
Efficient Routing Implementation in Complex
Systems-on-Chip Designs

José Cano
Parallel Architectures Group

Universitat Politècnica de
València, Spain

jocare@gap.upv.es

José Flich
Parallel Architectures Group

Universitat Politècnica de
València, Spain

jflich@disca.upv.es

José Duato
Parallel Architectures Group

Universitat Politècnica de
València, Spain

jduato@disca.upv.es
Marcello Coppola
STMicroelectronics
Grenoble, France

marcello.coppola@st.com

Riccardo Locatelli
STMicroelectronics
Grenoble, France

riccardo.locatelli@st.com

ABSTRACT
In application-specific SoCs, the irregularity of the topology
ends up in a complex implementation of the routing algo-
rithm, usually relying on routing tables implemented with
memory structures. As system size increases, the routing
table increases in size with non-negligible impact on power,
area and latency overheads. In this paper we present a rout-
ing implementation for application-specific SoCs able to im-
plement in an efficient manner (without requiring routing
tables and using a small logic block in every switch) a rout-
ing algorithm in these irregular networks. The mechanism
relies on a tool that maps the initial irregular topology of the
SoC system into a logical regular structure where the mech-
anism can be applied. We provide details on the mapping
tool as well the proposed routing mechanism. Evaluation
results show the effectiveness of the mapping tool as well
as the low area and timing requirements of the mechanism.
With the mapping tool and the routing mechanism complex
irregular SoC topologies can now be supported without the
use of routing tables.

Categories and Subject Descriptors
C.2.2 [Processor architectures]: Other Architecture Styles
—Heterogeneous (hybrid) systems; C.2.2 [Computer Com-
munication Networks]: Network Protocols—Routing pro-
tocols; D.2.8 [Software Engineering]: Metrics—Perfor-
mance measures

General Terms
Design, Experimentation

Keywords
Systems-on-Chip; Networks-on-Chip; Routing

.

1. INTRODUCTION
As technology advances, systems-on-chip (SoC) designs

become more complex with the inclusion of many IP com-
ponents. Tens (and in the near future several hundreds) of
elements need to be connected within the same chip, thus re-
quiring an efficient on-chip interconnect. Usually, the system
is designed taking into account the future application that
will be running on the system, thus, the design is customized
and adapted to the application needs. Traffic patterns are
known in advance, and the interconnect is customized. The
net result of such design approach is a network within the
chip [1, 2] with no regular shape and with varying switch
complexities and link bandwidths. Figure 1 shows a pos-
sible example where IP blocks are connected by using an
on-chip network with 28 switches. The target utility of this
example (and similar ones) could be a high-end home multi-
media entertainment subsystem or an application processor.
As can be observed, the network topology is totally irregular
and heterogeneous.

Figure 1: Example of a complex irregular topology
for an application-specific SoC system. P means
producers and C means consumers.

Two key pillars of an interconnect are the topology and
the routing algorithm. The topology sets the physical con-
nection pattern between end nodes and, as indicated previ-
ously, in application-specific SoC systems is usually irregu-
lar. However, there are other topologies with regular pat-
terns like 2D meshes, tori and fat trees, mostly used in other
environments like Chip MultiProcessor (CMP) systems.



The routing algorithm, on the other hand, sets the paths
that messages need to take within the network. One im-
portant issue in the routing algorithm is the prevention of
deadlock. A deadlock situation occurs when messages in the
network block cyclically forever as they request resources al-
ready occupied by other messages. Since message dropping
(and later retransmission) is not efficient in such systems,
the routing algorithm needs to be designed carefully in or-
der to prevent any potential deadlock situation.

Once the topology is set, then, the routing algorithm
needs to be applied and messages need to be instructed
about the paths to follow. In order to implement the rout-
ing algorithm two trends can be followed: source routing
[3] and distributed routing [3]. In source routing, the entire
path of the message is encoded in the message header, and
switches simply read the header and take the corresponding
output port to forward the message. In this case, the sender
node has memory blocks (tables) to encode all the possible
paths for every destination node. Also, as the system size
increases, paths tend to increase and the packet header in-
creases, thus sometimes requiring more network bandwidth.
In distributed routing, the message header includes the des-
tination identifier and switches are in charge of computing
the appropriate output port for the message. In this situa-
tion, the length of the header is independent of the system
size. However, switches need to implement the routing al-
gorithm.

Today, few MPSoC systems are using regular topologies
(like picoArray technology [4], Tilera products [5] and AsAP
[6]). In these cases, a simple, yet powerful, routing algorithm
(e.g. DOR routing [3]) can be implemented with minimum
cost (few gates) on every switch (distributed routing). Sim-
ply, the coordinates of the destination switch in the message
are compared with the coordinates of the current switch.

