
Using TCP Through Sockets

David Mazi�eres

dm@amsterdam.lcs.mit.edu

1 File descriptors

Most I/O on Unix systems takes place through the read and write system calls1. Before
discussing network I/O, it helps to understand how these functions work even on simple
�les. If you are already familiar with �le descriptors and the read and write system calls, you
can skip to the next section.

Section 1.1 shows a very simple program that prints the contents of �les to the standard
output|just like the UNIX cat command. The function typefile uses four system calls to
copy the contents of a �le to the standard output.

� int open(char *path, int flags, ...);

The open system call requests access to a particular �le. path speci�es the name of
the �le to access; flags determines the type of access being requested|in this case
read-only access. open ensures that the named �le exists (or can be created, depending
on flags) and checks that the invoking user has su�cient permission for the mode of
access.

If successful, open returns a non-negative integer known as a �le descriptor. All read
and write operations must be performed on �le descriptors. File descriptors remain
bound to �les even when �les are renamed or deleted or undergo permission changes
that revoke access2.

By convention, �le descriptors numbers 0, 1, and 2 correspond to standard input,
standard output, and standard error respectively. Thus a call to printf will result in a
write to �le descriptor 1.

If unsuccessful, open returns �1 and sets the global variable errno to indicate the nature
of the error. The routine perror will print \�lename: error message" to the standard
error based on errno.

� int read (int fd, void *buf, int nbytes);

read will read up to nbytes bytes of data into memory starting at buf. It returns the
number of bytes actually read, which may very well be less than nbytes. If it returns
0, this indicates an end of �le. If it returns �1, this indicates an error.

1High-level I/O functions such as fread and fprintf are implemented in terms of read and write.
2Note that not all network �le systems properly implement these semantics.

1

� int write (int fd, void *buf, int nbytes);

write will write up to nbytes bytes of data at buf to �le descriptor fd. It returns
the number of bytes actually written, which unfortunately may be less than nbytes in
some circumstances. Write returns 0 to indicate an end of �le, and �1 to indicate an
error.

� int close (int fd);

close deallocates a �le descriptor. Systems typically limit each process to 64 �le de-
scriptors by default (though the limit can sometimes be raised substantially with the
setrlimit system call). Thus, it is a good idea to close �le descriptors after their last
use so as to prevent \too many open �les" errors.

1.1 type.c: Copy �le to standard output

#include <stdio.h>

#include <unistd.h>

#include <fcntl.h>

void

typefile (char *filename)

{

int fd, nread;

char buf[1024];

fd = open (filename, O_RDONLY);

if (fd == -1) {

perror (filename);

return;

}

while ((nread = read (fd, buf, sizeof (buf))) > 0)

write (1, buf, nread);

close (fd);

}

int

main (int argc, char **argv)

{

int argno;

for (argno = 1; argno < argc; argno++)

typefile (argv[argno]);

exit (0);

}

2

2 TCP/IP Connections

2.1 Introduction

TCP is the reliable protocol many applications use to communicate over the Internet. TCP
provides a stream abstraction: Two processes, possibly on di�erent machines, each have a
�le descriptor. Data written to either descriptor will be returned by a read from the other.
Such network �le descriptors are called sockets in Unix.

Every machine on the Internet has a unique, 32-bit IP (Internet protocol) address. An
IP address is su�cient to route network packets to a machine from anywhere on the Inter-
net. However, since multiple applications can use TCP simultaneously on the same machine,
another level of addressing is needed to disambiguate which process and �le descriptor in-
coming TCP packets correspond to. For this reason, each end of a TCP connection is named
by 16-bit port number in addition to its 32-bit IP address.

So how does a TCP connection get set up? Typically, a server will listen for connections
on an IP address and port number. Clients can then allocate their own ports and connect

to that server. Servers usually listen on well-known ports. For instance, �nger servers listen
on port 79, web servers on port 80 and mail servers on port 25. A list of well-known port
numbers can be found in the �le /etc/services on any Unix machine.

The Unix telnet utility will allow to you connect to TCP servers and interact with
them. By default, telnet connects to port 23 and speaks to a telnet daemon that runs
login. However, you can specify a di�erent port number. For instance, port 7 on many
machines runs a TCP echo server:

athena% telnet athena.dialup.mit.edu 7

...including Athena's default telnet options: "-ax"

Trying 18.184.0.39...

Connected to ten-thousand-dollar-bill.dialup.mit.edu.

Escape character is '^]'.

repeat after me...

repeat after me...

The echo server works!

The echo server works!

quit

quit

^]

telnet> q

Connection closed.

athena%

Note that in order to quit telnet, you must type Control-] followed by q and return. The
echo server will happily echo anything you type like quit.

As another example, let's look at the �nger protocol, one of the simplest widely used
TCP protocols. The Unix finger command takes a single argument of the form user@host.
It then connects to port 79 of host, writes the user string and a carriage-return line-feed

3

over the connection, and dumps whatever the server sends back to the standard output.
We can simulate the finger command using telnet. For instance, using telnet to do the
equivalent of the command finger help@mit.edu, we get:

athena% telnet mit.edu 79

...including Athena's default telnet options: "-ax"

Trying 18.72.0.100...

