
Accelerating Deep Neural Networks on Low
Power Heterogeneous Architectures

Manolis Loukadakis, José Cano, Michael O’Boyle

Institute for Computing Systems Architecture
School of Informatics, University of Edinburgh, UK

Abstract. Deep learning applications are able to recognise images and
speech with great accuracy, and their use is now everywhere in our daily
lives. However, developing deep learning architectures such as deep neu-
ral networks in embedded systems is a challenging task because of the
demanding computational resources and power consumption. Hence, so-
phisticated algorithms and methods that exploit the hardware of the
embedded systems need to be investigated. This paper is our first step
towards examining methods and optimisations for deep neural networks
that can leverage the hardware architecture of low power embedded de-
vices. In particular, in this work we accelerate the inference time of the
VGG-16 neural network on the ODROID-XU4 board. More specifically,
a serial version of VGG-16 is parallelised for both the CPU and GPU
present on the board using OpenMP and OpenCL. We also investigate
several optimisation techniques that exploit the specific hardware archi-
tecture of the ODROID board and can accelerate the inference further.
One of these optimisations uses the CLBlast library specifically tuned
for the ARM Mali-T628 GPU present on the board. Overall, we improve
the inference time of the initial serial version of the code by 2.8X using
OpenMP, and by 9.4X using the most optimised version of OpenCL.

1 Introduction

Deep Neural Networks (DNNs) are thriving the last few years because of the
evolution of Artificial Intelligence (AI), which is in turn closely related to the
increasing capacity of computing systems and architectures. These networks
achieve great accuracy in numerous AI applications like speech [1,2,3] and image
recognition [4,5,6], self-driving cars [7] and playing complicated games such as
the Google’s AlphaGo [8,9]. The performance of DNNs comes from their complex
architecture. From a mathematical point of view, DNNs are basically a series
of transformations and functions with learnable parameters. These parameters
are learned during a training phase for a specific dataset. The training phase
is a combination of forward-propagation, in which the error of the prediction is
calculated, and a back-propagation procedure, in which the calculated error is
minimised. Then, an inference phase uses the trained parameters (weights) in
order to predict the class of specific unseen inputs with minimum error.



There are several types of neural networks, such as Feed Forward Neural Net-
works which achieve good performance in numerical and linguistic data, Recur-
rent Neural Networks, which have a wide application in machine translation and
natural language processing, and Convolutional Neural Networks which achieve
exceptional accuracy in image recognition. In this work we focus on the latter.

An important factor that has helped the widespread of DNNs is the rapid
development of Graphics Processing Units (GPUs). Training and inference proce-
dures are much faster when running on GPUs rather than on CPUs. In addition,
the combination of the development of GPUs and the evolution of smartphones
has brought neural networks to our daily lives. As a consequence, more and more
neural networks are developed in embedded systems, exploiting the specific char-
acteristics of embedded GPUs. However, the training procedure is an extremely
heavy operation and in most cases is avoided in embedded systems. The systems
research community has focused its interest mainly on accelerating the inference
phase based on a pre-trained model of the neural network, which is trained in a
high performance computing system. This is the approach followed in this work.

In addition, even the inference procedure can be affected by the limited ca-
pacity of embedded devices, both in performance and power consumption. There-
fore, it is paramount to explore new methods and optimisations that can exploit
specific embedded heterogeneous architectures in the best possible way.

This paper is actually our first step towards this objective. In particular, we
focus on accelerating the inference phase of the VGG-16 neural network on the
ODROID-XU4 board, which includes the ARM Cortex-A big.LITTLE processor
and the Mali-T628 GPU. We propose two parallel implementations of the serial
version of the VGG-16 neural network, the first one using OpenMP (traditionally
used for homogeneous multi-core programming) and the second using OpenCL
(the de facto standard for heterogeneous programming). The OpenMP version
is parallelised on the CPU of the board, but the OpenCL version leverages the
hardware architecture of the Mali GPU, where several optimisations techniques
are examined and developed to boost the performance.

