
Distilling with Performance Enhanced Students

Jack Turner∗1, Elliot J. Crowley∗1, Valentin Radu1, José Cano2, Amos Storkey1, Michael O’Boyle1
1School of Informatics, University of Edinburgh

2School of Computing Science, University of Glasgow
∗Equal Contribution

Abstract
The task of accelerating large neural networks on
general purpose hardware has, in recent years,
prompted the use of channel pruning to reduce
network size. However, the efficacy of pruning
based approaches has since been called into ques-
tion. In this paper, we turn to distillation for model
compression—specifically, attention transfer—and
develop a simple method for discovering perfor-
mance enhanced student networks. We combine
channel saliency metrics with empirical observa-
tions of runtime performance to design more ac-
curate networks for a given latency budget. We
apply our methodology to residual and densely-
connected networks, and show that we are able
to find resource-efficient student networks on dif-
ferent hardware platforms while maintaining very
high accuracy. These performance-enhanced stu-
dent networks achieve up to 10% boosts in top-
1 ImageNet accuracy over their channel-pruned
counterparts for the same inference time.

1 Introduction
Patience is often said to be a virtue. However, for a deep neu-
ral network performing inferences on an edge device one can-
not afford to be patient e.g. for pedestrian detection. So how
do we make our networks faster? A common approach is to
use a neural compression technique such as pruning or distil-
lation to reduce the number of parameters a network uses.

In pruning, weights connecting neurons [LeCun et al.,
1990; Han et al., 2015], or whole channels [Molchanov et al.,
2017; Theis et al., 2018; Louizos et al., 2017] are removed
while a network is fine-tuned. It is preferable to remove chan-
nels, as the sparsity introduced by weight pruning is diffi-
cult to exploit on general purpose hardware [Sze et al., 2017;
Turner et al., 2018].

However, the efficacy of channel pruning has recently been
called into question [Liu et al., 2018; Crowley et al., 2018b]:
the common pattern of pruning and fine-tuning is not as effec-
tive as simply training the pruned architecture from scratch.
Moreover, channel pruning relies on the assumption that re-
ducing the number of activation channels in a layer—and
therefore the number of floating point operations (FLOPs) it
uses—will linearly reduce inference time, which is often not

0 100 200 300 400 500 600
Channels

0.000

0.001

0.002

0.003

0.004

0.005

0.006

La
y
e
r

in
fe

re
n
ce

 t
im

e
 (

m
s)

Optimal Points

Figure 1: Inference time for a layer of a ResNet-34 vs. the number of
channels in that layer on an ARM Cortex-A57. Notice the staircase
pattern that emerges. For a given inference time it is preferable to
pick the points in green to maximize the network’s capacity.

the case [Yu et al., 2017; Yang et al., 2018]. In Figure 1 we
show the effect of pruning channels in an early convolutional
layer of a ResNet-34 [He et al., 2016] on the ARM Cortex-
A57 CPU. Instead of linear speedup, we observe a staircase
pattern, with steps at points that fully utilise the available
device parallelism. It is important to note that many of these
steps are not related to the typical powers of two that can
be leveraged by Single Instruction Multiple Data (SIMD) or
Multiple Instruction Multiple Data (MIMD) processors; there
are nuances in the space of matrix representations and choice
of arithmetic primitives that determine the locations. By ig-
noring this and using FLOPs as a direct proxy for inference
time, pruning techniques therefore often converge on ineffi-
cient network architectures.

In distillation, one produces a smaller student network
and uses the outputs [Ba and Caruana, 2014; Hinton et al.,
2015] or activations [Romero et al., 2015; Zagoruyko and
Komodakis, 2017] of the original large network—referred to
as the teacher—to aid in its training. The difficulty of this
process is picking the right student; it could have reduced
width, depth, or even substituted convolutions [Crowley et
al., 2018a] but these may not run quickly when deployed on
a particular device.

In this work, we propose a novel latency-aware tech-

ar
X

iv
:1

81
0.