Contrary to this, the majority of application-specific SoC
systems in current products are using irregular topologies
based on well-known on-chip technologies (examples are Spi-
dergon STNoC [7], Arteris NoC [8], Sonics MicroNetwork
[9] and AMBA [10]). Those irregular solutions are mainly
based on source routing and address decoding, and normally
need a complex implementation of the routing algorithm
(with routing tables using memory structures). Indeed, the
lack of regularity in the topology prevents simplifications in
the routing algorithm design. As system size increases, the
routing table increases in size with non-negligible impact on
power, area and latency overheads (for a comparison be-
tween logic-based routing and tables, refer to [11]).

In this paper we address the implementation of the rout-
ing algorithm in application-specific SoC systems where the
topology is set by the application, thus being totally irreg-
ular. The aim is to design a mechanism and an algorithm
that enables the use of table-less distributed routing on ev-
ery switch with a constant and reduced logic cost, regardless
of system size.

The proposal builds from the LBDR (Logic-Based Dis-
tributed Routing) mechanism [11], a previous proposal suited
for CMPs and high-end MPSoC systems where initial regu-
lar 2D mesh topologies are used but manufacturing defects
end up inducing some irregularities in the topology. LBDR is
able to implement in an efficient manner (without requiring
routing tables) a routing algorithm in most of these topolo-
gies. In this paper we extend the LBDR approach to cover
complex topologies derived from SoC designs, thus enabling
the use of the LBDR approach in application-specific SoC
systems. We also provide a tool able to map the initial ir-
regular topology into a logical regular structure where the
enhanced LBDR approach can be used. By doing this, the
routing algorithm can be efficiently implemented in the SoC

design with no need of routing tables and with no topology
change.

The rest of the paper is organized as follows. Section 2
shows the related work with some routing solutions for irreg-
ular topologies. In Section 3 we first describe the concrete
contribution of the paper in a preliminary subsection, in or-
der to clarify and focus the description of the mechanism
and the mapping tool. Then, we describe the LBDRx mech-
anism to cover practical topologies from SoC designs. In
Section 4 we describe the mapping tool. Finally, in Section
5 we provide evaluation results and conclude the paper in
Section 6.

2. RELATED WORK
There has been considerable work on routing algorithms

for irregular NoCs. In [12], authors use well-known princi-
ples from parallel computer architecture to develop a dead-
lock free highly adaptive solution for irregular mesh-based
NoCs. Bolotin et al. [13] propose three hardware efficient
routing methods that combine a fixed routing function (such
as XY routing) and reduced size routing tables based on dis-
tributed and source routing techniques. For each method,
they developed path selection algorithms that minimize the
overall cost. Finally, in [14], authors propose a synthesis ap-
proach that, depending on the degree of routing flexibility,
can reduce very significantly the area cost of the configurable
source routing tables by adopting partially reprogrammable
routing logic instead of fully reprogrammable tables. Con-
figurable routing provides intelligent adaptation without im-
pacting the consistency of traffic flows.

None of the solutions shown allow the implementation of
distributed routing algorithms in irregular NoCs topologies
with no routing tables and minimum logic. In general, in
application-specific designs, the topology is set without ac-
counting for the routing algorithm. Once set, routing paths
are searched and their implementation is assumed to be with
routing tables, due to the excessive irregularity required by
the application. Our approach tries to remove tables in such
environment by minimizing and condensing all the routing
information in a small and bounded set of bits.

3. LBDRX DESCRIPTION
The description of the proposed LBDRx mechanism will

be presented as an evolution from the basic LBDR mech-
anism previously proposed (with low coverage for complex
irregular topologies) to the most enhanced version (with full
coverage to all the complex topologies analyzed).

3.1 Preliminary: Basic Idea
Prior to describing the mechanism and the mapping tool,

we need, however, to briefly describe the basic idea. In reg-
ular networks, e.g. a 2D mesh network, the regular con-
nectivity pattern is useful when designing the routing algo-
rithm. Indeed, with the Dimension-Order routing (DOR),
the implementation is quite straightforward as messages are
forwarded with minimal paths first in the X direction and
then in the Y direction. Thus, there is no need for a rout-
ing table, only a set of gates is enough. This renders to an
efficient implementation in terms of area, power, and delay.

If we consider small irregularities on 2D-mesh networks,
for instance due to manufacturing defects, then the inherent
irregularity complicates the routing implementation. For in-
stance, DOR is no longer valid as some paths are not possi-
ble now. However, other routing algorithms are still suitable
for such topologies, for instance, topology-agnostic routing
algorithms like up*/down* [15]. Their implementation is
usually performed with routing tables. Efforts to provide



efficient implementations of such algorithms in those irregu-
lar topologies have been performed in the recent years. One
important method is LBDR, which collapses all the routing
information required on every switch on a small set of bits,
thus reducing significantly implementation costs. LBDR
still relies on the fact that the topology is a 2D mesh net-
work but with some missing links. Adding some bits enables
LBDR to successfully deal with the irregularity induced by
missing links. However, LBDR still relies on the fact that
every switch has at most four links connecting neighboring
switches (at North, East, West, or South directions).