The contributions of this paper are as follows:

– We develop an OpenMP version of the VGG-16 neural network that runs
only on the CPU of the board. This implementation improves the inference
time of the initial serial C version of the code by 2.8X.

– We implement a baseline model in OpenCL without any hardware optimi-
sation which provides a 0.8X speed up over the serial version.

– We use OpenCL work groups to speed up the performance of the baseline
OpenCL model by 2.3X (1.9X over the serial version).

– The use of vector data types and SIMD instructions allows to parallelise
the inference procedure further achieving an improvement of 11.6X over the
baseline OpenCL (9.4X over the serial version).

– Finally, we use the CLBlast library optimised for the Mali-T628 GPU to
reduce the inference time of the baseline OpenCL by 7.8X.

In summary, we improve the inference time of the initial serial code by 2.8X
using OpenMP, and by 9.4X using the best implementation of OpenCL.



2 Background

This section introduces some fundamental concepts of convolutional neural net-
works that are required to understand the architecture of VGG-16, which is the
specific neural network that we target in this work.

2.1 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are composed of a stack of layers that
transform a 3D input to a 3D output. Typically, three main types of layers are
used to build a CNN:

– Convolutional: This layer is the most demanding computational part of the
CNN. It consists of multiple 3-dimensional filters which are called kernels.
These filters are learnable parameters. A typical example of a filter is 10x10x3
(i.e. ten pixels height, ten pixels width, and three channels depth). The
kernels are sliding on the input images during the forward propagation. In
each slide dot product is computed (convolution operation). Each sliding of
kernel produces an activation map. The activation maps from the multiple
kernels are stacked and form the output. Moreover, three hyperparameters
determine the size of the output which are depth, stride, and padding. The
depth refers to the number of kernels that are used. The stride is the step of
sliding of the filter. Finally, sometimes is convenient to preserve the output
size by padding with zeros the input image.

– Max Pooling: This layer is placed between convolutional layers and reduces
the spatial size of the output. A max pooling operation is performed in each
depth independently, where every MAX operation compares four elements
of a 2x2 region of the output and selects the maximum value. Therefore, the
depth dimension remains the same but the width and height are halved.

– Fully Connected: This layer sums a weighting of the previous layer of
features, where all the elements of all the features of the previous layer are
used in the calculation. Actually, there can be more than one layer which
are placed after the convolutional and max pooling layers.

In addition, between the convolutional layers the relu activation function [10]
is the most commonly used (it identifies likely features on the previous layer).
Other layers like Batch Normalization [11] and Dropout [12] can also be used to
regularise the training procedure and speed up the convergence of the network.

2.2 VGG-16 Neural Network

The VGG-16 neural network (Figure 1) was developed by Simonyan and Zis-
serman [13] in the context of the ILSVRC 2014 competition1. It achieves an
accuracy of 70.5% and is the most computationally expensive neural network of

1 http://www.image-net.org/challenges/LSVRC

http://www.image-net.org/challenges/LSVRC


Fig. 1: VGG-16 neural network architecture.

the ILSVRC contest because of the large number of parameters and convolu-
tional layers that contains. The task in the competition is to classify 1,000 RGB
images from the ImageNet dataset [14]. The VGG-16 network was the runner
up of this competition and GoogLeNet [8] was the winner with an accuracy of
89%. GoogLeNet is deeper than the VGG-16 network, but the number of pa-
rameters is reduced because of the use of inception modules. Thus, parallelising
the VGG-16 network in an embedded system is more challenging.

The VGG-16 network consists of 16 layers, where convolutional layers (13)
with 3x3 filters and 2x2 max pooling layers are stacked. Between these layers, the
relu activation function is applied. Then, there are three fully connected layers
which contain most of the parameters of the network. Finally, a softmax function
is used to produce the probabilities for each class. Figure 1 depicts the exact
architecture. Note that an important downside of VGG-16 is the demanding
memory usage because of its enormous number of parameters (140M), which
leads to a deceleration of the performance and wasteful power consumption.