10
46

0v
2

 [
st

at
.M

L
]

 7
 M

ar
 2

01
9

Performance Enhanced
Student

Staircase Optimiser

Original Model
(Teacher)

Pruned Model Hardware Platform

Performance Enhanced
Student

Attention transfer

Input batch

Step 1: Using channel saliency and empirical latency, design student Step 2: Train via attention transfer

Fisher pruning

Figure 2: Our student-discovery and optimisation pipeline. In step 1, we use the Fisher-pruned model and our staircase optimiser to design a
student network that fits a specific deployment platform. In step 2 we use the original model to train the performance enhanced student using
attention transfer.

nique that combines pruning and distillation, combats their
flaws, and produces a performance enhanced student that
runs quickly on a target device.

Starting with a large, trained network, we first perform
pruning—specifically, Fisher pruning [Theis et al., 2018]—
and then use a latency-aware optimiser to adapt the profile
of the pruned network for deployment on a particular device.
Finally, we treat this adapted network as a student and distill
it with the original large network as a teacher using attention
transfer [Zagoruyko and Komodakis, 2017] to recover its per-
formance. This technique is illustrated in Figure 2.

By combining channel saliency metrics with empirical
observations of hardware performance we develop a new
methodology for reshaping neural networks to maximise ac-
curacy for a given latency budget. The existence of stepped
inference speedups allows us to increase the capacity of
pruned network architectures without affecting total latency,
resulting in reduced error and greater resource efficiency.

In Section 3 pruning and distillation are briefly reviewed.
We then describe how performance enhanced students are
discovered for a target device (Section 4). In Section 5 our
technique is applied to WideResNets [Zagoruyko and Ko-
modakis, 2016] and DenseNets [Huang et al., 2017] on the
CIFAR-10 [Krizhevsky, 2009] dataset. We show this extends
to ResNets trained on ImageNet [Russakovsky et al., 2015]
in Section 6.

The contributions of this paper are as follows:

• A simple method for identifying performance-optimal
layer widths for a given neural network and hardware
platform.

• A new technique for finding performance enhanced ar-
chitecture reductions for deploying neural networks in
resource-constrained scenarios.

• The study and benchmarking of our methodology
against common pruning techniques on typical examples
of embedded hardware platforms.

2 Related Work
The parameter redundancy in modern neural networks has
been well studied [Denil et al., 2013]. This is often ex-
ploited for inference acceleration in various forms, most
commonly through network pruning. This typically comes
in two varieties: weight pruning [Han et al., 2015] and
channel pruning [He et al., 2017; Molchanov et al., 2017;
Yang et al., 2018; He et al., 2018; Theis et al., 2018].

In weight pruning, individual weights (connections be-
tween neurons) are zeroed out—usually in stages—while the
network is fine-tuned, leaving a sparse set of weight tensors;
at present, these are difficult to deploy on general-purpose
hardware [Turner et al., 2018]. Channel pruning focuses on
the removal of neuron structures (or filters) while fine-tuning,
leaving the weight tensor smaller but still dense, which re-
quires fewer operations on dense matrices.

The detection of unimportant weights and channels relies
on a saliency estimation metric. Magnitude-based metrics
e.g. [Li et al., 2016] assume that the importance of neu-
rons (or neuronal groups) is implied by their relative absolute
norm. However, the assumption that magnitude is correlated
to importance has been questioned [Ye et al., 2018]. Another
approach is to use a second-order Taylor expansion of the net-
work’s loss function to estimate the increase in loss that the
removal of each neuronal group would induce [Molchanov et
al., 2017; Theis et al., 2018]; a technique known as Fisher
pruning.

There are however, two major disadvantages with the prun-
ing paradigm. First, pruning often leads to mediocre infer-
ence speedups as the resultant architectures do not make ef-
ficient use of available hardware characteristics. In some
cases, this may directly contradict optimisations that hap-
pen lower down in the stack (e.g. pruned channels may
simply be padded up to allow for layer fusion). Second,
the pruning-and-tuning framework commonly used has re-
cently been shown to be inferior to training the network
from scratch [Crowley et al., 2018b; Liu et al., 2018].
Other works have made use of empirical observations of la-
tency to guide their architecture search [Yang et al., 2018;

He et al., 2018], but suffer accuracy costs from reliance on
the pruning-and-tuning pattern.