Connected to mit.edu.

Escape character is '^]'.

help

These help topics are available:

about general options restrictions url

change-info motd policy services wildcards

To view one of these topics, enter "help name-of-topic-you-want".

...

Connection closed by foreign host.

athena%

2.2 TCP client programming

Now let's see how to make use of sockets in C. Section 2.3 shows the source code to a simple
�nger client that does the equivalent of the last telnet example of the previous section. The
function tcpconnect shows all the steps necessary to connect to a TCP server. It makes the
following system calls:

� int socket (int domain, int type, int protocol);

The socket system call creates a new socket, just as open creates a new �le descriptor.
socket returns a non-negative �le descriptor number on success, or �1 on an error.

When creating a TCP socket, domain should be AF INET, signifying an IP socket, and
type should be SOCK STREAM, signifying a reliable stream. Since the reliable stream
protocol for IP is TCP, the �rst two arguments already e�ectively specify TCP. Thus,
the third argument can be left 0, letting the Operating System assign a default protocol
(which will be IPPROTO TCP).

Unlike �le descriptors returned by open, you can't immediately read and write data to
a socket returned by socket. You must �rst assign the socket a local IP address and
port number, and in the case of TCP you need to connect the other end of the socket
to a remote machine. The bind and connect system calls accomplish these tasks.

� int bind (int s, struct sockaddr *addr, int addrlen);

bind sets the local address and port number of a socket. s is the �le descriptor number
of a socket. For IP sockets, addr must be a structure of type sockaddr in, usually
as follows (in /usr/include/netinet/in.h). addrlen must be the size of struct

sockaddr in (or whichever structure one is using).

4

struct in_addr {

u_int32_t s_addr;

};

struct sockaddr_in {

short sin_family;

u_short sin_port;

struct in_addr sin_addr;

char sin_zero[8];

};

Di�erent versions of Unix may have slightly di�erent structures. However, all will have
the �elds sin family, sin port, and sin addr. All other �elds should be set to zero.
Thus, before using a struct sockaddr in, you must call bzero on it, as is done in
tcpconnect. Once a struct sockaddr in has been zeroed, the sin family �eld must
be set to the value AF INET to indicate that this is indeed a sockaddr in. (Bind cannot
take this for granted, as its argument is a more generic struct sockaddr *.)

sin port speci�es which 16-bit port number to use. It is given in network (big-endian)
byte order, and so must be converted from host to network byte order with htons. It is
often the case when writing a TCP client that one wants a port number but doesn't care
which one. Specifying a sin port value of 0 tells the OS to choose the port number.
The operating system will select an unused port number between 1,024 and 5,000 for
the application. Note that only the super-user can bind port numbers under 1,024.
Many system services such as mail servers listen for connections on well-known port
numbers below 1,024. Allowing ordinary users to bind these ports would potentially
also allow them to do things like intercept mail with their own rogue mail servers.

sin addr contains a 32-bit IP address for the local end of a socket. The special value
INADDR ANY tells the operating system to choose the IP address. This is usually what
one wants when binding a socket, since code typically does not care about the IP
address of the machine on which it is running.

� int connect (int s, struct sockaddr *addr, int addrlen);

connect speci�es the address of the remote end of a socket. The arguments are the
same as for bind, with the exception that one cannot specify a port number of 0 or an
IP address of INADDR ANY. Connect returns 0 on success or �1 on failure.

Note that one can call connect on a TCP socket without �rst calling bind. In that
case, connect will assign the socket a local address as if the socket had been bound to
port number 0 with address INADDR ANY. The example �nger calls bind for illustrative
purposes only.

These three system calls create a connected TCP socket, over which the �nger program
writes the name of the user being �ngered and reads the response. Most of the rest of the
code should be straight-forward, except you might wish to note the use of gethostbyname
to translate a hostname into a 32-bit IP address.

5

2.3 myfinger.c: A simple network �nger client

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <string.h>

#include <netdb.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#define FINGER_PORT 79

#define bzero(ptr, size) memset (ptr, 0, size)

/* Create a TCP connection to host and port. Returns a file

* descriptor on success, -1 on error. */

int

tcpconnect (char *host, int port)

{

struct hostent *h;

struct sockaddr_in sa;

int s;

/* Get the address of the host at which to finger from the

* hostname. */

h = gethostbyname (host);

if (!h || h->h_length != sizeof (struct in_addr)) {

fprintf (stderr, "%s: no such host\n", host);

return -1;

}

/* Create a TCP socket. */

s = socket (AF_INET, SOCK_STREAM, 0);