3 Deep Learning Optimisation Techniques in Embedded
Systems

We now discuss some related work on different deep learning optimisations tech-
niques in low power heterogeneous embedded systems that include GPUs. Two
types of optimisation techniques are analysed. One that jointly leverages math-
ematical and machine learning concepts in order to reduce the memory require-
ments and speed up the computations, and another that exploits the hardware
architecture of the embedded devices.



It is known that CNNs require a lot of memory because of the large amount
of parameters they generate. However, many of these parameters are redundant.
Hence, removing them will not affect the accuracy of the prediction. Various com-
pression techniques such as convolutional tensor using matrix approximations,
low rank tensors approximations, and monochromatic convolution approxima-
tions have been proposed in [15]. In [16] it is presented a novel technique of
dimensionality reduction of the parameters that combines pruning, vector quan-
tization, and huffman coding and achieves 35X to 45X reduction of the memory
requirements without affecting the inference accuracy. Finally, other algorithms
that present compression techniques of the weights are proposed in [17,18]. How-
ever, all these methods require re-training of the neural network (typically in
very powerful GPUs like NVIDIA Titan) in order to obtain the final compressed
weights, and we are targeting pre-trained networks.

It is also known that the memory bandwidth is a bottleneck to the inference
speed. Several methods that try to reduce the memory bandwidth are proposed
in the literature. In [19], Maxout networks [20] are trained using different float
precision for the weights, proving that using low precision floats is sufficient
for the inference and even for the training phase. However, simply reducing
the float precision in more complex networks would degrade the accuracy. This
issue is studied in [21] for LeNet [22], CovNet [23] and GoogLeNet [8]. The
work is inspired by the idea that variations of the accuracy do not only depend
on reducing the floating precision across the whole network but of every layer.
Finally, in [24] the use of fixed-point and floating-point representations in data
is proposed to reduce the memory bandwidth. This technique leverages the fact
that multiplication is more efficient when is operated on floating-point data and
the addition is more optimal when is operated in fixed-point data. Note that in
this work we focus on leveraging the target architecture. We leave the memory
bandwidth problem for future work.

The second set of techniques are based on exploiting the hardware archi-
tecture and parallelising the inference procedure on the GPU to boost the per-
formance. We focus on embedded systems that contain low power GPUs. The
DeepX framework [25] accelerates the execution time of the inference by dy-
namically decomposing the neural network architecture into segments. Then
each segment is executed in a different computing device (e.g. CPU, GPU, etc).
In addition, Runtime Layer Compression is applied on-the-fly only to individual
layers, thus reducing drastically the computing resources required. DeepSense
[26] is another framework developed for low power GPUs that leverages the ar-
chitecture of GPU devices like Mali and Adreno, and achieves high performance
on the inference for various deep CNNs such as AlexNet, VGG-16, VGG-M, and
VGG-F. It includes several optimisations techniques such as branch divergence
elimination and vectorisation, which take advantage of the SIMD instructions
supported by Mali and Adreno GPUs. Finally, CNNdroid [27] is another frame-
work optimised for android phones that contains all types of layers. Similar to
[26], CNNdroid takes advantage of the SIMD instructions of the Mali GPU. In
this work we consider similar optimisations to [26,27] and also others.



4 Accelerating the VGG-16 Neural Network

We now describe the proposed implementations of VGG-16 in OpenMP and
OpenCL, along with the optimisation techniques used to accelerate the inference
further on the ARM Mali GPU. Since we observed that the convolutional layer
requires roughly 90% of the inference time, we focus on examining parallelisation
techniques for this layer. Note that in order to check the inference accuracy of
each parallel version, we compared the predicted class of each image with the
one provided by the serial version of the code.

4.1 Experimental Setup

Hardware Platform. The ODROID-XU4 board includes the ARM Cortex-
A15 and Cortex-A7 big.LITTLE CPU, the low power ARM Mali-T628 GPU,
and 2Gbyte of shared LPDDR3 RAM. The GPU supports 64-bit data types
(scalar/vector, integer/float) which makes it suitable for accelerating applica-
tions that require significant computations like deep neural networks.

