
We quickly found that SpecTRM-RL models were

not the most e�ective way to specify human tasks for
system designers and human factors experts. For one
thing, it was di�cult to separate nominal from o�-
nominal behavior using the SpecTRM-RL notation. It
was also di�cult to see communication
ow between
the di�erent components in the model. These limita-
tions in expressibility led us to the development of a
visual modeling language that has the characteristics
lacking in SpecTRM-RL but remains easily translat-
able to SpecTRM-RL for analysis purposes.

4 Hando� Procedure Example

Throughout this paper, we will be using our model
of a hando� procedure to illustrate our task modeling
language. A \hando�", or a change of aircraft con-
troller, occurs whenever an aircraft is changing from
one controlling sector to another. The hando� pro-
cedure involves communication between the controller
currently controlling the aircraft, the next controller
to control the aircraft, and the pilot. Our model of
this procedure includes the required tasks from each
controller's point of view and the pilot's point of view.
The hando� procedure model also includes a model of
the radio used by the pilot to control the frequency to
which she listens for controller communication. The
radio component is included in the model because it

HESSD ’98 82

is an integral part of the hardware/software portion of
the system during the hando� procedure.

We chose this model to demonstrate our model-
ing and analysis technique because the model is com-
plex enough to have interesting characteristics while
remaining clear enough to be easily understood by
readers who are not familiar with air tra�c control.
The hando� procedure consists of multiple components
each with variety of tasks to complete and interesting
interactions with other components.

5 Description of Visual Modeling Lan-

guage

Figures 1, 2 and 3 show the visual model for current
implementation of the hando� procedure in air tra�c
control systems.

The key on Figure 1 displays the components of the
visual modeling language. States are used to represent
each step required to complete a higher-level task. To
change from one state to the next in the model, a tran-
sition must occur. Changing the current model state
represents the completion of one subtask and the be-
ginning of the next subtask. An event is the triggering
condition for a transition and an action results from
completing a transition. The default, or start, state
is denoted by an arrow head on the left side of the
state. For example, in the Current Controller model of
Figure 1 the state Aircraft being controlled by current
controller is the start state. The model can transition
to the state Initiating hando� if the event Conditions
for hando� occur �res. In this example, there is no
resulting action from the transition.

Color is used in the model to di�erentiate between
events and actions. The events triggering a transition
are shown in blue text above the transition, while any
actions resulting from the transition are shown in red
text beneath the transition. A green outline around
event or action text denotes that this is a communi-
cation point between two entities in the model. For
example, in Figure 1 there is a green outline around
the action Initiate Hando� in the Current Controller
model and a green outline around the event Initiate
Hando� in the Next Controller model. The green out-
line denotes that the action of initiating a hando� in
the Current Controller model causes a transition to
occur in the Next Controller model.

Task positioning is used to represent relationships
among the steps in a task. The normative actions are
seen on the main horizontal axis of each controller's
task model. Any non-normative behavior diverges
from the main axis until the situation has been cor-
rected and the normative procedure resumes. For ex-

ample, in the Next Controller model of Figure 1, reject-
ing the hando� is not the expected or nominal behavior
of the Next Controller. The events, states and actions
required to handle this sequence of subtasks are shown
below the main axis of the Next Controller's behaviors.
When the o�-nominal steps have been completed, the
model can return to a state on the main horizontal axis
to represent returning to the nominal behavior.

The visual modeling language also allows the sys-
tem designer to represent the relationship among the
tasks that are being carried out by the model entities.
To accurately represent the load on the human con-
troller, the system designer must understand these re-
lationships accurately. The system designer must un-
derstand which tasks are sequential and which tasks
can be performed in any order. The Pilot model, Fig-
ure 2, shows how these task relationships are repre-
sented. The action Issue frequency change must occur
before the Pilot can perform the subtasks to change the
radio frequency and read back the Next Controller's
frequency to the Current Controller. The branching in
the transition arrows shows how changing the radio fre-
quency and performing the read back are executed in
some undetermined order. These tasks could be per-
formed in parallel or in a sequential order chosen by
the Pilot. The system designer must understand these
possible interactions to ensure that the tasks do not
overload the Pilot no matter what order she chooses
to execute the tasks.

6 Construction of Task Models

The basis of the visual model is a task analysis. The
task analysis identi�es the major tasks of the con-
troller components in the system then breaks these
high level tasks into subtasks, down to the level of
the key presses, voice communications, display cues,
etc. involved in performing the task. From the task
analysis, the visual model is created. The visual model
easily represents the temporal relationships among the
tasks carried out by a single component in the model
and the relationships among multiple components in
the model.