/* Use bind to set an address and port number for our end of the

* finger TCP connection. */

bzero (&sa, sizeof (sa));

sa.sin_family = AF_INET;

sa.sin_port = htons (0); /* tells OS to choose a port */

sa.sin_addr.s_addr = htonl (INADDR_ANY); /* tells OS to choose IP addr */

if (bind (s, (struct sockaddr *) &sa, sizeof (sa)) < 0) {

perror ("bind");

close (s);

return -1;

}

/* Now use h to set set the destination address. */

sa.sin_port = htons (port);

sa.sin_addr = *(struct in_addr *) h->h_addr;

/* And connect to the server */

if (connect (s, (struct sockaddr *) &sa, sizeof (sa)) < 0) {

perror (host);

6

close (s);

return -1;

}

return s;

}

int

main (int argc, char **argv)

{

char *user;

char *host;

int s;

int nread;

char buf[1024];

/* Get the name of the host at which to finger from the end of the

* command line argument. */

if (argc == 2) {

user = malloc (1 + strlen (argv[1]));

if (!user) {

fprintf (stderr, "out of memory\n");

exit (1);

}

strcpy (user, argv[1]);

host = strrchr (user, '@');

}

else

user = host = NULL;

if (!host) {

fprintf (stderr, "usage: %s user@host\n", argv[0]);

exit (1);

}

*host++ = '\0';

/* Try connecting to the host. */

s = tcpconnect (host, FINGER_PORT);

if (s < 0)

exit (1);

/* Send the username to finger */

if (write (s, user, strlen (user)) < 0

|| write (s, "\r\n", 2) < 0) {

perror (host);

exit (1);

}

/* Now copy the result of the finger command to stdout. */

while ((nread = read (s, buf, sizeof (buf))) > 0)

write (1, buf, nread);

exit (0);

}

7

2.4 TCP server programming

Now let's look at what happens in a TCP server. Section 2.5 shows the complete source
code to a simple �nger server. It listens for clients on the �nger port, 79. Then, for each
connection established, it reads a line of data, interprets it as the name of a user to �nger,
and runs the local �nger utility directing its output back over the socket to the client.

The function tcpserv takes a port number as an argument, binds a socket to that port,
tells the kernel to listen for TCP connections on that socket, and returns the socket �le
descriptor number, or �1 on an error. This requires three main system calls:

� int socket (int domain, int type, int protocol);

This function creates a socket, as described in Section 2.2.

� int bind (int s, struct sockaddr *addr, int addrlen);

This function assigns an address to a socket, as described in Section 2.2. Unlike the
�nger client, which did not care about its local port number, here we specify a speci�c
port number.

Binding a speci�c port number can cause complications when killing and restarting
servers (for instance during debugging). Closed TCP connections can sit for a while
in a state called TIME WAIT before disappearing entirely. This can prevent a restarted
TCP server from binding the same port number again, even if the old process no longer
exists. The setsockopt system call shown in tcpserv avoids this problem. It tells the
operating system to let the socket be bound to a port number already in use.

� int listen (int s, int backlog);

listen tells the operating system to accept network connections. It returns 0 on success,
and �1 on error. s is an unconnected socket bound to the port on which to accept
connections. backlog formerly speci�ed the number of connections the operating sys-
tem would accept ahead of the application. That argument is ignored by most modern
Unix operating systems, however. People traditionally use the value 5.

Once you have called listen on a socket, you cannot call connect, read, or write, as the
socket has no remote end. Instead, a new system call, accept, creates a new socket for
each client connecting to the port s is bound to.

Once tcpserv has begun listening on a socket, main accepts connections from clients, with
the system call accept.

� int accept (int s, struct sockaddr *addr, int *addrlenp);

Accept takes a socket s on which one is listening and returns a new socket to which
a client has just connected. If no clients have connected, accept will block until one
does. accept returns �1 on an error.

For TCP, addr should be a struct sockaddr in *. addrlenp must be a pointer
to an integer containing the value sizeof (struct sockaddr in). accept will ad-
just *addrlenp to contain the actual length of the struct sockaddr it copies into

8

*addr. In the case of TCP, all struct sockaddr in's are the same size, so *addrlenp

shouldn't change.

The �nger daemon makes use of a few more Unix system calls which, while not network-
speci�c, are often encountered in network servers. With fork it creates a new process. This
new process calls dup2 to redirect its standard output and error over the accepted socket.
Finally, a call to execl replaces the new process with an instance of the �nger program.
Finger inherits its standard output and error, so these go straight back over the network to
the client.

� int fork (void);

fork creates a new process, identical to the current one. In the old process, fork returns
a process ID of the new process. In the new or \child" process, fork returns 0. fork

returns �1 if there is an error.

� int dup2(int oldfd, int newfd);

dup2 closes �le descriptor number newfd, and replaces it with a copy of oldfd. When
the second argument is 1, this changes the destination of the standard output. When
that argument is 2, it changes the standard error.

� int execl(char *path, char *arg0, ..., NULL);

The execl system call runs a command|as if you had typed it on the command line.
The command executed will inherit all �le descriptors except those with the close-on-
exec ag set. execl replaces the currently executing program with the one speci�ed by
path. On success, it therefore doesn't return. On failure, it returns �1.