LBDR uses, as DOR does, the coordinates of the des-
tination switch in the message and the coordinates of the
current switch, to compute the appropriate set of output
ports. Thus, LBDR still benefits from the original 2D-mesh
layout.

In this paper, what we propose is the extension and ap-
plicability of the LBDR concept to truly application-specific
and irregular networks (as an example see Figure 1). The
approach we follow is to map the topology into a 2D grid (no-
tice, however, we do not change the initial topology). Once
the topology is mapped, we need to provide coordinates to
every switch in the network. Based on the coordinates of
the destination switch and the current switch, the derived
LBDR logic will decide the output port that needs to be
used to forward the packet towards its destination. In order
to correctly map the topology into a 2D grid we have de-
veloped a mapping algorithm that will search the space of
combinations and will deliver the most suitable ones, always
guaranteeing deadlock freedom and connectivity.

Due to the mapping performed, and because of the high
irregularity we will find, some switches will require a varying
number of ports to connect to other switches, and in that
situation some links will connect switches not placed closely
in the 2D grid. This kind of connectivity has not been pro-
vided by the original LBDR mechanism, and thus, requires
modifications. In this paper, we further extend LBDR for
its support in this kind of mappings.

3.2 LBDR Extension: LBDRx
We start the description with the mechanism required at

every switch to deal with the irregular topologies. In order
to be concise, we take as a reference the mapping of the ini-
tial topology (shown in Figure 1) that appears on Figure 2.
This mapping is obtained with the mapping tool that will
be described in the next section. The mapping is represen-
tative of all the connectivity patterns between switches that
we need to address in this section.

Figure 2: Mapping example for the initial topology.

As we can see in the figure, there are switches with vary-
ing connectivity patterns with other switches. For instance,
switch 1, mapped at row 2 and column 2, is connected to
switches 4, 2, and 21 with different link mapped lengths. 1

In particular, mapped length of links are 2 hops for links
connecting to switches 2 and 4, and 3 hops for the link con-
necting to switch 21. In addition, links with the same num-
ber of mapped hops have different orientations/directions,
thus, being different. This is the case for link connecting to
switch 4 which is located one hop north and one hop west
from switch 1, and link connecting to switch 2 that is two
hops north.

As previously described, LBDR relies on switches with
up to four ports, and each one connecting switches in one
direction in the 2D mesh plane (N, E, W and S). Also, the
maximum distance covered with a link is 1 hop in the 2D
grid. Thus, the links with higher mapping lengths are not
supported, and thus, the mapped topology is not supported
by LBDR.

In order to overcome this limitation, the new mechanism,
LBDRx, allows for switches with up to 20 ports for connect-
ing to other switches (ports used to connect end nodes are
excluded). Also, any of these ports can be configured as a
1-hop port, a 2-hop port, or a 3-hop port. A X-hop port con-
nects two switches that are at mapping distance X. In order
to uniformly refer to X-hop ports, we define additional di-
rections. In particular, 20 different directions are supported
for the ports, and each of the 20 possible ports of the switch
can be configured to any of the 20 directions. The supported
directions are: the initial 1-hop four directions (supported
by LBDR): N, E, W, S; four 2-hop straight directions NN
(two hops along the north direction), SS, EE, WW; four
2-hop diagonal directions NE (one hop north and one hop
east), NW, SE, SW; and eight 3-hop directions: NNE, EEN,
EES, SSE, SSW, WWS, WWN, NNW. Figure 3 shows all
the possible port directions supported by LBDRx.

Figure 3: Possible directions in LBDRx.

Simplified versions of the mechanism can be conceived by
restricting the type of ports that can be supported. For in-
stance, a LDBR mechanism is embedded in the proposed
mechanism when only 1-hop ports are allowed. Another im-
plementation is allowing 1-hop and 2-hop ports only, thus
obtaining a LBDR2 mechanism. Therefore, the LBDRx pro-
posal can be seen as a method to further extend the connec-
tivity of switches when mapped on a 2D grid. As we will see

1It is worth mentioning that the link length is set in the orig-
inal unmapped topology (Figure 1) and the showed length
in the mapped topology (Figure 2) is the same, although in
the grid is set by the number of hops in each direction. We
will refer to physical length for original unmapped topolo-
gies, and to mapped lengths for link lengths in the mapping
layout.



in the evaluation section, LBDR3 is enough to map all the
tested topologies, thus not requiring a more complex imple-
mentation. Anyway, we will show also results for the LBDR2
approach. As an example, the mapped topology in Figure
2 requires some ports being 3-hops (link from switch 1 to
switch 21), thus not being suitable for an LBDR2 approach.

It is worth mentioning that, although 20 ports are allowed
on every switch, not all of them need to be implemented. In-
deed, only a subset of ports will be implemented, e.g. switch
1 at Figure 2 will be implemented with only 3 output ports.

Figure 4: Logic of LBDRx.