An alternative means of making a network smaller is
through a distillation process [Ba and Caruana, 2014; Hin-
ton et al., 2015] whereby a small student network is trained
both on the data and on the outputs of a larger teacher net-
work. This has been shown empirically to yield higher ac-
curacy than training on just the data. Alternatively, the stu-
dent can utilise the teacher’s activations [Romero et al., 2015;
Zagoruyko and Komodakis, 2017] for a greater boost. Typi-
cally the student network is obtained by reducing the chan-
nels per layer or by reducing the number of layers of a
teacher network, or even replacing the convolutional layers
with more efficient convolutional structures [Crowley et al.,
2018a]. However, the structure of these students may be un-
suitable for fast inference on specialised devices.

3 Preliminaries
Here, we briefly summarise the pruning and distillation
method used in our acceleration technique.

3.1 Fisher pruning
Fisher pruning [Theis et al., 2018; Molchanov et al., 2017] is
a principled channel pruning technique, whereby the saliency
metric is an approximation of the change in error that would
occur on the removal of a channel. More formally, consider a
single channel of an activation in a network due to some input
minibatch of N examples. Let us denote this as C: it is an
N ×W ×H tensor where W and H are the channel’s spatial
width and height. Let us refer to the entry corresponding to
example n in the mini-batch at location (i, j) as Cnij . If the
network has a loss function L, then we can back-propagate
to get the gradient of the loss with respect to this activation
channel ∂L

∂C . Let us denote this gradient as g and index it as
gnij . ∆c can then be approximated as:

∆c =
1

2N

N∑
n

− W∑
i

H∑
j

Cnijgnij

2

(1)

This quantity is accumulated as the network is fine-tuned,
and then the channel with the lowest ∆c value is pruned. This
pruning-and-tuning continues until the network is a desired
size.

3.2 Attention transfer
Attention transfer [Zagoruyko and Komodakis, 2017] is a dis-
tillation technique whereby a student network is trained such
that its attention maps at several distinct attention points are
similar to those produced by a large teacher network; the in-
tuition being that the student network is paying attention to
the same things as the teacher.

Consider the WideResNet presented in Figure 3: for atten-
tion transfer, the output activations of group 1, 2, and 3 are
used as attention points. To convert an activation into an at-
tention map we square each of its elements, and then average
along the channel dimension, producing a matrix where each
entry corresponds to a spatial location. Finally, this map is `2-
normalised. The student network is trained with a standard

1

3
2

pool

classifer

conv1

group 1 group 2 group 3

Figure 3: A block schematic diagram of a WideResNet. The net-
work input passes through a single convolution, followed by three
groups, each consisting of several residual blocks (denoted by rect-
angles). The output of the third group is pooled and then passes
through a linear classifier. For attention transfer, attention maps are
extracted at the output of each group; these are at three different
spatial resolutions.

cross-entropy loss and an additional term penalising the `2
distance between each pair of teacher-student attention maps.
The weight of this second term is controlled by a hyperpa-
rameter β.

A more formal definition is provided in [Crowley et al.,
2018a]: Consider a choice of layers i = 1, 2, ..., NL in a
teacher network, and the corresponding layers in the student
network. At each chosen layer i of the teacher network, col-
lect the spatial map of the activations for channel j into the
vector atij . Let At

i collect atij for all j. Likewise for the stu-
dent network we correspondingly collect into asij and As

i .
Now given some choice of mapping f(Ai) that maps each

collection of the form Ai into a vector, attention transfer in-
volves learning the student network by minimising:

LAT =LCE

+ β

NL∑
i=1

∥∥∥∥ f(At
i)

||f(At
i)||2

− f(As
i)

||f(As
i)||2

∥∥∥∥
2

,
(2)

where β is a hyperparameter, and LCE is the standard cross-
entropy loss. In [Zagoruyko and Komodakis, 2017] the au-
thors use f(Ai) = (1/NAi)

∑NAi
j=1 a2ij , where NAi is the

number of channels at layer i.