2.5 myfingerd.c: A simple network �nger server

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <string.h>

#include <netdb.h>

#include <signal.h>

#include <fcntl.h>

#include <errno.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <arpa/inet.h>

#define FINGER_PORT 79

#define FINGER_COMMAND "/usr/bin/finger"

#define bzero(ptr, size) memset (ptr, 0, size)

/* Create a TCP socket, bind it to a particular port, and call listen

* for connections on it. These are the three steps necessary before

* clients can connect to a server. */

9

int

tcpserv (int port)

{

int s, n;

struct sockaddr_in sin;

/* The address of this server */

bzero (&sin, sizeof (sin));

sin.sin_family = AF_INET;

sin.sin_port = htons (port);

/* We are interested in listening on any and all IP addresses this

* machine has, so use the magic IP address INADDR_ANY. */

sin.sin_addr.s_addr = htonl (INADDR_ANY);

s = socket (AF_INET, SOCK_STREAM, 0);

if (s < 0) {

perror ("socket");

return -1;

}

/* Allow the program to run again even if there are old connections

* in TIME_WAIT. This is the magic you need to do to avoid seeing

* "Address already in use" errors when you are killing and

* restarting the daemon frequently. */

n = 1;

if (setsockopt (s, SOL_SOCKET, SO_REUSEADDR, (char *)&n, sizeof (n)) < 0) {

perror ("SO_REUSEADDR");

close (s);

return -1;

}

/* This function sets the close-on-exec bit of a file descriptor.

* That way no programs we execute will inherit the TCP server file

* descriptor. */

fcntl (s, F_SETFD, 1);

if (bind (s, (struct sockaddr *) &sin, sizeof (sin)) < 0) {

fprintf (stderr, "TCP port %d: %s\n", port, strerror (errno));

close (s);

return -1;

}

if (listen (s, 5) < 0) {

perror ("listen");

close (s);

return -1;

}

return s;

}

/* Read a line of input from a file descriptor and return it. Returns

* NULL on EOF/error/out of memory. May over-read, so don't use this

* if there is useful data after the first line. */

static char *

10

readline (int s)

{

char *buf = NULL, *nbuf;

int buf_pos = 0, buf_len = 0;

int i, n;

for (;;) {

/* Ensure there is room in the buffer */

if (buf_pos == buf_len) {

buf_len = buf_len ? buf_len << 1 : 4;

nbuf = realloc (buf, buf_len);

if (!nbuf) {

free (buf);

return NULL;

}

buf = nbuf;

}

/* Read some data into the buffer */

n = read (s, buf + buf_pos, buf_len - buf_pos);

if (n <= 0) {

if (n < 0)

perror ("read");

else

fprintf (stderr, "read: EOF\n");

free (buf);

return NULL;

}

/* Look for the end of a line, and return if we got it. Be

* generous in what we consider to be the end of a line. */

for (i = buf_pos; i < buf_pos + n; i++)

if (buf[i] == '\0' || buf[i] == '\r' || buf[i] == '\n') {

buf[i] = '\0';

return buf;

}

buf_pos += n;

}

}

static void

runfinger (int s)

{

char *user;

/* Read the username being fingered. */

user = readline (s);

/* Now connect standard input and standard output to the socket,

* instead of the invoking user's terminal. */

if (dup2 (s, 1) < 0 || dup2 (s, 2) < 0) {

perror ("dup2");

11

exit (1);

}

close (s);

/* Run the finger command. It will inherit our standard output and

* error, and therefore send its results back over the network. */

execl (FINGER_COMMAND, "finger", "--", *user ? user : NULL, NULL);

/* We should never get here, unless we couldn't run finger. */

perror (FINGER_COMMAND);

exit (1);

}

int

main (int argc, char **argv)

{

int ss, cs;

struct sockaddr_in sin;

int sinlen;

int pid;

/* This system call allows one to call fork without worrying about

* calling wait. Don't worry about what it means unless you start

* caring about the exit status of forked processes, in which case

* you should delete this line and read the manual pages for wait

* and waitpid. For a description of what this signal call really

* does, see the manual page for sigaction and look for

* SA_NOCLDWAIT. Signal is an older signal interface which when

* invoked this way is equivalent to setting SA_NOCLDWAIT. */

signal (SIGCHLD, SIG_IGN);

ss = tcpserv (FINGER_PORT);

if (ss < 0)

exit (1);

for (;;) {

sinlen = sizeof (sin);

cs = accept (ss, (struct sockaddr *) &sin, &sinlen);

if (cs < 0) {

perror ("accept");

exit (1);

}

printf ("connection from %s\n", inet_ntoa (sin.sin_addr));

pid = fork ();

if (!pid)

/* Child process */

runfinger (cs);

close (cs);

}

}

12

3 Non-blocking I/O

3.1 The O NONBLOCK ag

The �nger client in Section 2.3 is only as fast as the server to which it talks. When the
program calls connect, read, and sometimes even write, it must wait for a response from the
server before making any further progress. This doesn't ordinarily pose a problem; if �nger
blocks, the operating system will schedule another process so the CPU can still perform
useful work.