Imagenet Dataset. This dataset contains 15 million RGB images classified in
22,000 classes [14]. However the dataset used in this work is actually a subset of
ImageNet with 1.2 million training images, 50,000 validation images and 150,000
testing images classified into 1,000 categories. Since the images are not fixed size,
they are cropped to 224x224 pixels which is the input size that VGG-16 accepts.

Libraries and Methods. We selected a serial version of the pre-trained VGG-
16 neural network implemented in C 2. OpenMP 4.0 was used for the CPU
parallel version. Finally, for the OpenCL version we used OpenCL 1.1 and the
OpenCL C++ wrapper API 1.1 which simplifies the host code. Furthermore,
the CLBlast library [28] was used and optimised for the Mali-T628 GPU.

4.2 OpenMP Implementation

OpenMP is an API for shared memory parallelisation (i.e. all processors use the
same address space). Since OpenMP does not support yet ARM Mali GPUs,
the VGG-16 network is parallelised only on the CPU of the board using up to 8
threads (cores) of the Cortex-A processor. Specifically, the outer for loop of the
convolutional layer is parallelised using dynamic scheduling of threads (because
of the different amount of data required to process in each loop). Besides, the
execution of the threads among the layers is synchronised because each output
is the input of the next layer, so we have to wait until all the operations from the
previous layer finish. OpenMP suffers from some overheads caused by threads
initialisation, loops scheduling, etc. The results of the average execution time per
layer, compared with the serial C version, are shown in Figure 3. As we see, the
OpenMP implementation is much more efficient than the serial code, decreasing
the overall inference time of one image from 79 to 28 seconds (2.8X speed up).

2 https://github.com/ZFTurbo/VGG16-Pretrained-C

https://github.com/ZFTurbo/VGG16-Pretrained-C


4.3 OpenCL Implementation

The main program which contains the specifications of the architecture and
the work flow of the VGG-16 network (host code) is executed on the CPU
sequentially. Since the different layers of the network are parallelised and can
potentially run on both CPU and GPU devices, the OpenCL code needs to be
carefully designed to avoid data transfer overheads that may degrade the overall
performance of the inference.

OpenCL kernels communicate with the host through buffers, which can be
accessed directly from memory pointers. So, the arrays in the GPU are handled as
they are represented in memory, i.e. as 1-dimensional arrays. As a result, all the
matrices are transformed to 1-dimensional arrays and passed through the buffers
to the kernels. This transformation is performed in the host code at the start of
the program. Then, all layers handle 1-dimensional arrays and the final output
is reformed back to a multidimensional matrix. However, the transformation of
the matrices is not a simple procedure. A naive option is depicted in Figure 2,
where the matrices are simply flattened row by row.

Fig. 2: 3D input to 1D array row by row transformation.

Convolutional Layer. We now discuss several methods to optimise the per-
formance of the convolutional layer by exploiting the architecture of the GPU.

– Baseline implementation: The Index Space (NDRange) determines the
total number of work-items and the number of work-items per work-group,
thus being an important aspect of OpenCL that can dramatically affect the
performance of the code. A naive implementation can lead to poor results,
so a careful exploration of the design space needs to be done. For example,
a naive design space for the convolutional layer is that each work-item com-
putes one pixel of the output, and we leave the OpenCL driver to determine
the size of the work-groups. This design could accelerate the performance of
the VGG-16 neural network but surely is not the optimal one. Figure 3 also
shows the execution times for the baseline OpenCL version. As can be seen,
the times are actually worse than the serial code for all the layers except-
ing for the last three (we assume that for these layers the OpenCL driver
finds a good value for the work-group size), providing an overall speed up of



Fig. 3: Time for Serial C, OpenMP, and baseline OpenCL implementations.

0.8X over the serial code. Note that this implementation uses the row-by-row
matrix transformation discussed previously (Figure 2).