The SpecTRM-RL model is created based on the
visual model. The conversion is a straightforward pro-
cess of converting the visual relationships to a text-
based modeling language. Whereas the visual model-
ing language uses entities, states, events and actions to
represent the system, the SpecTRM-RL model decom-
poses the system into components, operating modes,
and input/output interfaces. A component is a por-
tion of the system with a well-de�ned interface to the
rest of the system. Each high-level system entity and

HESSD ’98 83

Pilot initiates
contact with

controller

occur

Conditions
for rejection

Reject
handoff

Conditions for
handoff occur

Transmit
frequency
change

message

for handoff
occur

Conditions Conditions
for freq.
change
occur

Accept
handoff

Issue
frequency
change

Initiate
handoff

Accept
handoff

StateTransition

Initiate
handoff

No response
received from

controller

rejected handoff
Next controller

Reject
handoff

Aircraft being
controlled by

current controller

Issuing freq.
change to

pilot

Waiting for
read back
from pilot

freq. change
to pilot

Ready to re-issue

Waiting for next
controller’s
response

Initiate procedures
to ensure conditions

for handoff

Communication Point

received
Handoff request Accepting

handoff
pilot’s initial
Waiting for

contact initial contact
Received pilot’soutside of

airspace

Aircraft well

handoff
Rejecting

Conditions
for acceptance

occur
Press Enter

handoff
Initiating Press H

Timeout

accepted
Handoff

Conditions for
frequency
change
occur

Current Controller

Next Controller

Event ActionKey:

Timeout

Figure 1: Model of Current Controller and Next Controller Tasks

HESSD ’98 84

StateTransition

Freq.
read back

Tuned to
next

controller
Waiting for
acknow.

Received no
acknow.

Pilot Has Not
changed freq.

Freq. not
read back

Pilot has set
correct

standby freq.

Pilot enters
new freq. in

standby radio

Pilot enters
new freq. in
active radio

Pilot tuned to
unknown freq.

incorrect
standby freq.

Pilot has set

Pilot enters
new freq. in

standby radio

New freq.
entered

New freq.
entered

Pilot toggles
freq. select

Pilot returns to
standby freq.

control of
Under firm

current cntrller

Pilot corrects active
freq. - sets to current

controller’s freq.

Pilot toggles
freq. select

Pilot enters
new freq. in
active radio

Pilot enters
new freq. in

standby radio
Issue

freq. change

Pilot reads back
new freq.

Pilot toggles
freq. select

Pilot initiates
contact with

controller

Pilot receives
acknow. from

controller

Pilot

Timeout

Pilot corrects active
freq - sets to next
controller’s freq

Pilot returns to
previous freq.

OR

Communication PointEvent ActionKey:

Figure 2: Model of Pilot Tasks

HESSD ’98 85

StateTransition

Pilot toggles
freq. select

Frequency 1 Active
Frequency 2 Standby

Frequency 2 Active
Frequency 1 Standby

Note: The radio had two displays and two dials. One display and dial monitors frequency 1 and the second
display and dial monitors frequency 2. There is a toggle switch that allows the pilot to chose between
frequency 1 and frequency 2 as the active frequency. The unselected frequency is referred to as the
standby frequency.

Pilot toggles
freq. select

Communication PointEvent ActionKey:

Radio

Display for Frequency 2Display for Frequency 1

Diagram of Radio

Toggle Switch

Figure 3: Model of Radio

HESSD ’98 86

the external environment become a component in the
SpecTRM-RL model. For the hando� procedure, the
components in the SpecTRM-RL model are the Cur-
rent Controller, the Next Controller, the Pilot, and
the Radio. The states in the visual model translate
to operating modes in the SpecTRM-RL model. For
example, from the visual model shown in Figure 3
the Radio component has two operating modes: Fre-
quency 1 Active/Frequency 2 Standby and Frequency 2
Active/Frequency 1 Standby.
Translating the communication interfaces is slightly

more di�cult. The events in the visual model map to
input interfaces for the SpecTRM-RL model compo-
nents. If the event was marked as a communication
point with another entity in the visual model (denoted
by the green outline around the event label), the cor-
responding input will come from another SpecTRM-
RL component. Otherwise, the event will map to an
input from the external environment. Actions in the
visual model translate to the output interfaces for the
SpecTRM-RL components.

7 Analysis of Models

The human procedure model, along with SpecTRM-
RL models of the other parts of the system, can be used
in the safety analysis of the human{computer interac-
tion. The SpecTRM tool set currently allows model
execution, various types of safety analysis, and visual-
ization.

7.1 Model Execution

Because the task models are executable, the system
designer can inspect the speci�ed dynamic interaction
between the system components, including both the
operators and the automated components. In this way,
procedural errors, possible inconsistencies in the pro-
cedures, or incomplete procedural speci�cations can be
detected. We found that model execution helped us to
�nd several errors in the speci�cation.