On the other hand, suppose you want to �nger some huge number of users. Some servers
may take a long time to respond (for instance, connection attempts to unreachable servers
will take over a minute to time out). Thus, your program itself may have plenty of useful
work to do, and you may not want to schedule another process every time a server is slow
to respond.

For this reason, Unix allows �le descriptors to be placed in a non-blocking mode. A bit
associated with each �le descriptor O NONBLOCK, determines whether it is in non-blocking
mode or not. Section 3.4 shows some utility functions for non-blocking I/O. The function
make async sets the O NONBLOCK bit of a �le descriptor non-blocking with the fcntl system
call.

Many system calls behave slightly di�erently on �le descriptors which have O NONBLOCK

set:

� read. When there is data to read, read behaves as usual. When there is an end of �le,
read still returns 0. If, however, a process calls read on a non-blocking �le descriptor
when there is no data to be read yet, instead of waiting for data, read will return �1
and set errno to EAGAIN.

� write. Like read, write will return 0 on an end of �le, and �1 with an errno of EAGAIN
if there is no bu�er space. If, however, there is some bu�er space but not enough to
contain the entire write request, write will take as much data as it can and return a
value smaller than the length speci�ed as its third argument. Code must handle such
\short writes" by calling write again later on the rest of the data.

� connect. A TCP connection request requires a response from the listening server.
When called on a non-blocking socket, connect cannot wait for such a response before
returning. For this reason, connect on a non-blocking socket usually returns �1 with
errno set to EINPROGRESS. Occasionally, however, connect succeeds or fails immediately
even on a non-blocking socket, so you must be prepared to handle this case.

� accept. When there are connections to accept, accept will behave as usual. If there are
no pending connections, however, accept will return �1 and set errno to EWOULDBLOCK.
It's worth noting that �le descriptors returned by accept have O NONBLOCK clear, whether
or not the listening socket is non-blocking. In a asynchronous servers, one often sets
O NONBLOCK immediately on any �le descriptors accept returns.

13

3.2 select: Finding out when sockets are ready

O NONBLOCK allows an application to keep the CPU when an I/O system call would ordinarily
block. However, programs can use several non-blocking �le descriptors and still �nd none
of them ready for I/O. Under such circumstances, programs need a way to avoid wasting
CPU time by repeatedly polling individual �le descriptors. The select system call solves this
problem by letting applications sleep until one or more �le descriptors in a set is ready for
I/O.

select usage

� int select (int nfds, fd_set *rfds, fd_set *wfds, fd_set *efds,

struct timeval *timeout);

select takes pointers to sets of �le descriptors and a timeout. It returns when one or
more of the �le descriptors are ready for I/O, or after the speci�ed timeout. Before
returning, select modi�es the �le descriptor sets so as to indicate which �le descriptors
actually are ready for I/O. select returns the number of ready �le descriptors, or �1
on an error.

select represents sets of �le descriptors as bit vectors|one bit per descriptor. The �rst
bit of a vector is 1 if that set contains �le descriptor 0, the second bit is 1 if it contains
descriptor 1, and so on. The argument nfds speci�es the number of bits in each of the
bit vectors being passed in. Equivalently, nfds is one more than highest �le descriptor
number select must check on.

These �le descriptor sets are of type fd set. Several macros in system header �les
allow easy manipulation of this type. If fd is an integer containing a �le descriptor,
and fds is a variable of type fd set, the following macros can manipulate fds:

{ FD_ZERO (&fds);

Clears all bits in a fds.

{ FD_SET (fd, &fds);

Sets the bit corresponding to �le descriptor fd in fds.

{ FD_CLR (fd, &fds);

Clears the bit corresponding to �le descriptor fd in fds.

{ FD_ISSET (fd, &fds);

Returns a true if and only if the bit for �le descriptor fd is set in fds.

select takes three �le descriptor sets as input. rfds speci�es the set of �le descriptors
on which the process would like to perform a read or accept. wfds speci�es the set
of �le descriptors on which the process would like to perform a write. efds is a set
of �le descriptors for which the process is interested in exceptional events such as the
arrival of out of band data. In practice, people rarely use efds. Any of the fd set *

arguments to select can be NULL to indicate an empty set.

14

The argument timeout speci�es the amount of time to wait for a �le descriptor to
become ready. It is a pointer to a structure of the following form:

struct timeval {

long tv_sec; /* seconds */

long tv_usec; /* and microseconds */

};

timeout can also be NULL, in which case select will wait inde�nitely.