The logic required for LBDRx is shown in Figure 4. The
mechanism relies on some configuration bits grouped in two
sets: routing bits and connectivity bits. Routing bits indi-
cate which routing options can be taken, whereas connec-
tivity bits indicate whether a switch is connected with its
neighbors. As an alternative view, the connectivity bits set
the mapped topology and the routing bits set the routing
algorithm. As we support 20-port switches, at maximum
we will have 20 connectivity bits per switch. We represent
the connectivity bit for a port X as Cx, where X can be a
possible direction of any mapped port (N, E, W, S, NN, NE,
..., NNE, ...). Notice these bits will be hardwired depending
on the final topology and the radix of each switch, thus not
being implemented with flip-flop registers.

The routing bits Rxy (where x and y can be n, e, w, and
s) indicate whether messages routed through the x output
port may take at the next switch the y port. In other words,
these bits indicate whether messages are allowed to change
direction at the next switch. The value of these bits is com-
puted in accordance to the applied routing algorithm and
to prevent deadlock while still guaranteeing connectivity. In
order to simplify the routing logic, however, not all the pos-
sible routing bits are implemented. Indeed, no new routing
bits are used except those already defined in LBDR: Rne,
Rnw, Ren, Res, Rwn, Rws, Rse, Rsw. Notice that routing
bits are used only between 1-hop links. By default, the LB-
DRx mechanism will assume messages can take 2-hop and
3-hop links without restriction along their path without risk
of inducing deadlock. The mapping strategy described in
section 4 will guarantee in those cases the absence of dead-
locks. Although allowing more routing bits would lead to
greater flexibility, we noticed that they are not needed in

order to reach our objective (shown in the evaluation sec-
tion). This will also help to keep a low implementation cost
of the mechanism.

Routing logic of LBDRx is divided into two parts (see Fig-
ure 4). The first part of the logic computes the relative posi-
tion of the message’s destination. For this, two comparators
are used and coordinates of the current switch (Xcurr and
Ycurr) are compared with the coordinates of the message’s
destination (Xdst and Ydst) located in the message header.
At the output of this logic one or two signals may be active
(e.g. if the packet’s destination is in the NW quadrant then
N’ and W’ signals are active at the same time). Note also
that packets forwarded to the local port are excluded from
the routing logic.

Additionally, four extra signals, NN’, EE’, WW’ and SS’
are computed. These signals are set to one if the message’s
destination is at least two hops away in the corresponding
direction (if NN’ is active, then at least two hops must be
performed in the N direction to get closer to its destina-
tion). These signals can be easily computed with additional
comparators with the Xcurr and Ycurr coordinates shifted in
one position. Notice that in some situations different signals
will be active at the same time, for instance signals NN’ and
N’. These cases are filtered in the second part of the logic.
Higher priority will be given to larger hop ports. We re-
fer to the signals produced by the comparators as intended
direction signals.

Once the direction signals are computed, the second part
of the logic comes into play. It consists of a logic at each
input port in the switch. Figure 4 shows the details. The
logic is divided in three parts in order to address the logic for
the different type of output ports (1-hop, 2-hop, and 3-hop
ports). Notice that 3-hop ports have the highest priority
followed by 2-hop ports. This means that if a 3-hop output
port is eligible for routing a message then, ports with lower
mapping length will not be considered. To implement this
priority scheme, two control signals (2hop and 3hop signals)
are used. Besides this, the logic to compute 2-hop and 3-hop
ports is quite straightforward. Indeed, a port X is eligible
if the port exists in the switch (Cx bit is set), and the mes-
sage’s destination is in the same direction of the output port
(direction signals). As an example, output port NNE is eli-
gible for routing if the message’s destination is in the NNE
direction (both direction signals NN’ and E’ are set).

The logic for 1-hop ports is, however, slightly more com-
plex. It deals also with the routing bits. The logic, in this
case (excluding the priority signals) is implemented with two
inverters, four AND gates and one OR gate. The logic filters
out the routing options that could lead to deadlock situa-
tions (by using the routing bits). Figure 4 shows the logic
for the North 1-hop output port. As an example, the incom-
ing message is forwarded to the North output port (signal
N” is set) if either one of the following three conditions is
met:

• The message’s destination is on the same column (N ′×
E

′ ×W
′
).

• The message’s destination is on the NE quadrant and
the message is allowed to take the E port at the next
switch through the N port (N ′ × E′ ×Rne).

• The message’s destination is on the NW quadrant and
the message can take the W port at the next switch
through the N port (N ′ ×W ′ ×Rnw).

Obviously, connectivity bits and priority signals are used
in combination with the previous logic. The logic for the
1-hop output ports is the same used in LBDR. For a deeper
description of LBDR, refer to [11].



Figure 5: (a) Non-minimal path support for LBDRx. (b) LBDRx configuration bits (with deroutes) for the
mapping shown in Figure 2 (Routing bits are 1 when no restiction is applied; Connectivity bits are 1 when
the switch is connected to another. Deroute bits are ”A” when the flow departs from itself).