– Work-groups optimisation: Another design option is to explicitly indicate
the size of the work-groups we want to use. Note that Mali GPUs do not
have local memory, so using work groups’ local memory will not increase the
throughput of the implementation. However, the 16KB L1 cache memory
(which has 64 bytes cache line size) can be used effectively with work-groups,
thus speeding up the performance. The most suitable work group size for
most Mali GPUs is a multiple of two, as there are 2 arithmetic pipelines per
core. We tested work-group sizes of 1x1, 2x2, 4x4, 8x8, and 16x16 work-items
and found that the best option is size 4x4. As the work-group size increases
from 1x1 to 4x4 the performance is enhanced (up to 2.3X over the baseline).
However, when the work group size is increased even more, then more L1
cache misses occur and the performance is degraded. Figure 7 shows the
average speed up per layer using the optimal (4x4) work-group size.

– Kernel Vectorisation: The kernel code can be optimised further by ex-
ploiting the architecture of the Mali GPU, which supports SIMD (Single
Instruction, Multiple Data) instructions in each shader core, whose opera-
tions are referred to as vector operations. OpenCL provides built-in vector
data types where the I/O operations can be reduced. Read and write in



memory can be performed efficiently using the OpenCL’s functions vload[n],
vstore[n] where n indicates the number of elements that are loaded/stored in
parallel in one processor cycle (permitted values are 2, 4, 8 and 16). Vector
data types give us the possibility of parallelising the convolutional layer fur-
ther. However, these functions read and write bytes in consecutive memory
addresses. So, in order to be able to fully exploit the benefits of the vector
data types we have to transform the matrices in a different way. That is, in-
stead of flattening the matrices by rows (Figure 2) we flatten them by depth
(Figure 4). Thus, pixels with same index and different depth are stored con-
secutively in memory. In this way it is possible to read mutiple data in one
processor cycle and reduce the I/O overhead. For example, in the second
convolutional layer the load operations are reduced from 64 × 9 to 4 × 9.

Fig. 4: Flatten matrices by depth.

Figure 7 also shows the average speed up per layer after applying the two
optimisations described so far to the baseline OpenCL implementation. This vec-
torised version reduces the overall inference time of the best work-groups version
from 42 to 8.5 seconds on average (5X speed up). We see how the vectorised ker-
nels improve the average performance of every layer. However, the fluctuations
in the inference time per layer are due to the max pooling layers that interfere
among the convolutional layers and reduce the input matrices dimensions.

Convolution as Matrix Multiplication. We now optimise the VGG-16 neu-
ral network by transforming the convolution operation to a general matrix-
matrix multiplication. It is well-known that matrix multiplication is one the
of the most optimised operations in GPUs. We accelerate the inference time
by using the CLBlast library [28], which is an open source OpenCL BLAS li-
brary that provides optimised routines for a wide variety of devices including the
Mali-T628 GPU (it is similar to the cuBLAS library that supports only NVIDIA
GPUs). However, using the CLBlast library for the convolution operation is not
trivial, as it requires changes in the input matrices.

The CLBlast library provides accelerated low level routines for dense algebra
operations, among others the GEMV (Generalised Matrix-Vector Multiplication)



Fig. 5: Im2Col operation in input matrices.

Fig. 6: Im2Col operation in kernels.

and GEMM (Generalised Matrix - Matrix Multiplication) routines. CLBlast is
implemented in OpenCL and can be tuned using CLTune [29] for several GPUs.
In the proposed implementation the GEMM routine is used, which contains 14
parameters that define for example: work group size; register tiling configuration;
vector widths of both matrices; loop unroll factors; whether to use local memory
or not; etc. It is worth to remember again that memory in the Mali-T628 GPU is
unified so using local memory would not increase the throughput of our program.

How GEMM works for Convolutions? In order to apply the GEMM routine to
convolution operations we need to change the structure of the matrices in a way
that the matrix multiplication would give the same results as the convolution
operation (Figures 5 and 6). The feature matrices have dimensions D ×H ×W
where D is the depth, H is the height, and W is the width of each feature map.
The kernel matrices have dimensions D × N × K × K where N stands for the
number of kernels and is the output depth of the feature maps, D is the input
depth of channels, and K is kernel’s height and width (note that kernels are
always square matrices).