Tips and subtleties

File descriptor limits. Programmers using select may be tempted to write code capable
of using arbitrarily many �le descriptors. Be aware that the operating system limits the
number of �le descriptors a process can have. If you don't bound the number of descriptors
your program uses, you must be prepared for system calls like socket and accept to fail with
errors like EMFILE. By default, a modern Unix system typically limits processes to 64 �le
descriptors (though the setrlimit system call can sometimes raise that limit substantially).
Don't count on using all 64 �le descriptors, either. All processes inherit at least three �le
descriptors (standard input, output, and error), and some C library functions need to use
�le descriptors, too. It should be safe to assume you can use 56 �le descriptors, though.

If you do raise the maximum number of �le descriptors allowed to your process, there
is another problem to be aware of. The fd set type de�nes a vector with FD SETSIZE bits
in it (typically 256). If your program uses more than FD SETSIZE �le descriptors, you must
allocate more memory for each vector than than an fd set contains, and you can no longer
use the FD ZERO macro.

Using select with connect. After connecting a non-blocking socket, you might like to
know when the connect has completed and whether it succeeded or failed. TCP servers can
accept connections without writing to them (for instance, our �nger server waited to read a
username before sending anything back over the socket). Thus, selecting for readability will
not necessarily notify you of a connect's completion; you must check for writability.

When select does indicate the writability of a non-blocking socket with a pending connect,
how can you tell if that connect succeeded? The simplest way is to try writing some data to
the �le descriptor to see if the write succeeds. This approach has two small complications.
First, writing to an unconnected socket does more than simply return an error code; it kills
the current process with a SIGPIPE signal. Thus, any program that risks writing to an
unconnected socket should tell the operating system that it wants to ignore SIGPIPE. The
signal system call accomplishes this:

signal (SIGPIPE, SIG_IGN);

The second complication is that you may not have any data to write to a socket, yet still wish
to know if a non-blocking connect has succeeded. In that case, you can �nd out whether a
socket is connected with the getpeername system call. getpeername takes the same argument
types as accept, but expects a connected socket as its �rst argument. If getpeername returns

15

0 (meaning success), then you know the non-blocking connect has succeeded. If it returns
�1, then the connect has failed.

Example

Section 3.4 shows a simple select-based dispatcher. There are three functions:

� void cb_add (int fd, int write, void (*fn)(void *), void *arg);

Tells the dispatcher to call function fn with argument arg when �le descriptor fd is
ready for reading, if write is 0, or writing, otherwise.

� void cb_free (int fd, int write);

Tells the dispatcher it should no longer call any function when �le descriptor fd is
ready for reading or writing (depending on the value of write).

� void cb_check (void);

Wait until one or more of the registered �le descriptors is ready, and make any appro-
priate callbacks.

The function cb add maintains two fd set variables, rfds for descriptors with read
callbacks, and wfds for ones with write callbacks. It also records the function calls it needs
to make in two arrays of cb (\callback") structures.

cb check calls select on the �le descriptors in rfds and wfds. Since select overwrites the
fd set structures it gets, cb check must �rst copy the sets it is checking. cb check then
loops through the sets of ready descriptors making any appropriate function calls.

3.3 async.h: Interface to async.c

#ifndef _ASYNC_H_ /* Guard against multiple inclusion */

#define _ASYNC_H_ 1

/* Enable stress-tests. */

/* #define SMALL_LIMITS 1 */

#include <sys/types.h>

#if __GNUC__ != 2

/* The __attribute__ keyword helps make gcc -Wall more useful, but

* doesn't apply to other C compilers. You don't need to worry about

* what __attribute__ does (though if you are curious you can consult

* the gcc info pages). */

#define __attribute__(x)

#endif /* __GNUC__ != 2 */

/* 1 + highest file descriptor number expected */

#define FD_MAX 64

/* The number of TCP connections we will use. This can be no higher

16

* than FD_MAX, but we reserve a few file descriptors because 0, 1,

* and 2 are already in use as stdin, stdout, and stderr. Moreover,

* libc can make use of a few file descriptors for functions like

* gethostbyname. */

#define NCON_MAX FD_MAX - 8

void fatal (const char *msg, ...)

__attribute__ ((noreturn, format (printf, 1, 2)));

void make_async (int);

/* Malloc-like functions that don't fail. */

void *xrealloc (void *, size_t);

#define xmalloc(size) xrealloc (0, size)

#define xfree(ptr) xrealloc (ptr, 0)

#define bzero(ptr, size) memset (ptr, 0, size)

void cb_add (int, int, void (*fn)(void *), void *arg);

void cb_free (int, int);

void cb_check (void);

#endif /* !_ASYNC_H_ */

3.4 async.c: Handy routines for asynchronous I/O

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <stdarg.h>

#include <fcntl.h>

#include <string.h>

#include <errno.h>

#include <assert.h>

#include <sys/socket.h>

#include "async.h"

/* Callback to make when a file descriptor is ready */

struct cb {

void (*cb_fn) (void *); /* Function to call */

void *cb_arg; /* Argument to pass function */

};

static struct cb rcb[FD_MAX], wcb[FD_MAX]; /* Per fd callbacks */

static fd_set rfds, wfds; /* Bitmap of cb's in use */

void

cb_add (int fd, int write, void (*fn)(void *), void *arg)