3.3 Support for Non-minimal Mapped Paths
The previous logic guarantees minimal path routing in

the mapped topology. As each output port is used when the
destination is located in the same direction of the output
port, then every hop performed guarantees the message will
get closer to its destination. Indeed, this fact renders with a
very simple implementation of the routing algorithm (as seen
in Figure 4). However, there are mapping cases that can not
be solved with only minimal path support. As an example,
in the mapped topology shown in Figure 2 a message going
from switch 11 (mapped in row 4 and column 3) requires a
mapped non-minimal path to reach switch 21, as it needs to
be forwarded N and then WWS.2 This fact simply renders
the mapped topology as unsupported by LBDRx (Figure 4).

One possible solution is to discard the mapped topology
and obtain one that guarantees all the paths will follow min-
imal paths. Indeed, this is one of the targets of the mapping
tool shown later in the paper. However, in some complex
topologies, this kind of mappings will simply not exist. We
evaluate this issue later. To solve this problem in a smooth
way, and allowing much more flexibility to the mechanism,
we introduce a small additional logic on every input port to
allow such non-minimal path support. Indeed, going back
to the non-minimal path example in the figure, if at switch
11 we force the message to go north, then the message will
be able to reach its final destination and the mapping will
be valid.

Figure 5 (a) shows the logic for the non-minimal support
we propose. The logic is borrowed from [16]. In particular,
the logic forces messages to take a non-minimal port when-
ever the LBDRx logic fails in routing the message. For the
example provided, at switch 11 none of the output ports will
be eligible by LBDRx. Thus, in this case, the logic will take
the configured non-minimal port. In this case, the selected
port is N. The logic requires a configuration register per in-
put port, in our case, of size 5 bits (to select an output port
out of maximum 20 ports). The logic uses a demultiplexer
to decode the output port. Notice that deroutes are taken
only if the LBDRx logic does not provide a valid output
port.

As an overall example, in Figure 2 we can observe how a
message being forwarded from switch 3 to switch 27 is using
the configuration bits shown in Figure 5 (b). At switch
3, the message could take port SSW, or port SS. However,
the 3-hop port (SSW) filters out the 2-hop port (SS). The

2Notice, however, the path in the original unmapped topol-
ogy is minimal and the same.

message, then, moves to switch 1 and from that switch takes
output port SSW again. Finally, at switch 21 the port W
is selected. This example is straightforward, and as can
be easily deduced the way the topology is mapped onto a
2D grid will influence on the applicability of the LBDRx
mechanism.

Furthermore, in Figure 2 two different deroute options
are required for two different input ports at router 11 (see
Figure 5 (b)). If going W, and the message comes from
input port S, then a deroute is set to E. On the other hand,
if the message is coming from SW, and the intention is to
go SSW, then a deroute is set to S. It is worth mentioning
that the deroute option needs to be computed in accordance
to the routing algorithm, as they must not introduce cycles
that could lead to deadlocks. For example, if we would have
a routing restriction South-East at router 11 in Figure 2, a
deroute option at input port S at router 11 can not be set to
E as it would let messages crossing the routing restriction.
In this example, the only restriction is located at router 12.

As a final remark for the LBDRx routing mechanism, its
success depends strongly on the mapping performed for the
topology. Indeed, there are mappings that allow all the links
to conform to the LBDRx link structure (1-hop, 2-hop, 3-hop
links) and there are mappings that have larger links. Also,
there are mappings that introduce deadlocks in the routing
algorithms or even prevent the connectivity between partic-
ular source-destination flows. Therefore, the mapping tool,
described in the next section, is a key element to guarantee
applicability of the LBDRx mechanism.

4. MAPPING TOOL
In this section we describe the mapping tool required by

the LBDRx mechanism. The mapping tool is adapted to
different versions of LBDRx routing, e.g. with 3-hop links,
2-hop links, and with/without non-minimal path support.
The mapping tool takes as an input the topology and the
type of LBDRx support and outputs several possible solu-
tions, each of them able to be used with the target LBDRx
version. Indeed, the mapping tool (see Figure 6) provides
for any possible solution the set of configuration bits to-
gether with the mapping coordinates of every switch into a
2D grid. It is worth highlighting that the mapping tool does
not physically change the topology, indeed it only logically
maps the topology onto a 2D grid.

Figure 7 shows the different stages of the mapping tool.
For the sake of understanding, in the next subsections we
describe the details of each stage along with an example.



Figure 6: Mapping tool.

Figure 7: Stages in the mapping tool.

4.1 Compute Mapping of Switches
The first stage provides an initial mapping of the switches

into a 2D grid. Some basic assumptions are considered:

1. Only links and switches are considered for the map-
ping, thus not considering end nodes.

2. The mapping grid (the diameter of the 2D mesh) will
be minimized and made as square as possible (differ-
ences between diameters of each dimension will be min-
imized).

3. Every possible mapping of switches onto the 2D mesh
is explored, and the best solutions are extracted and
further analyzed (in the following stages).

Figure 8: Example of two initial mappings.