Therefore, it is required to transform the 3-D matrices to 2-D ones. This
transformation can be done by using the im2col operation, which rearranges
image blocks to columns. As a result, the input matrices after the im2col op-
eration are transformed to matrices with (H − K + 1) × (W − K + 1) rows
and D × K columns (Figures 5). On the other hand, the im2col operation for
kernels is simpler (Figure 6). Each kernel is simply flattened from 3 dimensions



Fig. 7: Inference time speedup for work-groups, work-groups+vectorised, and
CLBlast OpenCL implementations (baseline OpenCL = 1).

to 1. Consequently, the kernels are transformed to a matrix with N rows and
D × K columns. Note that all these matrix transformations are performed on
the board’s CPU.

Figure 7 also shows the speed up for the OpenCL version using the CLBlast
library. As can be seen, the average improvement per layer is less than the
vectorised version excepting for layers conv4-2 and conv4-3 (probably because
CLBlast finds very good parameters for them). Also, the speed up increases for
successive layers according to the amount of work each kernel needs to perform
to compute an output pixel. Therefore, smaller matrices may have less improve-
ment. The overall inference time is reduced from the 98 seconds of the baseline
OpenCL implementation to 13 using the CLBlast version (7.8X speed up).

CLBlast is a useful library for deep learning applications. However, accord-
ing to [28] the GEMM kernel is optimised for specific values of parameters.
The parameters can be overrided and tuned according to the parameters of our
program by using the function OverrideParameters. Finally, note that this im-
plementation has an important drawback. The size of the matrices that have to
be processed becomes almost doubled. This means that the power consumption
will increase because of the large data transfer between the CPU and the GPU.
However, the improvement in performance outweighs the cost of the sizes.



5 Conclusions and Future Work

We have presented multiple parallel versions of the VGG-16 neural network
for the CPU and GPU of the ODROID-XU4 board using both OpenMP and
OpenCL programming frameworks. The optimisations investigated for OpenCL
take into account the hardware specifications of the ARM Mali-T628 GPU
present on the board. The OpenMP implementation, that runs exclusively on the
CPU, reduced the inference time of the serial version from 79 to 28 seconds. The
baseline OpenCL implementation, in which no optimisations were applied to the
kernels or the index space, achieved 98s of average inference time which is worse
than OpenMP and the serial version of the code. Then, the utilisation of work
groups boosted the performance achieving an inference time of 42s. Additionally,
the vectorisation of the kernels, which takes advantage of the SIMD instructions
of the Mali GPU by using OpenCL vector data types, further enhanced the in-
ference time to 8.5s. Finally, the CLBlast library was also used to boost the
performance of the inference to achieve an overall inference time of 13s. Note
that CLBlast does not contain a routine to perform the convolution operation.
However, by changing the structure of the matrices the convolution operation
can be transformed to a general matrix multiplication, which is a built-in routine
(GEMM ) in CLBlast that can be optimised for the Mali-T628 GPU.

A possible extension of this work would be to investigate other techniques
such as transforming the convolution operation to a FFT operation. This method
would resolve the usage of extra memory space required by the matrix multipli-
cation. Moreover, the Mali-T628 GPU contains 2 GPU devices which have 4 and
2 compute units respectively. In this work we have only used the 4 units of the
first device. Thus, another possible extension would be to parallelise the VGG-
16 network using both devices by redesigning the index space and break up the
matrices appropriately in order to be able to run in different queues. Further-
more, we haven’t taken into account the power consumption of the ODROID-
XU4 board during the inference, which is a very important factor in embedded
systems that must be considered. Specifically, the power consumption can be
decreased by reducing the amount of data transferred between the CPU and the
GPU devices. This can be achieved by lowering the float precision of the data,
although it is not so trivial because the accuracy of the network may degrade.
Hence, new approaches to save power without significant loses of accuracy in the
predictions must be explored. Finally, we also want to explore optimisations for
other deep neural networks and low power heterogeneous embedded devices.