{

struct cb *c;

assert (fd >= 0 && fd < FD_MAX);

c = &(write ? wcb : rcb)[fd];

c->cb_fn = fn;

c->cb_arg = arg;

17

FD_SET (fd, write ? &wfds : &rfds);

}

void

cb_free (int fd, int write)

{

assert (fd >= 0 && fd < FD_MAX);

FD_CLR (fd, write ? &wfds : &rfds);

}

void

cb_check (void)

{

fd_set trfds, twfds;

int i, n;

/* Call select. Since the fd_sets are both input and output

* arguments, we must copy rfds and wfds. */

trfds = rfds;

twfds = wfds;

n = select (FD_MAX, &trfds, &twfds, NULL, NULL);

if (n < 0)

fatal ("select: %s\n", strerror (errno));

/* Loop through and make callbacks for all ready file descriptors */

for (i = 0; n && i < FD_MAX; i++) {

if (FD_ISSET (i, &trfds)) {

n--;

/* Because any one of the callbacks we make might in turn call

* cb_free on a higher numbered file descriptor, we want to make

* sure each callback is wanted before we make it. Hence check

* rfds. */

if (FD_ISSET (i, &rfds))

rcb[i].cb_fn (rcb[i].cb_arg);

}

if (FD_ISSET (i, &twfds)) {

n--;

if (FD_ISSET (i, &wfds))

wcb[i].cb_fn (wcb[i].cb_arg);

}

}

}

void

make_async (int s)

{

int n;

/* Make file file descriptor nonblocking. */

if ((n = fcntl (s, F_GETFL)) < 0

|| fcntl (s, F_SETFL, n | O_NONBLOCK) < 0)

fatal ("O_NONBLOCK: %s\n", strerror (errno));

18

/* You can pretty much ignore the rest of this function... */

/* Many asynchronous programming errors occur only when slow peers

* trigger short writes. To simulate this during testing, we set

* the buffer size on the socket to 4 bytes. This will ensure that

* each read and write operation works on at most 4 bytes--a good

* stress test. */

#if SMALL_LIMITS

#if defined (SO_RCVBUF) && defined (SO_SNDBUF)

/* Make sure this really is a stream socket (like TCP). Code using

* datagram sockets will simply fail miserably if it can never

* transmit a packet larger than 4 bytes. */

{

int sn = sizeof (n);

if (getsockopt (s, SOL_SOCKET, SO_TYPE, (char *)&n, &sn) < 0

|| n != SOCK_STREAM)

return;

}

n = 4;

if (setsockopt (s, SOL_SOCKET, SO_RCVBUF, (void *)&n, sizeof (n)) < 0)

return;

if (setsockopt (s, SOL_SOCKET, SO_SNDBUF, (void *)&n, sizeof (n)) < 0)

fatal ("SO_SNDBUF: %s\n", strerror (errno));

#else /* !SO_RCVBUF || !SO_SNDBUF */

#error "Need SO_RCVBUF/SO_SNDBUF for SMALL_LIMITS"

#endif /* SO_RCVBUF && SO_SNDBUF */

#endif /* SMALL_LIMITS */

/* Enable keepalives to make sockets time out if servers go away. */

n = 1;

if (setsockopt (s, SOL_SOCKET, SO_KEEPALIVE, (void *) &n, sizeof (n)) < 0)

fatal ("SO_KEEPALIVE: %s\n", strerror (errno));

}

void *

xrealloc (void *p, size_t size)

{

p = realloc (p, size);

if (size && !p)

fatal ("out of memory\n");

return p;

}

void

fatal (const char *msg, ...)

{

va_list ap;

fprintf (stderr, "fatal: ");

va_start (ap, msg);

vfprintf (stderr, msg, ap);

va_end (ap);

19

exit (1);

}

3.5 Putting it all together

We now present an example that demonstrates the power of non-blocking socket I/O. Sec-
tion 3.6 shows the source code to multi�nger|an asynchronous �nger client. When �ngering
many hosts, multi�nger performs an order of magnitude better than a traditional Unix �nger
client. It connects to NCON MAX hosts in parallel using non-blocking I/O. Some simple testing
showed this client could �nger 1,000 hosts in under 2 minutes.

3.6 multifinger.c: A mostly3 asynchronous �nger client

#include <stdio.h>

#include <unistd.h>

#include <string.h>

#include <errno.h>

#include <netdb.h>

#include <signal.h>

#include <netinet/in.h>

#include <sys/types.h>

#include <sys/socket.h>

#include "async.h"

#define FINGER_PORT 79

#define MAX_RESP_SIZE 16384

struct fcon {

int fd;

char *host; /* Host to which we are connecting */

char *user; /* User to finger on that host */

int user_len; /* Lenght of the user string */

int user_pos; /* Number bytes of user already written to network */

void *resp; /* Finger response read from network */

int resp_len; /* Number of allocated bytes resp points to */

int resp_pos; /* Number of resp bytes used so far */

};

int ncon; /* Number of open TCP connections */

static void

fcon_free (struct fcon *fc)

{

if (fc->fd >= 0) {

cb_free (fc->fd, 0);

cb_free (fc->fd, 1);

close (fc->fd);

ncon--;

3gethostbyname performs synchronous socket I/O.