4 Discovering Performance Enhanced
Student Architectures

We propose a two-step process for discovering performance
enhanced student networks as illustrated in Figure 2. We be-
gin by developing the latency profile for each prunable layer
in the network. These prunable layers are the first convolu-
tional layers of each block, because pruning the second layer
of the residual block would require us to then pad the outputs
to be concatenated with the skip connection. Since we only
prune the first layer of the residual blocks, each of these lay-
ers can be considered independently; that is to say, pruning
one layer has no knock-on effect to later prunable layers. It
is important to note that the number of input channels in the
layer immediately following the pruned layer will be reduced,
but the effect of this on inference time is negligible.

The latency profile of the prunable layers is given by an ex-
haustive empirical search of the available pruning space. For

0.001

0.002

0.003

0.004

0.005

0.006

In
f t

im
e(

s)

0 50 100 150 200 250

0.0005

0.0010

0.0015

0.0020

Number of channels Number of channels
0 50 100 150 200 250 300

Figure 4: Further examples of the staircase pattern on different layers of the ResNet-34 architecture when deployed on the Nvidia Pascal TX2
GPU, classifying single ImageNet images. As before, we iteratively prune channels and benchmark inference time; each point on the plot
therefore corresponds to a new layer initialised with a unique number of output channels.

Algorithm 1: Our student architecture discovery algo-
rithm. Starting with a base model, a Fisher-pruned reduc-
tion of the base model, and a target hardware platform, we
iterate over all prunable layers in the base model and con-
struct a set of optimal points. We then adapt the pruned
layer widths to their nearest optimal point, and return the
resulting architecture.

Target: Target hardware platform
BaseModel: Baseline pretrained model
FisherModel: Fisher-pruned BaseModel
student = Model()
for i, layer in enumerate(BaseModel) do

fisher width = FisherModel[i].layer width
base layer = BaseModel[i]
times = []
for c in range(1 to base layer.layer width) do

NewLayer = Conv(base layer.in channels, c)
time = NewLayer(example data)
times.append(time)

end
opt points = get outliers(times)
new layer = Conv(base layer.in channels,
nearest neighbour(fisher width, opt points))

student.append(new layer)
end

a given layer, we start with the original number of channels
from the teacher model and benchmark latency for a single
inference, removing a single channel at a time as illustrated
in Figure 4. This is an inexpensive search to perform because
the layers can be considered independently, and the values of
the weights of the layers do not affect inference time (mean-
ing that there is no training involved).

We then determine the existence of optimal points on the
latency profile; we look for any large steps in the inference
time and mark the largest channel count at each step. Intu-
itively, we can think of increasing the number of channels
as improving the representational capacity of the network,
which we hope will yield increased accuracy. Using Fisher-
pruning [Theis et al., 2018] we descend the staircase, remov-

ing channels with the lowest pruning signals.
Once we have extracted the Fisher-pruned architecture, we

adapt each layer-width choice to the nearest optimal step.
This algorithm is also shown in Algorithm 1. Formally, a
step on the staircase is defined as any difference in inference
time between contiguous channel counts is greater than three
standard deviations from the mean difference. An optimal
point on such a step is the rightmost channel count. This is
labelled in Figure 1. In some cases—usually early layers with
small feature representations—there are no discernible opti-
mal points. In this case, we leave the layer in the state that
Fisher pruning settled on.

The existence of such optimal points is dependent on
many decisions taken throughout the deployment stack; con-
volution algorithms, low-level primitives, matrix represen-
tations, as well as device-level parallelism characteristics
(SIMD/MIMD units).

5 CIFAR-10 Experiments
In this section we extensively evaluate the performance of
our technique on the CIFAR-10 dataset [Krizhevsky, 2009].
We consider two exemplar networks, a WideResNet and a
DenseNet, and compare our student networks to architectures
found by pruning techniques at similar latency budgets. With
their modular blocks and skip connections, these networks
are representative of a large number of modern networks. We
show that our student networks consistently offer greater ac-
curacy for a fixed inference time.