The last assumption may lead to a large number of map-
ping combinations, most of them will result in mappings not
supported by LBDRx. As an example, Figure 8 shows two
possible mappings corresponding to the example topology
provided in Figure 6. Considering LBDR2, at first sight we
cannot deduce which one can be supported. For this, we
need the next step: computing directions and link connec-
tivity (connection pattern).

4.2 Compute the Connection Pattern
For each mapping in the previous step, the connection

pattern needs to be performed. The connection pattern
considers only links connecting switches (switch-to-switch
links) and the direction of each link (unidirectional links are
considered). Several restrictions are enforced in this step
(considering LBDR2):

1. Any switch has at maximum 12 outgoing ports and 12
incoming ports, possibly having less number of ports,
and not necessarily the same number of input and out-
put ports.

2. In every switch one possible direction out of 12 can
be taken, in the 2D mesh mapping, through a single
output port. The directions are the ones supported by
LBDR2 (2-hop and 1-hop links depicted in Figure 3).

Taking into account the previous restrictions, some map-
pings will become not valid, e.g. those with link lengths
longer than the targeted LBDRx version or those that lead
to unconnected networks. In any case, those mappings are
excluded.

Figure 9: Example of (a) connectivity pattern ap-
plied to two different mappings, and (b) mapped
topology with the routing algorithm applied.

Figure 9(a) shows the connectivity pattern for the previ-
ous two mapping cases. As can be seen, the second mapping
case is not compatible with LBDR2 since it contains a 3-hop
link. Furthermore, we can observe how this mapping ends
up in an unconnected network (once the routing algorithm is
applied). The issue comes from the fact that switch 1 cannot
be reached from switch 3 with the LBDR2 logic. From the
point of view of switch 3, switch 1 is at the North-East quad-
rant but there is no North-East link nor any combination of
1-hop links (with North and East directions) leading to the
destination, instead, the North-East-East exists. The first
mapping case does not suffer from that problem, and thus,
that case is compatible with LBDR2. Mappings leading to
unconnected networks are filtered out at this stage. Notice
however, that if we use LBDR3 or deroutes are allowed, both
mappings are, then, supported.

4.3 Compute a Proper Routing Algorithm
Once we have obtained a correct mapping we need to

check whether the mapped topology contains cycles or not.
In that case, in order to avoid cycles, it will be necessary
to apply a routing algorithm. In the first mapping in Fig-
ure 9(a), a cycle can be formed between switches 0, 3, and
2 in the counter clockwise direction. Applying a routing
algorithm on top of the topology will remove such cycle.

In our case, the routing algorithm used is the Segment-
based Routing (SR) [17], a technique that divides the net-
work into segments and puts a routing restriction in each
segment. A routing restriction is placed between two con-
secutive links and prevents any message from using both
links sequentially. Drawing routing restrictions is a way of
representing a routing algorithm since restrictions establish
the allowed paths, those not crossing routing restrictions. In
order to compute the routing restrictions, only 1-hop links
in the mapped topology are assumed. As commented above,
this assumption simplifies the LBDRx logic and still allows
to reach our objective of avoiding cycles. Figure 9(b) shows
the valid mapped topology in Figure 9(a) with the unidirec-
tional routing restriction applied only at switch 2. Notice
that no cycles exist without crossing the routing restriction.
LBDR2 computes the routing bits from the routing restric-
tions defined by the routing algorithm.



4.4 Check Deadlock and Connectivity
The last step of the mapping tool is to verify the mapping

is deadlock-free and guarantees the connectivity of the ini-
tial topology. The routing algorithm applied in the previous
step ensured deadlock-freedom. However, when applying the
routing algorithm and when not using deroutes, some pair of
end nodes may be unconnected. The reason is because LB-
DRx without deroutes relies exclusively on minimal paths,
those always getting closer to its destination (the compara-
tor modules in the first part of the logic enforce this prop-
erty). Therefore, a routing restriction may lead to a path
being routed non-minimally, which needs the use of deroutes
to be supported. At this stage, the tool iterates on all the
communicating flows of the application (a flow is defined as
the path from a producer to a consumer). For each flow, the
tool searches a valid LBDRx path using the connectivity and
routing bits set by the mapped topology. If for a flow, there
is no connectivity, then the mapping is not valid and we will
need either to search a new mapping or use deroutes.

On success of a mapping topology, the final output is the
mapping of each switch into the 2D grid and the configura-
tion (connectivity, routing, and deroute) bits. Notice that
many mapping solutions exists and the mapping tool suc-
ceeds if at least one mapping solution is obtained. Also,
if no mapping solution exists for a grid size, the mapping
tool extends the grid by one row and/or column thus hav-
ing much larger flexibility. However, this will incur in larger
register files at switches to store the relative position of the
switch in the grid. As an example, Figure 2 shows a success-
ful deadlock-free mapping for the initial topology depicted
in Figure 1 where connectivity between switches is assured
(due to its complexity, the version used in order to obtain
that mapping was LBDR3 with deroutes).