20

}

xfree (fc->host);

xfree (fc->user);

xfree (fc->resp);

xfree (fc);

}

void

finger_done (struct fcon *fc)

{

printf ("[%s]\n", fc->host);

fwrite (fc->resp, 1, fc->resp_pos, stdout);

fcon_free (fc);

}

static void

finger_getresp (void *_fc)

{

struct fcon *fc = _fc;

int n;

if (fc->resp_pos == fc->resp_len) {

fc->resp_len = fc->resp_len ? fc->resp_len << 1 : 512;

if (fc->resp_len > MAX_RESP_SIZE) {

fprintf (stderr, "%s: response too large\n", fc->host);

fcon_free (fc);

return;

}

fc->resp = xrealloc (fc->resp, fc->resp_len);

}

n = read (fc->fd, fc->resp + fc->resp_pos, fc->resp_len - fc->resp_pos);

if (n == 0)

finger_done (fc);

else if (n < 0) {

if (errno == EAGAIN)

return;

else

perror (fc->host);

fcon_free (fc);

return;

}

fc->resp_pos += n;

}

static void

finger_senduser (void *_fc)

{

struct fcon *fc = _fc;

int n;

n = write (fc->fd, fc->user + fc->user_pos, fc->user_len - fc->user_pos);

21

if (n <= 0) {

if (n == 0)

fprintf (stderr, "%s: EOF\n", fc->host);

else if (errno == EAGAIN)

return;

else

perror (fc->host);

fcon_free (fc);

return;

}

fc->user_pos += n;

if (fc->user_pos == fc->user_len) {

cb_free (fc->fd, 1);

cb_add (fc->fd, 0, finger_getresp, fc);

}

}

static void

finger (char *arg)

{

struct fcon *fc;

char *p;

struct hostent *h;

struct sockaddr_in sin;

p = strrchr (arg, '@');

if (!p) {

fprintf (stderr, "%s: ignored -- not of form 'user@host'\n", arg);

return;

}

fc = xmalloc (sizeof (*fc));

bzero (fc, sizeof (*fc));

fc->fd = -1;

fc->host = xmalloc (strlen (p));

strcpy (fc->host, p + 1);

fc->user_len = p - arg + 2;

fc->user = xmalloc (fc->user_len + 1);

memcpy (fc->user, arg, fc->user_len - 2);

memcpy (fc->user + fc->user_len - 2, "\r\n", 3);

h = gethostbyname (fc->host);

if (!h) {

fprintf (stderr, "%s: hostname lookup failed\n", fc->host);

fcon_free (fc);

return;

}

fc->fd = socket (AF_INET, SOCK_STREAM, 0);

if (fc->fd < 0)

fatal ("socket: %s\n", strerror (errno));

22

ncon++;

make_async (fc->fd);

bzero (&sin, sizeof (sin));

sin.sin_family = AF_INET;

sin.sin_port = htons (FINGER_PORT);

sin.sin_addr = *(struct in_addr *) h->h_addr;

if (connect (fc->fd, (struct sockaddr *) &sin, sizeof (sin)) < 0

&& errno != EINPROGRESS) {

perror (fc->host);

fcon_free (fc);

return;

}

cb_add (fc->fd, 1, finger_senduser, fc);

}

int

main (int argc, char **argv)

{

int argno;

/* Writing to an unconnected socket will cause a process to receive

* a SIGPIPE signal. We don't want to die if this happens, so we

* ignore SIGPIPE. */

signal (SIGPIPE, SIG_IGN);

/* Fire off a finger request for every argument, but don't let the

* number of outstanding connections exceed NCON_MAX. */

for (argno = 1; argno < argc; argno++) {

while (ncon >= NCON_MAX)

cb_check ();

finger (argv[argno]);

}

while (ncon > 0)

cb_check ();

exit (0);

}

4 Finding out more

This document outlines the system calls needed to perform network I/O on UNIX systems.
You may �nd that you wish to know more about the workings of these calls when you are
programming. Fortunately these system calls are documented in detail in the Unix manual
pages, which you can access via the man command. Section 2 of the manual corresponds
to system calls. To look up the manual page for a system call such as socket, you can
simply execute the command \man socket." Unfortunately, some system calls such as write
have names that conict with Unix commands. To see the manual page for write, you must
explicitly specify section two of the manual page, which you can do with \man 2 write"

23

on BSD machines or \man -s 2 write" on System V. If you are unsure in which section of
the manual to look for a command, you can run \whatis write" to see a list of sections in
which it appears.

24