A WideResNet [Zagoruyko and Komodakis, 2016] is a
modification to the traditional ResNet architecture [He et al.,
2016] to allow for variable width. It is composed of a series of
stacked blocks, each containing two 3× 3 convolution layers
and a skip connection. We use a WideResNet with 40 layers
and a width multiplier of 2.

A bottlenecked DenseNet [Huang et al., 2017] consists of
a series of blocks each containing a 1 × 1 convolution, fol-
lowed by a 3×3 convolution. Block outputs are concatenated
and form the input to later blocks, and this encourages fea-
ture reuse to allow for powerful representations. In this work,
we use a 100 layer DenseNet with these bottleneck blocks, a
growth rate of 12, and a transition rate of 0.5. When perform-

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Inference time (s)

5

6

7

8

9

10

T
e

s
t

E
rr

o
r

(%
)

11

0.0

-pruning

Fisher pruning

(Ours)

Inference time (s)

5

6

7

8

9

10

T
e

s
t

E
rr

o
r

(%
)

11

0.0

-pruning

Fisher pruning

(Ours)

0.004 0.008 0.012 0.016 0.020 0.024 0.028 0.032

(a) (b)

Figure 5: CIFAR-10 test error plotted against inference time for a WideResNet-40-2 on (a) the ARM Cortex CPU and (b) the Nvidia Pascal
GPU. The red curve represents `1 pruning, which is a common benchmark in the pruning literature. The green curve represents architectures
found through Fisher pruning. Each point on the dotted curve relates to an architecture from the Fisher curve that has been adapted for the
specific hardware platform and retrained via attention transfer. Our approach consistently outperforms both `1-derived and Fisher-derived
architectures, giving a lower error rate for a given latency budget.

Inference time (s)

T
e

s
t

E
rr

o
r

(%
)

10

0.0

-pruning

Fisher pruning

(Ours)

Inference time (s)

T
e

s
t

E
rr

o
r

(%
)

0.0

4

5

6

7

8

9

 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2

-pruning

Fisher pruning

(Ours)

0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0

10

4

5

6

7

8

9

(a) (b)

Figure 6: CIFAR-10 test error plotted against inference time for a DenseNet-100 (BC) on (a) the ARM Cortex CPU and (b) the Nvidia Pascal
GPU. As in Figure 5, the red curve represents `1 pruning, the green curve represents architectures found through Fisher pruning, and the
dotted curve represents architectures derived via our method. Our approach is able to generalise from WideResNets to DenseNets, giving a
lower error rate for a given latency budget than `1-derived and Fisher-derived architectures.

ing attention transfer, attention points are placed directly after
its three groups, as with the WideResNet.

Since Fisher pruning removes filters one-by-one, we can
obtain a pruning curve comprised of a series of models at
different levels of compression. Once Fisher pruning is com-
plete we take samples from the pruning curve, evenly dis-
tributed by number of parameters. For each sample, we adapt
the number of channels in each pruned layer to the nearest
optimal point as defined in Section 3. The network obtained
from this is then randomly reinitialised and trained through
attention transfer with the original network.

In order to evaluate our student networks, we compare the
inference time of our samples to their Fisher-derived equiva-
lents. As a comparison point, we also perform `1-pruning on
each original network and include similarly distributed sam-
ples from the pruning curve.

We evaluated our approach on the exemplar embedded
CPU and GPU present on the Nvidia Jetson TX2 develop-

ment kit. We consider the quad-core ARM Cortex-A57 CPU,
and the 256-core Pascal GPU with 8GB of LPDDR4 RAM.

The results on CIFAR-10 can be seen for WideResNet in
Figure 5 and for DenseNet in Figure 6. We benchmark the in-
ference time of each sampled architecture on the ARM CPU
and Nvidia GPU and plot this against the top-1 error achieved
by that sample. Despite being hardware-agnostic, Fisher
pruning outperforms `1 pruning from a latency perspective
because it is able to remove more filters for a given accuracy.
Our technique, shown as the dotted curve, yields a further im-
provement; for each latency budget we are consistently able
to offer a 0.5% to 1% improvement in accuracy. This holds
true across both networks and both platforms, though the im-
provement is most notable on the CPU (due to more severe
resource constraints giving larger steps in the staircase).