Acknowledgment

This project has received funding from the European Unions Horizon 2020 re-
search and innovation programme under grant agreement No 732204 (Bonseyes).
This work is supported by the Swiss State Secretariat for Education Research
and Innovation (SERI) under contract number 16.0159. The opinions expressed
and arguments employed herein do not necessarily reflect the official views of
these funding bodies.



References

1. Y. Zhang, M. Pezeshki, P. Brakel, S. Zhang, C. Laurent, Y. Bengio, and
A. C. Courville, “Towards end-to-end speech recognition with deep convolutional
neural networks,” CoRR, vol. abs/1701.02720, 2017. [Online]. Available:
http://arxiv.org/abs/1701.02720

2. Y. Zhang, W. Chan, and N. Jaitly, “Very deep convolutional networks for end-
to-end speech recognition,” in 2017 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), March 2017, pp. 4845–4849.

3. M. Ravanelli, P. Brakel, M. Omologo, and Y. Bengio, “A network of deep neural
networks for distant speech recognition,” in 2017 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), March 2017, pp. 4880–4884.

4. O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpa-
thy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, “ImageNet Large Scale
Visual Recognition Challenge,” International Journal of Computer Vision (IJCV),
vol. 115, no. 3, pp. 211–252, 2015.

5. X. Wu, “High performance binarized neural networks trained on the imagenet
classification task,” CoRR, vol. abs/1604.03058, 2016. [Online]. Available:
http://arxiv.org/abs/1604.03058

6. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recog-
nition,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), June 2016, pp. 770–778.

7. M. Bojarski, D. D. Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L. D.
Jackel, M. Monfort, U. Muller, J. Zhang, X. Zhang, J. Zhao, and K. Zieba, “End
to end learning for self-driving cars,” CoRR, vol. abs/1604.07316, 2016. [Online].
Available: http://arxiv.org/abs/1604.07316

8. C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-
houcke, and A. Rabinovich, “Going deeper with convolutions,” in 2015 IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR), June 2015, pp. 1–9.

9. V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and
M. Riedmiller, “Playing atari with deep reinforcement learning,” in NIPS Deep
Learning Workshop, 2013.

10. R. Arora, A. Basu, P. Mianjy, and A. Mukherjee, “Understanding deep neural
networks with rectified linear units,” CoRR, vol. abs/1611.01491, 2016. [Online].
Available: http://arxiv.org/abs/1611.01491

11. S. Ioffe and C. Szegedy, “Batch Normalization: Accelerating Deep Network Train-
ing by Reducing Internal Covariate Shift,” in Proceedings of the 32nd International
Conference on International Conference on Machine Learning (ICML), 2015, pp.
448–456.

12. G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
“Improving neural networks by preventing co-adaptation of feature detectors,”
CoRR, vol. abs/1207.0580, 2012. [Online]. Available: http://arxiv.org/abs/1207.
0580

13. K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for Large-
Scale Image Recognition,” in International Conference on Learning Representa-
tions (ICLR), 2015.

14. J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet: A Large-
Scale Hierarchical Image Database,” in CVPR09, 2009.

15. E. Denton, W. Zaremba, J. Bruna, Y. LeCun, and R. Fergus, “Exploiting Linear
Structure Within Convolutional Networks for Efficient Evaluation,” in Proceedings

http://arxiv.org/abs/1701.02720
http://arxiv.org/abs/1604.03058
http://arxiv.org/abs/1604.07316
http://arxiv.org/abs/1611.01491
http://arxiv.org/abs/1207.0580
http://arxiv.org/abs/1207.0580


of the 27th International Conference on Neural Information Processing Systems -
Volume 1, ser. NIPS’14, 2014, pp. 1269–1277.

16. S. Han, H. Mao, and W. J. Dally, “Deep Compression: Compressing Deep Neural
Network with Pruning, Trained Quantization and Huffman Coding,” in Interna-
tional Conference on Learning Representations (ICLR), 2016.