Now we describe how deroutes are computed. Once LB-
DRx bits are computed the deroute options are searched.
To do this, the algorithm looks for a valid path for every
source-destination pair (the algorithm is computed offline
before any normal operation of the chip, thus computation
complexity is not a major issue). As LBDRx may allow
multiple paths for a given source-destination, the algorithm
deeply searches all the paths in a recursive way. Two end
nodes are connected by LBDRx if all the possible paths reach
the destination. In the search of all paths, whenever it fails
to provide a valid path, then, a deroute action is needed.

At this stage and at the switch where LBDRx is not pro-
viding a valid output port, the tool tries all the possible
deroute options available, one per output port but avoid-
ing U turns. Options leading to crossing routing restrictions
are also evicted. The algorithm starts with the first deroute
option and keeps following the path, thus taking the der-
oute, checking if the path (and all their possible alternative
paths) will reach the destination. In case of success, the
deroute option is set. In case of failure (destination is not
reached) another deroute option is tried. In case all deroute
options fail the mapping is discarded. Notice that several
deroute options may be required for a single path.

5. EVALUATION
In this section, we provide a comprehensive evaluation

of LBDRx. Firstly, we show the results of applying the
mapping tool to different sets of topologies with increasing
complexity. In second place, all the LBDRx versions are
compared between them and with an example using routing
tables from an implementation cost and efficiency viewpoint,
with a glance at scalability properties (a power compari-
son is available in [18]). Finally, two different mappings of
the same topology are evaluated in terms of performance to
check possible deviations between them.

5.1 Mapping Tool Analysis
Table 1 shows the results of some initial experiments per-

formed in order to test the mapping tool. To this end, we
used several sets of sample topologies (with increasing com-
plexity in each type) corresponding to high-end home mul-
timedia entertainment (sub)systems. The mapping tool was
run in AMD Opteron (2,8 Ghz dual core, 8Gb RAM) com-
puters.

Grid size Correct Deroutes Time

Type 1 4x4 >10.000 not needed 3-5 min

Type 2 5X5 >100.000 not needed 10-15 min

Type 3 5X6 >100.000 not needed 30-45 min

Type 4 5X7 >100.000 10-15 1-2 hours

Figure 1 5X7 578.952 13-15 2 hours

Table 1: Topology mappings

The main purpose was to compute the number of cor-
rect mappings generated for every analyzed topology and
the time required to complete the procedure. In each case,
the table shows the minimum grid size needed to map the
topology (4x4, 5x5, ..., 5x7), the number of correct mappings
obtained and the average number of deroutes used (per map-
ping), if necessary. Note that correct mappings will be those
which met the restrictions imposed by the LBDRx version
applied in each case. In the last column the computation
time to complete the entire process is shown. This time de-
pends mainly on the complexity of each topology, and for
these examples ranges from some minutes to several hours.

5.2 LBDRx vs Routing Tables
LBDRx versions were designed and synthesized with 45nm

Nangate opensource library. Also, comparisons with routing
tables, by using Memaker, are provided. In Figure 10, we
observe that the differences between all the LBDRx versions
are slight in terms of both area and delay. When compared
with a RAM memory of 256 entries, the LBDRx version
are much compact (notice the logarithmic scale). For de-
lay, although similar, the LBDRx versions have lower access
latency.

Figure 10: Area-Delay comparison tests.

5.3 Performance Analysis
Finally, the following graphs compare two different map-

pings of the same topology being simulated into gNoCSim
simulator (a cycle-accurate flit-level simulator). We can ob-
serve that differences are small. The left graph compares the
traffic generated against the traffic actually received. These
values are almost equal until the network is saturated and
received packets remain constant. The right graph compares
the traffic generated against the average network flit latency.

Although we get small differences regarding performance,
however, having different mappings can be useful for select-



Figure 11: Simulation of different mappings.

ing a different path between a set of alternatives. That is,
depending on the nodes location in the 2D mesh and the ver-
sion of LBDRx used, some routes could have preference over
others. In other words, selecting different mappings could
be possible to give preference to some routes without using
any additional logic or mechanism. This is left, however, to
future work.

6. CONCLUSIONS
In this paper we have presented LBDRx, a series of rout-

ing mechanisms (with support to non-minimal paths) for
application-specific SoC systems where the topology is to-
tally irregular. Moreover, we presented a mapping tool able
to obtain different mappings of the same topology onto a 2D
mesh. The main goal of LBDRx is to enable the use of table-
less distributed routing on every switch with a constant and
reduced logic cost, regardless of system size. LBDRx builds
from the Logic-Based Distributed Routing (LBDR) mech-
anism, a previous proposal suited for CMPs and high-end
MPSoC systems. A tool to effectively map irregular topolo-
gies onto a 2D grid has been proposed. The tool is key for
the application of the LBDRx mechanism.

The provided results demonstrate the applicability of the
mapping tool onto a wide set of topologies. In all cases,
a valid mapping was achieved, thus routing tables were re-
placed by the LBDRx mechanism. Implementation costs
also showed the benefits of such replacement.