Implementation Details Networks are trained from scratch
with SGD to minimise the cross-entropy between class labels
and outputs. WideResNets are trained for 200 epochs with

Table 1: Our method compared to a pretrained ResNet-34 and a Fisher-pruned architecture at 75% compression on ImageNet. Our method
reintroduces parameters to the Fisher-pruned architecture without affecting total inference time, resulting in higher MACs/ps and reduced
error.

Nvidia TX2 (GPU)
Network Params MACs Top-1 Err. Top-5 Err. Speed MACs/ps
Baseline ResNet-34 21.3M 4.12G 21.84 5.71 0.122s 33.77G
Fisher-pruned ResNet-34 5.3M 1.44G 43.43 18.86 0.038s 37.89G
Our ResNet-34 (with AT) 6.8M 1.58G 31.29 11.16 0.040s 39.50G

batch-size 128, and weight decay 0.0005. The initial learn-
ing rate is 0.1, and this is decayed by a factor of 5 every 60
epochs. DenseNets are trained for 300 epochs with batch-size
64 and weight decay 0.0001. The initial learning rate of 0.1 is
decayed by a factor of 10 at epochs 150 and 225. Momentum
0.9 is used in all cases.
`1-pruning, as defined in [He et al., 2017], is performed in

an iterative fashion. Beginning with a pretrained model, we
remove the channel with the lowest valued `1-norm and then
fine-tune for 100 steps. We repeat this process until every
prunable channel in the network has been removed.

We perform Fisher pruning in a similar manner. We fine-
tune, and every 100 steps, a single channel is pruned. For
WideResNet we prune the first convolutional layer in each
block, whereas for DenseNet we prune the connections be-
tween the 1 × 1 and 3 × 3 convolution within each block.
We fine-tune using the lowest learning rate the network was
trained with.

When performing attention transfer, we train the student
network to minimise the loss in Equation 2 with β as 1000.

6 ImageNet Experiments
In this section, we apply our technique to networks trained
on ImageNet [Russakovsky et al., 2015], to see whether our
performance enchanced students extend to this challenging
task. ImageNet is a popular computer vision dataset com-
posed of 224 × 224 images, split into 1000 possible classes.
The dataset has over 1 million training images, and a valida-
tion set of 50,000 examples. Test examples are unlabelled.

We evaluate the validation performance of our technique
on a ResNet-34 [He et al., 2016]. We perform Fisher pruning
as above, removing a single channel every 100 steps until ev-
ery prunable channel has been removed. We chose to sample
a single point at a 75% parameter compression rate and com-
pare this to our performance enhanced student on the GPU.

The results on the validation set of ImageNet are shown
in Table 1. With 75% of the parameters removed, the Fisher-
pruned architecture suffers a 20% increase (to 43.43%) in top-
1 error and a 13% increase (to 18.86%) in top-5 error. Our
approach reintroduces some parameters without affecting the
inference time, with the goal of maximising the representative
capacity of the network. The resulting architecture reaches
32.29% top-1 error, a >10% improvement over the Fisher-
pruned architecture.

Note that despite the large gap in accuracy, the inference
time remains similar. We increase the number of parameters
and MACs in the network, while maximising the throughput

(MACs/ps) on our given device by leveraging the existence of
optimal latency points on the channel pruning profile. Over
several blocks, these width-increases accumulate into large
improvements in network capacity, which translates into en-
hanced classification performance.

Implementation Details To perform attention transfer, we
train the student network to minimise the loss in Equation 2.
As a ResNet consists of 4 groups, we place an attention point
at the end of each of these groups and set β to 750 so the to-
tal contribution of this attentional loss is the same as for our
CIFAR networks. For the teacher, we used a pretrained Im-
ageNet model 1. The student network is trained using SGD
and with momentum 0.9 and weight decay 0.0001 for a to-
tal of 90 epochs. The initial learning rate is 0.1, and this is
decayed by a factor of 10 every 30 epochs.

