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ABSTRACT

Deep Neural Networks (DNNs) provide excellent performance in the field of machine learning
and with the current trend of technology moving towards more mobile and decentralised process-
ing of data, many industries face the challenge of performing DNN inference in constrained edge
devices. Field Programmable Gate Arrays (FPGAs) are reconfigurable semiconductor circuits that
are well suited for processing DNNs efficiently through hardware acceleration, as developers can
adapt and redesign specialised DNN accelerators for new emergent DNN models. In this work, we
design and implement hardware accelerators within the PYNQ Z1 board. Our designs outperform
the CPU only inference of MobileNetV1 by 40% for single thread and 25.4% for dual thread.
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1 Introduction

Deep Neural Networks (DNNs) have two main stages, the first being the training stage,
where a DNN model is tuned to a given task. The second stage, known as inference, uses the
trained model to predict/classify previously unseen inputs. Training is a computationally
expensive procedure that often requires using high-end GPUs. Inference is less demanding
but still requires efficient processing of input data to achieve good performance.

Field Programmable Gate Arrays (FPGAs) allow circuits to be designed for specific appli-
cations instead of the general-purpose architectures provided by CPUs and GPUs. This pro-
vides hardware designers incredible flexibility in designing hardware accelerators, and en-
ables reduced power consumption and increased performance. Our work creates an FPGA-
based DNN hardware accelerator design by optimising key attributes such as data transfers
between CPU and accelerator, and the data distribution within the accelerator. Our final ac-
celerator design is able to achieve a better overall performance for single and dual thread
inference of quantised MobileNetV1 [JKC*18] compared to CPU only inference.
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2 Related Work

An extensive amount of work is being done in the area of designing and improving DNN
inference accelerators. The designs proposed in [BZH18] perform depthwise separable con-
volution using a hardware accelerator, which takes advantage of hierarchical memory to re-
duce the effect of limited off-chip memory bandwidth. The authors in [HZL"19] propose a
co-design methodology for DNN accelerators. They propose that by co-designing the DNN
model with the target hardware platform more specialised optimisations can be applied to
the accelerator. Finally, [TCR™]] introduces the Deep Learning Inference Stack by highlight-
ing both the machine learning and the systems design sides, both of which should be taken
into consideration when designing new inference accelerators.

3 Accelerator Design

We have two finalised hardware accelerator designs, one optimised for single thread pro-
cessing and the other for dual thread processing. For the dual thread accelerator we have
adjusted our input and output handling of the accelerator in order to handle parallel data
transfer from two CPU threads. Both designs use the same core components which are con-
tigured differently. The accelerator runs the convolutional layer as a matrix-matrix multiple,
dividing the two matrices across a number of processing units. Figure [I shows an in-depth
view of the single thread accelerator consisting of the three core components, the Input Han-
dler, the GEMM Units and the Output Handler.
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Figure 1: In-depth view of single thread optimised accelerator.
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3.1 Input Handler

Data is sent to the accelerator to be processed through the use of Direct Memory Access
(DMA). The Input Handler (IH) component of the accelerator receives all incoming data and
stores them in the internal buffers. The IH performs a number of tasks depending on the data
being received. The initial 64-bits of the data transferred always consist of a “task header”.
The header is decoded and used to process the incoming data and to generate internal tasks
to be performed within the GEMM units. The remaining data consists of weight and in-
put data blocks which the GEMM is performed over. These blocks are split and stored into
the internal BRAMs depending on the location parameter decoded from the “task header”.
Once the data is stored the IH generates an internal task to process the data received and
places the task into an internal task queue.

3.2 GEMM Units

Our accelerator design consists of four GEMM units, which are the core processing units
within the accelerator. The current accelerator architecture can only support four units due
to data distribution limitations. Units 1 and 2 are linked to each other, and similarly, units 3
and 4. The linked units share some of the accelerator resources, therefore they are required
to be synchronised such that they access the same resource at different clock cycles. Each
unit contains 8 local buffers to store the data that needs to be processed, 4 buffers for weight
data blocks and 4 for input data blocks. Each unit contains 16 32-bit registers to accumulate
results into. Each unit also contains a GEMM sub-circuit that makes use of 16 of the FPGA’s
DSP slices to perform 16 MACs per clock cycle. Each GEMM unit will read tasks from its
corresponding task queue, and perform GEMM on the data indicated by the internal task
and finally store the results back into the corresponding output queue.

3.3 Output Handler

The Output Handler (OH) functions as a buffer before sending the results back into mem-
ory using DMA transfers. The OH functions by reading from both of the output queues
constantly and storing the data read into a local output stack buffer within the OH, keeping
track of the size of the stack. Once the task queues are empty and the results are requested
by the CPU via control signals then the output stack buffer’s content is transferred back into
main memory.

4 Evaluation

Using TensorFlow Lite we perform experiments on the quantised MobileNetV1 model [JKC 18]
within the PYNQ Z1 board. Our baseline is single and dual thread CPU only inference. We
repeat experiments using our accelerator using single and dual threads.

The comparison of our accelerator inference time with CPU only is shown in Table
which contains the convolution time and the overall time of the full network. We achieve
50% improvement in convolutional layers and 40% overall improvement in the single thread
accelerator. For the dual thread version, we achieve a 30% improvement in processing the
convolutional layers and an overall improvement of 25.4%.



Implementation CONV | Overall
Single Thread CPU only 3510 3946
Dual Thread CPU only 1771 1993
Single Thread with Accelerator || 2305 2744
Dual Thread with Accelerator 1367 1589

Table 1: CPU only vs. Accelerator comparison in milliseconds.

5 Conclusion

This work presented an FPGA-based accelerator design for DNN inference. The design is
focused on 8-bit quantised networks, which are well suited for efficient edge inference. Con-
volutional layers, which represent over 90% of the computational cost of many common
DNNs, are the target of our work. Our accelerator off-loads the matrix-multiply operation
of GEMM convolution, and is integrated within TensorFlow Lite. Our design supports single
thread optimised and dual thread optimised accelerators, with both designs outperforming
their CPU only counterparts on the quantised MobilenetV1 benchmark.
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