7.2 Safety Analysis Tools

The SpecTRM tool set has multiple fully automated or
partially automated analyses that can be performed on
the models to help identify possible unsafe aspects of
the system requirements. Consistency and complete-
ness analysis identi�es inconsistencies in the speci�ca-
tion and conditions not accounted for in the speci�ca-
tion [HL96]. For example, the automated completeness
check on this model found that the Pilot's behavior is
not completely speci�ed. During the hando� proce-
dure, the model does not show how the Pilot should act
if she reads back an incorrect frequency. This incom-
pleteness in the speci�cation is likely to be the result

of an oversight of the system designer as she builds the
model, but the completeness check aids the analyst by
highlighting these possible oversights.

Deviation Analysis provides a way to evaluate
the speci�cation for robustness against incorrect in-
puts [RL97a, RL97b]. The analyst denotes potential
hazardous outputs that she wants to check for and hy-
pothesizes deviations in the inputs, for example, that
measured speed is lower than actual speed. The Devi-
ation Analysis tool will determine whether the devia-
tion can lead to a hazardous state and, if not, whether
the hypothesized deviation plus other conditions could
lead to a hazard.

Our Backward Analysis tool allows the system de-
signer to start from a hazardous state and work back-
ward to determine if and how that state could be
reached. Critical points in the design are identi�ed
that can be modi�ed to avoid the hazardous state. For
example, a backward analysis of the hando� procedure
model found that the Pilot model can reach the haz-
ardous state Pilot Tuned To Unknown Frequency.

7.3 Visualization Tools

Our IBToolKit (Interface Builder Tool Kit) allows the
system designer to create visualizations that can be
linked to a SpecTRM-RL model [Pin97]. In addition
to simply showing the results of the model executing
in a visual format, visualizations can be created that
highlight speci�c system qualities. These types of visu-
alizations can aid in the design of automated systems
to maximize the strengths of both the human and au-
tomated controllers.

One example of a visualization that we created for
the hando� procedure is shown in Figure 4. In this vi-
sualization, the cognitive demands on the pilot during
task execution are highlighted as the model executes.
The states Pilot has not changed frequency and Fre-
quency not read back are highlighted in red to denote
the current state of the model. From this visualization,
the system designer can see that the pilot had to detect
a change in her environment in order to transition out
of the Under �rm control of current controller state.

Another possible visualization would be a display of
the cockpit. As the portions of the tasks are com-
pleted by the pilot interacting with the cockpit con-
trols, the corresponding areas of the cockpit could be
highlighted. This visualization assists the system de-
signer in determining whether the actions involved in
the task support the cognitive processes required of the
pilot.

HESSD ’98 87

Figure 4: Visualization of cognitive demands on pilot during the hando� procedure.

HESSD ’98 89

and A. White�eld, editors, Cognitive er-
gonomics and human-computer interaction.
Cambridge University Press, 1989.

[HL96] M.P.E. Heimdahl and N.G. Leveson. Com-
pleteness and consistency analysis of state-
based requirements. Transactions on Soft-
ware Engineering, June 1996.

[JJ91] H. Johnson and P. Johnson. Task knowledge
structures: psychological basis and integra-
tion in to system design. Acta Psychologica,
78(1-3):3{26, 1991.

[Lev98] N.G. Leveson. The SpecTRM-RL language.
In preparation, 1998.

[Mit96] C.M. Mitchell. Task-analytic models of hu-
man operators: Designing operator-machine
interaction. Technical report, Georgia Insti-
tute of Technology, 1996.

[Pin97] L.D. Pinnel. Visualizing requirement speci-
�cations: A toolkit for rapid prototyping of
interfaces. Ph.D. qualifying project report,
1997.

[PPC97] T. Prevot, E. Palmer, and B. Crane. Flight
crew support for automated negotiation of
descent and arrival clearances. Technical re-
port, NASA Ames Research Center, 1997.

[RL97a] J.D. Reese and N.G. Leveson. Software devi-
ation analysis. In International Conference
on Software Engineering, May 1997.

[RL97b] J.D. Reese and N.G. Leveson. Software de-
viation analysis: A safeware technique. In
AIChe 31st Annual Loss Prevention Sympo-
sium, March 1997.

[SW95] N.D. Sarter and D. Woods. How in the world
did I ever get into that mode?": Mode error
and awareness in supervisory control. Hu-
man Factors, 37:5{19, 1995.

[YGS89] R.M. Young, T.R.G. Green, and T. Simon.
Programmable user models for predictive
evaluation of interface designs. In Confer-
ence on Human Factors in Computing Sys-
tems (CHI '89), pages 15{19, May 1989.

[Yos96] G.R. Yost. Implementing the Sisyphus-93
task using Soar/TAQL. International Jour-
nal of Human-Computer Studies, 44(3-4),
1996.