7 Conclusion
In this paper we have described a simple method for discover-
ing performance enhanced reductions of baseline, large neu-
ral networks. We have compared our technique to common
pruning approaches, and demonstrated its superiority on both
the CIFAR-10 and ImageNet datasets for popular networks
and hardware platforms.

It has long been understood that significant parameter re-
dundancy exists in many deep neural networks. Now that
compression techniques have matured, we are able to take
advantage of insights from both developments in compiler
optimisations and improvements in neural network acceler-
ation schemes to provide an across-stack approach to opti-
mising neural networks for specific tasks and devices. We
show that taking an across-stack approach observing hard-
ware behaviour allows us to significantly enhance the accu-
racy of pruned neural architectures.

In this paper we have only considered image classification,
as this is the standard task for evaluating pruning schemes.
It is, however, very likely that this technique will translate to
other tasks, networks, and hardware architectures. Moreover,
a more thorough investigation of the staircase pattern could
be helpful; future work may seek to extract the locations of
optimal points based solely on hardware descriptions, avoid-
ing the need for exhaustive empirical search. We leave such
exploration for future work.

Acknowledgements. This project has received funding
from the European Union’s Horizon 2020 research and inno-

1Pretrained models obtained from https://github.com/pytorch/
vision

https://github.com/pytorch/vision
https://github.com/pytorch/vision

vation programme under grant agreement No. 732204 (Bon-
seyes). This work is supported by the Swiss State Secretariat
for Education, Research and Innovation (SERI) under con-
tract number 16.0159. The opinions expressed and arguments
employed herein do not necessarily reflect the official views
of these funding bodies.

References
[Ba and Caruana, 2014] Lei Jimmy Ba and Rich Caruana.

Do deep nets really need to be deep? In Advances in Neu-
ral Information Processing Systems, 2014.

[Crowley et al., 2018a] Elliot J. Crowley, Gavin Gray, and
Amos Storkey. Moonshine: Distilling with cheap con-
volutions. In Advances in Neural Information Processing
Systems, 2018.

[Crowley et al., 2018b] Elliot J Crowley, Jack Turner, Amos
Storkey, and Michael O’Boyle. Pruning neural net-
works: is it time to nip it in the bud? arXiv preprint
arXiv:1810.04622, 2018.

[Denil et al., 2013] Misha Denil, Babak Shakibi, Laurent
Dinh, Nando de Freitas, et al. Predicting parameters in
deep learning. In Advances in Neural Information Pro-
cessing Systems, 2013.

[Han et al., 2015] Song Han, Jeff Pool, John Tran, and
William Dally. Learning both weights and connections for
efficient neural network. In Advances in Neural Informa-
tion Processing Systems, 2015.

[He et al., 2016] Kaiming He, Xiangyu Zhang, Shaoqing
Ren, and Jian Sun. Deep residual learning for image recog-
nition. In IEEE conference on Computer Vision and Pat-
tern Recognition, 2016.

[He et al., 2017] Yihui He, Xiangyu Zhang, and Jian Sun.
Channel pruning for accelerating very deep neural net-
works. In International Conference on Computer Vision,
2017.

[He et al., 2018] Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang,
Li-Jia Li, and Song Han. AMC: AutoML for model com-
pression and acceleration on mobile devices. In Proceed-
ings of the European Conference on Computer Vision,
2018.

[Hinton et al., 2015] Geoffrey Hinton, Oriol Vinyals, and
Jeff Dean. Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531, 2015.

[Huang et al., 2017] Gao Huang, Zhuang Liu, Laurens
van der Maaten, and Kilian Q Weinberger. Densely con-
nected convolutional networks. In IEEE Conference on
Computer Vision and Pattern Recognition, 2017.

[Krizhevsky, 2009] Alex Krizhevsky. Learning multiple lay-
ers of features from tiny images. Master’s thesis, Univer-
sity of Toronto, 2009.