As future work we plan to further explore the LBDRx
mechanism and the mapping tool, focusing on performance
issues. Different mappings will end up in different perfor-
mance numbers. Thus, we plan to optimize the tool to pro-
vide the best mapping for the target application.

Acknowledgment
This work was supported by the Spanish MEC and MICINN,
as well as European Comission FEDER funds, under Grant
CSD2006-00046. It was also partly supported by the COM-
CAS project (CA501), a project labelled within the frame-
work of CATRENE, the EUREKA cluster for Application
and Technology Research in Europe on NanoElectronics. Fi-
nally, the authors would like to thank Antoni Roca for his
assistance in the Area-Delay comparison tests.

7. REFERENCES
[1] L. Benini and G. De Micheli, Networks on Chips:

Technology and Tools. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 2006.

[2] J. Flich and D. Bertozzi, Designing Network On-Chip
Architectures in the Nanoscale Era. Boca Raton, FL,
USA: CRC Press, Inc., 2010.

[3] J. Duato, S. Yalamanchili, and N. Lionel,
Interconnection Networks: An Engineering Approach.
San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 2002.

[4] A. Duller, D. Towner, G. Panesar, A. Gray, and
W. Robbins, “Picoarray technology: The tool’s story,”
in DATE ’05: Proceedings of the conference on
Design, Automation and Test in Europe. IEEE
Computer Society, 2005, pp. 106–111.

[5] D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao,
B. Edwards, C. Ramey, M. Mattina, C. Miao, J. F.
Brown III, and A. Agarwal, “On-chip interconnection
architecture of the tile processor,” IEEE Micro,
vol. 27, no. 5, pp. 15–31, September/October 2007.

[6] Z. Yu, M. Meeuwsen, R. Apperson, O. Sattari, M. Lai,
J. Webb, E. Work, T. Mohsenin, M. Singh, and B. M.
Baas, “An asynchronous array of simple processors for
dsp applications,” in IEEE International Solid-State
Circuits Conference, (ISSCC ’06), Feb. 2006, pp.
428–429.

[7] M. Coppola, M. D. Grammatikakis, R. Locatelli,
G. Maruccia, and L. Pieralisi, Design of Cost-Efficient
Interconnect Processing Units: Spidergon STNoC.
Boca Raton, FL, USA: CRC Press, Inc., 2008.

[8] I. Arteris, “Arteris noc,” http://www.arteris.com/,
2010, [Online; accessed 31-August-2010].

[9] D. Wingard, “Micronetwork-based integration for
socs,” in In Proceedings of the 38th Design Automation
Conference, 2001, pp. 673–677.

[10] A. Ltd., “The advanced microcontroller bus
architecture (amba),”
http://www.arm.com/products/system-ip/amba/,
2010, [Online; accessed 01-September-2010].

[11] J. Flich, S. Rodrigo, J. Duato, S. Medardoni, and
D. Bertozzi, “Efficient implementation of distributed
routing algorithms for nocs,” in IET Computers and
Digital Techniques. IET, 2009, pp. 460–475.

[12] M. K. F. Schafer, T. Hollstein, H. Zimmer, and
M. Glesner, “Deadlock-free routing and component
placement for irregular mesh-based networks-on-chip,”
in Proceedings of the 2005 IEEE/ACM International
conference on Computer-aided design (ICCAD ’05).
IEEE Computer Society, 2005, pp. 238–245.

[13] Bolotin, E., Cidon, I., Ginosar, R., and Kolodny, A.,
“Efficient routing in irregular topology nocs,” Israel
Institute of Technology, Technion Department of
Electrical Engineering, Tech. Rep. CCIT 554, 2005.

[14] I. Loi, F. Angiolini, and L. Benini, “Synthesis of
low-overhead configurable source routing tables for
network interfaces.” in DATE. IEEE, 2009, pp.
262–267.

[15] D. Gelernter, “A dag-based algorithm for prevention of
store-and-forward deadlock in packet networks,” IEEE
Trans. Comput., vol. 30, pp. 709–715, October 1981.

[16] S. Rodrigo, J. Flich, A. Roca, S. Medardoni,
D. Bertozzi, J. Camacho, F. Silla, and J. Duato,
“Addressing manufacturing challenges with
cost-efficient fault tolerant routing,” in Proceedings of
the 2010 Fourth ACM/IEEE International Symposium
on Networks-on-Chip, ser. NOCS ’10. IEEE
Computer Society, 2010, pp. 25–32.

[17] Flich, J., Mejia, A., López, P., and Duato, J.,
“Region-based routing: an efficient routing mechanism
to tackle unreliable hardware in networks on chip,” in
1st ACM/IEEE Int. Symp. Networks on Chip
(ISNOC), 2007.

[18] S. Rodrigo, J. Flich, J. Duato, and M. Hummel,
“Efficient unicast and multicast support for cmps,” in
Microarchitecture, 2008. MICRO-41. 2008 41st
IEEE/ACM International Symposium on, nov. 2008,
pp. 364 –375.