17. G. Soulié, V. Gripon, and M. Robert, “Compression of deep neural networks on
the fly,” in Artificial Neural Networks and Machine Learning – ICANN 2016: 25th
International Conference on Artificial Neural Networks. Springer International
Publishing, 2016, pp. 153–160.

18. W. Chen, J. Wilson, S. Tyree, K. Q. Weinberger, and Y. Chen, “Compressing
convolutional neural networks in the frequency domain,” in Proceedings of the
22Nd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, ser. KDD ’16, 2016, pp. 1475–1484.

19. M. Courbariaux, Y. Bengio, and J. David, “Low precision arithmetic
for deep learning,” CoRR, vol. abs/1412.7024, 2014. [Online]. Available:
http://arxiv.org/abs/1412.7024

20. I. J. Goodfellow, D. Warde-Farley, M. Mirza, A. Courville, and Y. Bengio, “Max-
out networks,” in Proceedings of the 30th International Conference on Machine
Learning (ICML), 2013, pp. III–1319–III–1327.

21. P. Judd, J. Albericio, T. H. Hetherington, T. M. Aamodt, N. D. E. Jerger,
R. Urtasun, and A. Moshovos, “Reduced-precision strategies for bounded memory
in deep neural nets,” CoRR, vol. abs/1511.05236, 2015. [Online]. Available:
http://arxiv.org/abs/1511.05236

22. C.-C. J. Kuo, “Understanding convolutional neural networks with a mathematical
model,” Journal of Visual Communication and Image Representation, vol. 41, pp.
406 – 413, 2016.

23. Y. Li, B. Sun, T. Wu, and Y. Wang, “Face detection with end-to-end integration
of a convnet and a 3d model,” in Computer Vision – ECCV 2016: 14th European
Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part
III. Springer International Publishing, 2016, pp. 420–436.

24. L. Lai, N. Suda, and V. Chandra, “Deep convolutional neural network
inference with floating-point weights and fixed-point activations,” CoRR, vol.
abs/1703.03073, 2017. [Online]. Available: http://arxiv.org/abs/1703.03073

25. N. D. Lane, S. Bhattacharya, P. Georgiev, C. Forlivesi, L. Jiao, L. Qendro, and
F. Kawsar, “DeepX: A Software Accelerator for Low-power Deep Learning Infer-
ence on Mobile Devices,” in Proceedings of the 15th International Conference on
Information Processing in Sensor Networks (IPSN), 2016, pp. 23:1–23:12.

26. L. N. Huynh, R. K. Balan, and Y. Lee, “DeepSense: A GPU-based Deep Convolu-
tional Neural Network Framework on Commodity Mobile Devices,” in Proceedings
of the 2016 Workshop on Wearable Systems and Applications (WearSys), 2016, pp.
25–30.

27. S. S. L. Oskouei, H. Golestani, M. Kachuee, M. Hashemi, H. Mohammadzade,
and S. Ghiasi, “GPU-based Acceleration of Deep Convolutional Neural Networks
on Mobile Platforms,” CoRR, vol. abs/1511.07376, 2015. [Online]. Available:
http://arxiv.org/abs/1511.07376

28. C. Nugteren, “Clblast: A tuned opencl BLAS library,” CoRR, vol. abs/1705.05249,
2017. [Online]. Available: http://arxiv.org/abs/1705.05249

29. C. Nugteren and V. Codreanu, “CLTune: A Generic Auto-Tuner for
OpenCL Kernels,” CoRR, vol. abs/1703.06503, 2017. [Online]. Available:
http://arxiv.org/abs/1703.06503

http://arxiv.org/abs/1412.7024
http://arxiv.org/abs/1511.05236
http://arxiv.org/abs/1703.03073
http://arxiv.org/abs/1511.07376
http://arxiv.org/abs/1705.05249
http://arxiv.org/abs/1703.06503

	Accelerating Deep Neural Networks on Low Power Heterogeneous Architectures