[LeCun et al., 1990] Yann LeCun, John S Denker, and
Sara A Solla. Optimal brain damage. In Advances in Neu-
ral Information Processing Systems, pages 598–605, 1990.

[Li et al., 2016] Hao Li, Asim Kadav, Igor Durdanovic,
Hanan Samet, and Hans Peter Graf. Pruning filters for ef-
ficient convnets. In International Conference on Learning
Representations, 2016.

[Liu et al., 2018] Zhuang Liu, Mingjie Sun, Tinghui Zhou,
Gao Huang, and Trevor Darrell. Rethinking the value of
network pruning. arXiv preprint arXiv:1810.05270, 2018.

[Louizos et al., 2017] Christos Louizos, Karen Ullrich, and
Max Welling. Bayesian compression for deep learning.
arXiv preprint arXiv:1705.08665, 2017.

[Molchanov et al., 2017] Pavlo Molchanov, Stephen Tyree,
Tero Karras, Timo Aila, and Jan Kautz. Pruning convo-
lutional neural networks for resource efficient inference.
In International Conference on Learning Representations,
2017.

[Romero et al., 2015] Adriana Romero, Nicolas Ballas,
Samira Ebrahimi Kahou, Antoine Chassang, Carlo Gatta,
and Yoshua Bengio. FitNets: Hints for thin deep nets.
In International Conference on Learning Representations,
2015.

[Russakovsky et al., 2015] Olga Russakovsky, Jia Deng,
Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,
Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael
Bernstein, Alexander C. Berg, and Li Fei-Fei. ImageNet
Large Scale Visual Recognition Challenge. Int. Journal of
Computer Vision (IJCV), 115(3):211–252, 2015.

[Sze et al., 2017] Vivienne Sze, Yu-Hsin Chen, Tien-Ju
Yang, and Joel S Emer. Efficient processing of deep neural
networks: A tutorial and survey. Proceedings of the IEEE,
105(12):2295–2329, 2017.

[Theis et al., 2018] Lucas Theis, Iryna Korshunova,
Alykhan Tejani, and Ferenc Huszár. Faster gaze pre-
diction with dense networks and fisher pruning. arXiv
preprint arXiv:1801.05787, 2018.

[Turner et al., 2018] Jack Turner, José Cano, Valentin Radu,
Elliot J. Crowley, Michael O’Boyle, and Amos Storkey.
Characterising across stack optimisations for deep convo-
lutional neural networks. In IEEE International Sympo-
sium on Workload Characterization, 2018.

[Yang et al., 2018] Tien-Ju Yang, Andrew Howard,
Bo Chen, Xiao Zhang, Alec Go, Vivienne Sze, and
Hartwig Adam. Netadapt: Platform-aware neural net-
work adaptation for mobile applications. In European
Conference on Computer Vision, 2018.

[Ye et al., 2018] Jianbo Ye, Xin Lu, Zhe Lin, and James Z
Wang. Rethinking the smaller-norm-less-informative as-
sumption in channel pruning of convolution layers. In
International Conference on Learning Representations,
2018.

[Yu et al., 2017] Jiecao Yu, Andrew Lukefahr, David Palfra-
man, Ganesh Dasika, Reetuparna Das, and Scott Mahlke.
Scalpel: Customizing dnn pruning to the underlying hard-
ware parallelism. In International Symposium on Com-
puter Architecture, 2017.

[Zagoruyko and Komodakis, 2016] Sergey Zagoruyko and
Nikos Komodakis. Wide residual networks. In British
Machine Vision Conference, 2016.

[Zagoruyko and Komodakis, 2017] Sergey Zagoruyko and
Nikos Komodakis. Paying more attention to attention:
Improving the performance of convolutional neural net-
works via attention transfer. In International Conference
on Learning Representations, 2017.

	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Fisher pruning
	3.2 Attention transfer

	4 Discovering Performance Enhanced Student Architectures
	5 CIFAR-10 Experiments
	6 ImageNet Experiments
	7 Conclusion

